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Abstract. This paper presents the application of multi-gene genetic programming (MGP) technique for
modeling the bond strength of ribbed steel bars in concrete. In this regard, the experimental data of 264
splice beam tests from different technical papers were used for training, validating and testing the model.
Seven basic parameters affecting on the bond strength of steel bars were selected as input parameters. These
parameters are diameter, relative rib area and yield strength of steel bar, minimum concrete cover to bar
diameter ratio, splice length to bar diameter ratio, concrete compressive strength and transverse
reinforcement index. The results show that the proposed MGP model can be alternative approach for
predicting the bond strength of ribbed steel bars in concrete. Moreover, the performance of the developed
model was compared with the building codes' empirical equations for a complete comparison. The study
concludes that the proposed MGP model predicts the bond strength of ribbed steel bars better than the
existing building codes' equations. Using the proposed MGP model and building codes' equations, a
parametric study was also conducted to investigate the trend of the input variables on the bond strength of
ribbed steel bars in concrete.
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Nomenclature

Ayp: area of ribbed steel bar K: constant used in CEB-FIP equation
Ay area of each stirrup crossing the potential plane ky: bar location factor (in CSA equation)
of splitting adjacent to the ribbed steel bar k,: coating factor (in CSA equation)
Cp: bottom concrete cover for spliced bar ks: concrete density factor (in CSA equation)
Csi: 1/2 of the bar clear spacing k,: bar size factor (in CSA equation)
Cso: Side concrete cover for bar I: splice length
Cs: minimum (¢, , Cgi+ 6.35 mm) M: ratio of the average yield strength to the design yield
Crmin: MiNimum (cy, C5) strength of the developed bar (in CEB-FIP equation)
Cmax. Maximum (cy, Cs) n: number of spliced bars
Cq: 2/3 of the center to center of the ribbed steel bars N: the number of transverse stirrups, or ties, within
dy,: diameter of ribbed steel bar the splice length
des: min (C5+0.5 dp, ¢, +0.5 dy, Cg) R,: relative rib area of the reinforcement

*xCorresponding author, Ph.D, Email: Emad_mohammadi@aut.ac.ir
®Professor, Email: Rahai@aut.ac.ir
®Researcher in Tehran oil refinery, Email: S_Hosseini_K@yahoo.com

Copyright © 2014 Techno-Press, Ltd.
http://www.techno-press.org/?journal=cac&subpage=8 ISSN: 1598-8198 (Print), 1598-818X (Online)


mailto:Rahai@aut.ac.ir

Emadaldin Mohammadi Golafshani, Alireza Rahai, Seyedeh Somayeh Hosseini Kebria

f.: specified compressive strength of concrete s: spacing of transverse reinforcement

fy: yield strength of spliced bar Uy: bond strength

fy: yield strength of transverse reinforcement ay: bar shape factor (in EC2 equation)

fuq: concrete tensile strength (in EC2 equation) ay: concrete cover factor (in EC2 equation)

frq: design compressive strength of concrete (in JSCE as, 0y, a5 © Confinement factor (in EC2 equation)
equation) n1: bond quality factor (in EC2 equation)

n,: bar size factor (in EC2 equation)

1. Introduction

Due to the performance of reinforced concrete structures depending on adequate bond strength
between steel bars and concrete, the accurate calculation of splice strength is important. An
efficient bond ensures reliable force transfer between reinforcement to the surrounding concrete.
According to ACI Committee 408 (2003), in case of a ribbed steel bar, the following mechanisms
contribute to force transfer: (1) Chemical adhesion between the bar and the concrete, (2) Frictional
forces arising from the roughness of the interface and (3) Mechanical anchorage or bearing of the
ribs against the concrete surface.

Orangun et al. (1977) reported that the bond failure of ribbed bars normally involves the
following phenomena: (1) local crushing of concrete in front of the bar ribs, and/or (2) splitting of
the concrete due to radial cracks around the bar. Local crushing dominates when the confinement
provided by either surrounding concrete or transverse reinforcement is large and/or the rib height
is small. This mechanism of bond failure tends to be ductile and does not cause much size-effect.
Splitting of the concrete, so called brittle mechanism, dominates when the confinement is small
and/or the rib height is large.

The bond strength and mode of bond failure are affected by many parameters that are well
documented in the technical papers. Important among these parameters include diameter, relative
rib area and yield strength of steel bar, minimum concrete cover to bar diameter ratio, splice length
to bar diameter ratio, concrete compressive strength and transverse reinforcement index (the ratio
of the product of the area of each transverse stirrup and its yield strength to the product of stirrup
spacing, the number of spliced bars and longitudinal bar diameter). These parameters have been
used for quantifying the bond strength in empirical equations of different technical papers
(ACI408 2003, Darwin et al. 1996a, Darwin et al. 1996b, Darwin et al. 2001, Ferguson and
Thompson 1965, Hacha et al. 2006, Harajli et al. 2004, Harajli and Mabsout 2002, Hassan et al.
2012, Ichinose et al. 2004, Lutz and Gergely 1967, Orangun et al. 1977, Tepfers 1973, Untrauer
1965, Zuo and Darwin 2000).

Most of the mathematical models used to study the behavior of the reinforced concrete
structure consist of mathematical rules and expressions that capture the relationship between
different variables. By the way, using mathematical models to take and describe experiences from
experimental data are the most reliable, accurate, scientific, and applicable recommended methods.
Mathematical models based on experimental data are called “free models”, and are generally in
regression forms. However, if the problem contains many independent variables, regression
methods cannot be used because of less accuracy and more assumptions in regression form (linear,
non-linear, exponential, etc.). In recent years, new modeling techniques based on artificial
intelligence methods can approximate non-linear and complex relations due to any phenomena and
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trial and error processes by learning real record relationships without any presumptions (Dias and
Pooliyadda 2001, Ramezanianpour and Davarpanah 2002). Among these methods genetic
programming approaches have been successfully applied for engineering applications. Perez et al.
(2013) applied GP technique in order to enhance the expressions of the FIB. Cevik et al. (2010)
introduced a GP model for formulating the strength enhancement of CFRP confined concrete
cylinders. Kara (2011) used the GP model for predicting the shear strength of FRP- reinforced
concrete beams without stirrups. Perez et al. (2012) proposed a new GP algorithm for calculating
the shear strength of reinforced concrete beams. Kose and Kayadelen (2010) investigated the
efficiency of the GP model for determining the transfer length of prestressing strands. Perez et al.
(2010) used GP for adjusting of EC-2 shear formulation of concrete elements without web
reinforcement. Ozbay et al. (2008) introduced the GP model as a new tool for the formulation of
fresh and hardened properties of self-compacting concrete. Mousavi et al. (2012) utilized a type of
GP for modeling the compressive strength of HPC. Saridemir (2010) proposed a GP model for
predicting the compressive strength of concretes containing rice husk ash. Tanyildizi and Cevik
(2010) modeled the mechanical performance of lightweight concrete containing silica fume
exposed to high temperature using GP. Sonebi and Cevik (2009) developed a GP model for
predicting the fresh and hardened properties of self-compacting concrete containing pulverized
fuel ash.

Some researchers have applied different branches of artificial intelligence for predicting the
bond strength of reinforcing bars in concrete. Golafshani et al. (2014) evaluated the bond strength
of GFRP bars in concrete using artificial neural network (ANN) and GP. Golafshani et al. (2012)
developed the ANN and fuzzy logic models for predicting the bond strength of spliced steel bars in
concrete. Tanyildizi (2009) devised a fuzzy logic prediction model for the bond strength of
lightweigth concrete containing mineral admixtures under different curing conditions. Dahou et al.
(2009) proposed an ANN model for modelling the bond between conventional ribbed steel bars
and concrete.

The aim of this paper is to develop the multi-gene genetic programming model for predicting
the bond strength of ribbed steel bar in concrete. A total of 264 records from different technical
papers were used in training, validating and testing of the model. A comparison of the developed
model's outputs with the target bond strength revealed that the model's results have a good
agreement with the experimental data. Also, the obtained results were compared with the different
codes’ equations to assess the efficiency of the proposed models. Moreover, the proposed MGP
model was used to show that it could perform parametric studies to evaluate the effects of the
inputs parameters on the bond strength of ribbed steel bar in concrete.

2. Review of current design provisions

Due to the importance of bond strength between steel bars and concrete for design provisions,
there are some international efforts to improve design guidelines. These efforts have resulted in the
publishing of several codes and design guidelines. Most of the empirical equations used in these
publications are based on nonlinear regression analysis of test results. The bond strength between
ribbed steel bars and concrete as recommended by some design guidelines are listed in Table 1.
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Table 1 Available bond strength equations for ribbed steel bars in concrete

Design method Expression for bond strength
ACI 318 0.125 + 0.25 "““+415 ﬂ \F
41 36sndy,
0. 2768 Aty \f
CSA = [10 Ssnd, ]
2.2511,f,
EC2 up = 7115:1 o “
0.353 (f, — 2.75)?/3
CEB-FIP Uy = Cmin wr
M (115-015 db Ja- K(Ni—b —0.25))
_ mm 15Atr db F
JSCE u, = 0.31 [(0 318 + 0. 795( db S d_b)> + 13.31} foa

3. Experimental data

The collected experimental data included 264 splice beam tests gathered from different
technical papers (Azizinamini et al. 1999, Choi et al. 1990a, Choi et al.1991b, Darwin et al.
1996a, Hassan et al. 2012, Hagha et al. 2006, Hester et al. 1991a, Hester et al. 1993b, Mathey and
Watstein 1961, Rezansoff et al. 1991, Seliem et al. 2009, Zuo and Darwin 1998, Zuo and Darwin
2000). Based on the previous research studies, some of the important parameters that are thought
to affect the bond strength of ribbed steel bars are listed below:

Diameter of ribbed steel bars (dy)

Yield strength of ribbed steel bars (f,)

Relative rib area of the reinforcement (R,)

Minimum concrete cover to bar diameter ratio (Cmin/dp)
Splice length to bar diameter ratio (Is/d)

Specified compressive strength of concrete (f,.)
Transverse reinforcement index (Aqf,/sndy)

Among the gathered records from the above-mentioned sources, 184 records were used for
training, 40 records for validating, and 40 records for testing of the model. These selections are
made by a random process to prevent any man-selection effects on the training process. Table 2
summarizes the range of input and output records for training, validating and testing data. As
shown in this table, the ranges of data for validating and testing datasets are within the range of
data for training dataset. In other words, the proposed model was developed for interpolation
purpose. Furthermore, the database used for training, validating and testing patterns is presented in
Table A in Appendix A.
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Table 2 Range of input-output parameters in database and their normalization values

Parameters Minimum Maximum Mean Standard deviation
it % < S % < S % I S % o

3 S < 3 o < 3 S ks 3 S ks

o © o © o ° o o°

=24 c o =2 c o =2 = =) =2 c )

= = c = = c = = c = = c

c (154 = c 154 = = < = = @ =

—_ =] n = o n = =] n = =] n

© = @ © = @ © = (<) © = @

[ S = = S = [ S = [ S =

dp (mm) 1270 1587 1270 6350 6350 6350  27.89  27.97 2860 8 7.66 8.59

fy (MPa) 41379 41379 45200 82759  827.59 82759 63243  602.06 661.11 150.10  142.76  144.27

R, 0.06 0.07 0.07 0.18 0.18 0.18 0.10 0.10 0.10 0.03 0.03 0.03
Crmin/dp 0.60 0.60 0.60 3.50 3.20 3.50 1.55 1.59 1.61 0.51 0.48 0.67
I/dp 7.00 16 12 94.00 5840 6454  30.28 20.00 2982 1661 12.65  14.66

fc (MPa)  24.10 2596 2796 11036  108.25 107.93 5178 49.74 4859 2587 23.94 2285
Ayfyifsnd, 000 0.00 0.00 27121 9306 27121 1821 1212 2327  36.28 1493 5513

Up 1.52 2.61 1.92 11.36 8.40 10.92 5.28 5.20 5.57 1.63 1.34 2.14

4. Genetic programming

Genetic programming, proposed by Koza (1992), is a subset of solution search technigques
enshrined within the term of evolutionary computation (EC). EC includes a set of methods based
on models that emulate certain characteristics of nature, mainly the capacity that living beings
possess to adapt themselves to their environment. This feature of living beings had been captured
by Darwin (1859) to make his theory of evolution according to the species natural selection
principle. Darwin (1859) holds that those individuals in a population who possess the most
advantageous characters will leave proportionally more descendants in the following generation,
and if such characters are due to genetic differences that can be transmitted to the descendants, the
genetic composition of the population will tend to change, raising the number of individuals with
such characteristics. In this way, the complete population of living beings adapt themselves to the
changeable circumstances of their environment. The final result is that living beings tend to perfect
themselves in relation to the circumstances that surround them.

The GP solutions are computer programs represented as tree structures. Each of these trees will
be a possible solution to the problem in question. The fitness function is used to evaluate its
goodness. In GP, each solution is called individual, and the set of individuals with whom it works
is called population. This population, that is initially random, is made to evolve through a number
of iterations that are called generations in which new individuals who will be part of the current
population are created from the individuals of a previous generation. These new individuals are
created combining the genetic material of some selected individuals, using the selection, crossover
and mutation algorithms. Fig. 1 describes the GP general functioning. This outline is the same for
any evolutionary algorithm (Perez et al. 2012).

In this study, multi-gene genetic programming (MGP), a novel branch of standard GP proposed
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by Hinchliffe et al. (1996), was used for modeling the bond strength of ribbed steel bars in
concrete. It is a new feature that makes the GP approach more powerful for modeling non-linear
problems. Contrary to standard GP, each computer program in MGP is presented as a number of
detached genes such that each one is a symbolic regression. The main difference between standard
and MGP is the amount of tree-based structures that can be employed. Applying the multi-gene
feature noticeably improves the ability of GP and allows better results to be obtained. In MGP,
each prediction of the output variable is formed linearly by the weighted output of each of the
genes plus a bias term. Each tree is a function of the input variables. Mathematically, a multi-gene
regression model can be written as (Searson 2009)

1. Initializing the population

2. Population evaluation

3. Whereas the termination criterion is not satisfied
a. Selecting individuals for the reproduction

b. Creation of new individuals from the ones that
are selected (crossover)

c. Individuals mutation (with probability p)
d. New individuals evaluation

e. Replacement of all/some of the individuals from
the current population with the new individuals

Fig. 1 Outline of an evolutionary algorithm (Perez et al. 2012)

d =bg + w,G; +w,G,

G; = 041x, + tanh (X;X3)
Fig. 2 Example of a MGP model
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y = XL, wiGj + b 1)

where y is the predicted output, G; is the value of the ith gene and is, in general, a function of one
or more of the input variables, w; is the ith weighting coefficient, n is the number of genes and b,
is a bias term. The gene weights are determined by a least squares procedure to minimize the
RMSE between the predicted and output actual outputs. Fig. 2 shows an example of the MGP
model using input variables X3, X, and X3 (Searson 2009).

5. MGP results

The fundamental aim of developing the MGP model was to generate the mathematical
functions for predicting the bond strength of ribbed steel bars in concrete. The best model was
chosen on the basis of a multi-objective strategy as follows:

i. Selecting the simplest model using simple functions and least depth and number of genes.

ii. Providing the best fitness values on the training, validating and testing data.

In this regard, different MGP models with different number of genes (2 and 3 genes) and
different genes' tree depth (3, 4 and 5) were developed. All of these models were tested and ten
replications for each architecture were carried out. The performance and the simplicity of each
model (the number of nodes and the applied functions) were considered for its evaluation. The
optimized parameters used in the MGP model development were summarized in Table 3. Also, the
expression tree of formulation for the u, is shown in Fig. 3.

Table 3 Parameters of MGP approach model

Parameter definition MGP model
Population size 10000
Number of generations 500
Max genes 3
Max genes' tree depth 5

Multiple, Minus, Plus, Divide, Abs, ¥, ¥,

Function set 4 .
A/ Power 2, Power 3, Power 4, sin, cos, tan

Probability of GP mutation event 0.10
Probability of GP crossover event 0.85
Probability of GP direct copy event 0.05

Table 4 The uy, statistical values of the proposed MGP model

Proposed model Data sets MAPE RMSE R
Training 8.8302 0.5152 0.9912
The MGP model Validating 8.2982 0.5473 0.9892

Testing 8.9161 0.5671 0.9909
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Fig. 3 Expression trees of the proposed MGP model
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6. Results and discussion

Maximum absolute percentage error (MAPE), Root mean squared error (RMSE) and the
absolute fraction of variance (R?) are statistical values that were used for comparative evaluation
of the performance of the proposed model and empirical equations. These statistical values are
calculated according to Egs. (6)-(8), respectively.

MAPE = =3} 1'01_“ x 100 (6)
1
RMSE = \/EZ%\Ll(Oi—ti)z (7
2_1_ M)
RE=1 ( TN, (0y)? ®)

where t; is the bond strength of ribbed steel bars in concrete, O; is the predicted value and N is the
total number of data points in each set of data.

The statistical values for the bond strength of ribbed steel bar in concrete obtained from
training, validating and testing sets in the proposed MGP model are given in Table 4. While the
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statistical values MAPE, RMSE and R? from training in the proposed model were obtained as
8.8302%, 0.5152 and 0.9912, respectively, these values were obtained in validating as 8.2982%,
0.5473 and 0.9892, respectively and for testing data as 8.9161%, 0.5671 and 0.9909 respectively.

For the proposed model, the comparisons of the measured and predicted bond strength versus
data samples are shown in Figs. 4-6 for training, validating and testing stages, respectively. Figs.
7-9, present the measured bond strengths versus predicted bond strengths by MGP model. Also,
the linear least square fit line and its equation are given in these figures.

As it is visible in Figs. 4, 7 and Table 4, the values obtained from the training set in the
proposed MGP model are much closer to the experimental data. It can be concluded that the
proposed model could learn the relationship between the different input parameters and the output
parameter, which is expected, since the proposed model were constructed using these data. Also,
the results of the validating stage in Figs. 5, 8 and Table 4 show that the proposed model was
capable of generalizing between input variables and the output. Finally, Figs. 6 and 9 and Table 4
reveal that the developed model is able to model the bond strength of ribbed steel bars in concrete.

2
3§
=Y
=

o 10 20 30 40 50 60 70 80 @0 100 110 120 130 140 15
Data order

Fig. 4 Predicted bond strengths through the proposed MGP model for training set
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Fig. 5 Predicted bond strengths through the proposed MGP model for validating set

o s 10 15 20 25 30 3s 40
Data order

Bond strength (MPa)
N o
é

Fig. 6 Predicted bond strengths through the proposed MGP model for testing set
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Fig. 7 The correlation of the measured and predicted bond strengths in training stage for the
proposed MGP model
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Fig. 8 The correlation of the measured and predicted bond strengths in validating stage for the
proposed MGP model
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Fig. 9 The correlation of the measured and predicted bond strengths in testing stage for the
proposed MGP model

7. Comparison of building code equations

In this part, the results of the proposed MGP model were compared with different building
codes' equations for the existing data in the database. Fig. 10 shows the performance of the model
produced by MGP and those provided by commonly used bond strength's equations. The ratio of
experimentally measured to analytically calculated bond strength (Up, experimentai/Us, moger) fOr all data
in the database is shown in this figure. Also, Table 5 reports the average and standard deviation
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Table 5 Performance of the bond strength’s equations considered in this study

Ub, experimentallub, model

Ub, experimental/ Ub, model

Ub, experimental/ Ub, model
'

Model MAPE (%) RMSE R? Average D
ACI 318 15.3245 1.2524 0.9429 1.0242 0.2573
CSA 17.3066 1.2224 0.9500 1.1202 0.2867
EC2 19.0323 1.2148 0.9431 1.0701 0.2415
CEB-FIP 24.4721 1.4716 0.9261 1.0708 0.2946
JSCE 13.6997 0.9981 0.9693 1.0315 0.1934
MGP 8.7619 0.5283 0.9909 0.9983 0.1153
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Fig. 10 Performance of the proposed MGP model and different design equations in calculating
bond strength of steel bars in concrete using all data
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(SD) for Up, experimental/Un, moder @Nd the statistical values of all design equations and the proposed
model. It can be seen that the MGP model has the lowest MAPE of 8.76% compared to 15.32% for
ACI 318's equation, 17.31% for CSA's equation, 19.03% for EC2's equation, 24.47% for CEB-
FIP's equation and 13.70% for JSCE's equation. Also, the average value of the ratios of the
experimental bond strengths to the predicted bond strengths is 1.02, 1.12, 1.07, 1.07, 1.03 and
almost 1 in ACI 318, CSA, EC2, CEB-FIP, JSCE and the proposed MGP models, respectively.
Thus, the proposed MGP model provides the best average ratio of experimentally measured to
analytically calculated bond strength (Up, experimentat/Us, moder) Value. As shown in Fig. 10 and Table 5,
the variations of Uy, experimental/Un, mogel from the expected value for MGP model is lower compared to
other design codes' equations. Also, all building code equations averagely underestimate the bond
strength of ribbed steel bars in concrete. However, dispersion of results for JSCE's equation is
lower compared to other building codes' equations and it provides better results than other
traditional models. Moreover, dispersion of results and the error of prediction for CEB-FIP's
equation are higher than other building codes' equations.

8. Parametric study

The effectiveness of the proposed model is dependent on the weight of each parameter
conducting the phenomena. In this paper, the parametric study was employed to examine the effect
of the main input parameters on the bond strength of ribbed steel bars in concrete. This study will
be carried out by simply varying one input parameter and keeping the others constant. The bond
strength of a set of beams having geometrical and mechanical properties similar to those of beams
selected from the database have been also calculated for different amounts of dy, Ry, Cmin/dp, Is/dy,
fe, (Avfp)/(s.n.dy) and f, using the building codes' equations and the proposed MGP model
considered herein. Also, the selection of beams from the database are made by a random process
among those of experimental data that their values are not at the extremes of the whole range for
each parameter and also occur within the band for which there is a high frequency.

Furthermore, taking into account the performance of empirical equations, the parametric study
can be useful as a basis for determining the most influential parameters in the problem under study
with the purpose of proposing future modifications to the empirical equations. In this regard, the
proposed model’s predictions have been compared with theoretical predictions of the different
empirical equations.

8.1 Influence of dy,

Fig. 11 shows the effect of ribbed bar diameter on the bond strength for the proposed MGP
model and different building codes' equations. It is seen that the bond strength of smaller steel bars
is more than bigger ones. Interestingly the proposed MGP model and most design codes do not
consider d, to be a notable influencing parameter on the bond strength of ribbed steel bar in
concrete. However, the result of MGP model is consistent with the result provided by Ichinose et
al (2004).

8.2 Influence of R,

The influence of surface deformations of ribbed steel bars on the bond strength is presented in
Fig. 12. It is observed that the bond strength of ribbed steel bar in concrete is not much influenced
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by its R,. However, more experimental works will be needed for accurate assessment of this
parameter considering bond failure mechanism.

8.3 Influence of Cpi./dy

Fig. 13 shows the influence of C;/dy, ratio on the bond strength of ribbed steel bars in
concrete. It is shown that all empirical equations, experimental results and the MGP model
consider the effect of C,;./dy, but they vary in the magnitude of such an effect. When increasing
Cnin/dp ratio, the bond strength of ribbed steel bars and concrete increases, since the confinement
of ribbed steel bars in concrete increases.

8.4 Influence of Is/d,

Fig. 14 shows the effect of I/d, ratio on the bond strength of ribbed steel bars in concrete. As
shown in this figure, the bond strength equations provided by EC2 and CEB-FIP assumes that the
bond strength of ribbed steel bars in concrete increases as lj/d, increases, whereas ACI318, JSCE
and the MGP model predicts the well-known trend of bond strength of ribbed steel bars in
concrete, i.e. lower bond strength for higher l/d, ratios and higher bond strength for lower I/d,
ratios. The result of the proposed model is compatible with the experimental results.

8.5 Influence of f,

Fig. 15 shows the variation in bond strength of ribbed steel bars with variable concrete
compressive strength. The figure illustrates the effect of f. as estimated by the proposed model,
various empirical bond strength equations considered in this study and the experimental results. It
is shown that all design codes' equations consider effect of f., but they vary in the magnitude of
such an effect. The proposed MGP model and design codes' equations assume that the bond
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strength of ribbed steel bars in concrete increases with an increase of compressive strength and this
relationship is non-linear for all models.
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8.6 Influence of (Ag.f,:)/(s.n.dy)

The effect of lateral confinement on the bond strength of ribbed steel bars in concrete is shown
in Fig. 16. It is obvious that well-confined steel bars with steel stirrups exhibit higher bond
strength with concrete than the unconfined steel bars.

8.7 Influence of f,

Fig.17 shows the relationship between the bond strength of ribbed steel bars and its yield
strength in concrete. Although not considered by different design codes' equations, the proposed
MGP model have shown that as the yield strengths of ribbed steel bar increases, the bond strength
of bar in concrete increases. However, more experimental works will be needed for investigating
this condition in future.

It is now proved that the proposed MGP model takes correctly into account the influence of the
most different parameters conducting the bond strength of ribbed steel bars in concrete that
confirms the potential generalization capability of this model.

9. Conclusion

In this study, multi-gene genetic programming (MGP) method was used for predicting the bond
strength of ribbed steel bars in concrete. Statistical values such as MAPE, RMSE and R? were
applied for comparing experimental results with the results of the proposed model and different
design codes’ empirical equations. The following conclusions were drawn from this investigation:

o The proposed MGP model is very good for interpolating and it is more accurate and
reliable than those obtained from design codes’ equations for predicting the bond strength of
ribbed steel bars in concrete, especially in cases where it is difficult to model the complex
interactions among the multiple variables.

° Compared to all other artificial intelligence methods, the proposed MGP model is so
simple that it can be used by anyone not necessarily being familiar with GP. The model also gives
a practical way for predicting the bond strength of ribbed steel bars in concrete to obtain accurate
results, and encourages use of GP in other aspects of civil engineering studies.

° All considered design codes’ equations underestimate averagely the bond strength of
ribbed steel bars in concrete. However, comparison between the design codes’ equations in terms
of statistical values shows that the JSCE equation provides better results than all other empirical
equations' results.

° The proposed model was also used to perform parametric studies in modeling physical
processes. The results of parametric studies for the proposed model had good agreement with the
experimental results and codes’ predictions. However, more experimental works will be needed for
evaluating some phenomena.
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