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Abstract.  Concrete is an important material in most of civil constructions. Many properties of concrete can 
be determined through analysis of concrete images. Image segmentation is the first step for the most of these 
analyses. An automated system for segmentation of concrete images into microstructures using texture 
analysis is proposed. The performance of five different classifiers has been evaluated and the results show 
that using an Artificial Neural Network classifier is the best choice for an automatic image segmentation of 
concrete. 
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1. Introduction 

 

Concrete mixtures are complex heterogeneous materials composed of air voids, cement pastes, 

and aggregates. The overall performance and properties of concrete depend on the proportion and 

distribution of these materials. However, the microstructural analysis of concrete images is a time 

consuming process which is done manually or using semi-automatic methods. 

Recently, numerous studies have been done on performing an automatic analysis of concrete 

images. We can mention some of these works as follows; the investigation of micro-cracks and 

voids which is a useful tool for extracting crack patterns and damage characterization (Ammouche, 

et al. 2001; Bernstone and Heyden 2009; Carloni and Subramaniam 2013; Chen et al. 2011; 

Glinicki and Litorowicz 2006; Litorowicz 2006; Martins et al. 2013; Ringot and Bascoul 2001; 

Shamshad et al. 2013; Soroushian et al. 2003) or segmentation of different phases (separation of 

aggregate particles from paste matrix) in cement paste based materials (Dequiedt et al. 2001; Silva 

et al. 2002; Yang and Buenfeld 2001) or some other works (Dequiedt et al. 2013; Feng et al. 2004; 

Liang et al. 2009; Redon et al. 1999; Soroushian and Elzafraney 2005; Wong et al. 2006). For the 

purpose of atomization, different segmentation methods have been recently proposed. Yang (Yang 

and Buenfeld 2001) used a combination of binary operations such as binary edge detection, 

thresholding, opening and erosion to automatically segment concrete images. Dequiedt (Dequiedt 
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et al. 2001) used different color spaces to separate different phases in concrete images. Silva (Silva 

et al. 2002) used morphological analysis for segmentation. Stochastic methods such as Markov 

Random Fields were also used (Liang et al. 2009). Indeed,  concrete images consist of many 

texture regions and there have not been enough studies based on textural nature of concrete 

images. 

In recent decades, texture analysis has been one of the hottest research topics in image 

processing field. Many algorithms have been developed and used for analyzing and synthesizing 

texture (Petrou et al. 2006; Tuceryan and Jain 1993). A textured region may consist of many small 

homogenous regions (texture elements) and therefore segmenting textured images using traditional 

segmentation methods results in over-segmentation. The goal of texture segmentation is to group  

 

 

 

Fig. 1: An overview of the proposed segmentation method 
 

 

 
Fig. 2 Examples of test images 
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image pixels into regions with similar texture. A texture analysis method uses values of 

neighboring pixels to represent texture (Sarafrazi et al. 2013). In this study, grey-level co-

occurrence matrixes (GLCM) have been used for texture analysis. GLCM is a second-order 

statistics method which can be used to extract texture’s features. 

In this paper, a new method for automatic segmentation of concrete images into different 

phases using texture analysis is proposed. In the phase of selecting a classifier, different 

classification methods can be used. We also compare the performance of most utilizing methods in 

order to determine the best one. 

In the next section, the proposed method and its different stages are presented.  

 
 
2. Proposed method 

 

Fig. 1 shows the flowchart of the proposed method. Each step of the algorithm will be 

explained in the following sections. 

 

2.1 Image acquisition 
 

In our work, a dataset of 31 images of concrete with 2 mm resolution were used. We used 20 

images for training procedure and the rest for evaluation part. Fig. 2 shows some of these test 

images. 

 

2.2 Grey-level co-occurrence matrix (Haralick, Shanmugam and Dinstein 1973) 
 

GLCM is a second-order statistics method which can be used to extract texture’s features. The 

GLCM can model the texture by calculating how often a pair of pixels with specific values and in 

a specified spatial relationship occurs in an image. Different statistical measures can be extracted 

from GLCM and used to model texture.  

To form the GLCM for each pixel an 25 × 25 window around a given pixel is used as 

neighboring pixels. Then the GLCM is calculated for the pixels in this window. 

wkTDifferent spatial relationships can be used to form a GLCM. In this study, this relationship 

is defined as between the pixel of interest and the pixel to its immediate right side (i.e., 

horizontally adjacent). Since each pixel can have any integer values between 0 and 255, the size of 

GLCM would be 256 × 256 (for each pixel). In order to reduce the data volume, pixel values are 

quantized to 8 levels (i.e., 0, 32, 64, 96, 128, 160, 192 and 224). For example, all pixels with 

values between 64 and 95 are quantized to 64. This would reduce the GLCM size to 8 × 8 pixels. 

After the GLCM is formed using different statistics which describe texture can be extracted 

from it. In this paper, contrast, energy, homogeneity and entropy were calculated which are defined 

as follows.  

The contrast which is a measure of the intensity difference between a pixel and its neighbors 

over the whole image can be calculated from Eq. (1). Note that the contrast is 0 for a constant 

image. 

 

                                                  (1) 
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Energy is another parameter which is the sum of squared elements in the GLCM. 

 

                                              (2) 

 

Homogeneity measures the diagonality of the GLCM and is a measure of smoothness of the 

texture. It is defined as follows. 

 

               
         

                                (3) 

 

Entropy is a statistical measure of randomness that can be also used to characterize textured 

regions. It is calculated by: 

 

                                                     (4) 

 

These four measures are the inputs to a classifier which determines the class of each pixel (e.g. 

cement paste, gravel or crack).  

 

2.3 3FLD Algorithm 
 

Fisher’s Linear Discriminate Analysis (FLD) is a supervised algorithm used for reducing data 

dimension before performing a classification. In the supervised methods, the training data have 

class labels, i.e. data objects that have the form (     ) where    is the data and    shows the 

class that this data belongs to, for example in a binary classification case         . In situations 

where class labels are available we are often interested in discovering a transformation that maps 

the data so that different classes are as separated from each other as possible. FLD algorithm 

maximizes the between class separation and minimizes within class separation. 

To perform FLD algorithm, scatter matrices Si (i = 1, 2) and Sw are defined as: 

 

                
 

    
                        (5) 

 

Here t stands for transposing a matrix , and  

 

                                      (6) 

 

where: 

 

   
 

  
      

                               (7) 

 

Between class scatter matrix is also defined by: 

 

                 
                         (8) 

 

The goal here is to minimize within class scatter and to maximize between class scatter so that 

we have the best between class separation. Now if the projection matrix is defined by: 
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                                    (9) 

 

It can be shown that if       the within class scatter will be minimized and between class 

scatter will be maximized. First the transformation matrix is derived from training data then 

applied to all of the image pixels. Each of classifiers used for comparison will be applied on both 

FLD algorithm outputs and the original data. 

 
2.4 Classification(Duda, Hart and Stork 2012) 
 
Four different types of classifiers were used in this study. Each of them was applied to both 

FLD algorithm outputs and original data. 

 
 

 
Fig. 3 Finding the optimal hyperplane. Support vectors are nearest patterns. The three support 

vectors are shown in solid 

 

 
Fig. 4 Effect of K on KNN output 
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2.4.1 Bayesian classifier 
In Bayesian classification, it is assumed that the dataset has a normal probability density. In this 

case the discriminate functions are defined by: 

 

                                                   (10) 

 

where 
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For each pixel x, if             then     , otherwise     . 

 

2.4.2 Support vector machines 
Data from two categories can always be separated by a hyperplane, using a nonlinear transform 

that maps data to a sufficiently high dimension space. Once the data have been mapped to higher 

dimension space, there are infinite hyperplanes that can separate the data in two classes, but 

thequestion is which one of these hyperplanes is the optimum answer. It can be shown that the 

plane which has maximum distance from training points of different classes is the best option. 

Hereby, support vectors are defines as the samples of each class which are closest to separating 

hyperplane.. The decision hyperplane must be equally close to support vectors. Training a Support 

Vector Machine (SVM) consists of finding the optimal hyperplane, namely the one with maximum 

distance from the nearest training points as shown in Fig. 3. Although different kernels can be used 

for SVM training, here a polynomial kernel of degree 3 has been used. 

 
2.4.3 K-Nearest neighbors 
In this method, K nearest training points to a test sample are determined. Then the sample is 

assigned to the class to which majority of these training points belongs. Number of points (K) and 

the distance function can affect the performance of the algorithm and must be chosen wisely. In the 

example of Fig. 4, if k = 5 the test point (shown with a cross) will be classified as class 1 (white) 

but if k = 9 it will be classified as class 2 (black). 

Different distance functions such as Euclidean and Cityblock can be used. In our work, the best 

results were obtained with K = 7 and Euclidean distance. 

 

2.4.4 Artificial neural networks 
Artificial neural networks (ANNs) are powerful tools in the pattern recognition. They can be 

used to model many nonlinear functions. ANNs have been widely used in classification tasks. 
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A three layer feed-forward network with different number of neurons and transfer functions 

was tested. Best result was achieved with 50 neurons, tansig (Hyperbolic tangent sigmoid, see Fig. 

5) transfer function for hidden layer and logsig (Log-sigmoid, see Fig. 6) function for output layer.  

Fig. 7 shows an overview of network structure. Levenberg-Marquardt back propagation method 

with 150 iterations was used for training the network. 

 

 

 

Fig. 5 Hyperbolic tangent sigmoid transfer function 

 

 

Fig. 6 Log-sigmoid transfer function 

 

 

Fig. 7 Overview of network structure 
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Fig. 8 Segmentation results of different methods a:original image b:FLD output c:hand-

segmented image d:segmentation results of Bayesian classifier e: segmentation results of KNN 

classifier f: segmentation results of neural networks g: segmentation results of SVM image 

h:segmentation results for combination of Bayesian classifier and FLD i: segmentation results 

for combination of KNN and FLD j: segmentation results for combination of ANN and FLD k: 

segmentation results for combination of SVM and FLD 
 

 
Fig. 9 Segmentation results of different methods a:original image b:FLD output c:hand-segmented 

image d:segmentation results of Bayesian classifier e: segmentation results of KNN classifier f: 

segmentation results of neural networks g: segmentation results of SVM image h:segmentation 

results for combination of Bayesian classifier and FLD i: segmentation results for combination of 

KNN and FLD j: segmentation results for combination of ANN and FLD k: segmentation results 

for combination of SVM and FLD 

 
 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)
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Fig. 10 Segmentation results of different methods a:original image b:FLD output c:hand-

segmented image d:segmentation results of Bayesian classifier e: segmentation results of KNN 

classifier f: segmentation results of neural networks g: segmentation results of SVM image 

h:segmentation results for combination of Bayesian classifier and FLD i: segmentation results for 

combination of KNN and FLD j: segmentation results for combination of ANN and FLD k: 

segmentation results for combination of SVM and FLD 

 

Table 1 Segmentation accuracy for different methods 
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Bayesian 78.64 - - 

Bayesian + FLD 88.41 7.67 18.04 

KNN 88.04 8.87 16.24 

KNN+FLD(k=7) 88.67 7.90 16.32 

SVM 89.70 6.00 16.89 

SVM+FLD 88.58 7.92 16.93 

ANN 90.29 5.05 18.69 

ANN+FLD 83.84 5.91 33.76 

 
 
3. Experimental results 

 

For evaluating the performance the methods mentioned in Section 2, sample pictures from 

concrete cuts were used. All images were segmented using different classification methods once 

after applying FLD algorithm and once without using FLD. 

TABLE I shows segmentation accuracy for each of these methods. Classification accuracy is 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)
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the ratio of number of pixels that have been correctly classified to all pixels. ANN is the best 

method with %90.29 accuracy. KNN and SVM methods also achieve a close accuracy. 

As can be seen, FLD has improved the accuracy for Bayesian and KNN classifiers, but it 

decreases ANN and SVM’s performance. This is due to the nonlinear nature of ANN and SVM 

which causes linear separation of data (like it is done in FLD) to be useless. 

 Figs. 8 through 10 show segmentation results for some of the input images. 

 
 
4. Conclusions 
 

Different classifiers were used for the segmentation of concrete images into different phases 

and their performances were compared. As expected the best results belonged to ANN and SVM.  

As seen in TABLE I segmentation accuracy is high and segmented images can be used for 

further analysis.  

Using other kernels for SVM , different structures for ANN and other texture analysis methods 

is suggested for future researches. 

Figure 8. Segmentation results of different methods a:original image b:FLD output c:hand-

segmented image d:segmentation results of Bayesian classifier e: segmentation results of KNN 

classifier f: segmentation results of neural networks g: segmentation results of SVM image 

h:segmentation results for combination of Bayesian classifier and FLD i: segmentation results for 

combination of KNN and FLD j: segmentation results for combination of ANN and FLD k: 

segmentation results for combination of SVM and FLD 

Figure 9.   Segmentation results of different methods a:original image b:FLD output c:hand-

segmented image d:segmentation results of Bayesian classifier e: segmentation results of KNN 

classifier f: segmentation results of neural networks g: segmentation results of SVM image 

h:segmentation results for combination of Bayesian classifier and FLD i: segmentation results for 

combination of KNN and FLD j: segmentation results for combination of ANN and FLD k: 

segmentation results for combination of SVM and FLD  

Figure 10.   Segmentation results of different methods a:original image b:FLD output c:hand-

segmented image d:segmentation results of Bayesian classifier e: segmentation results of KNN 

classifier f: segmentation results of neural networks g: segmentation results of SVM image 

h:segmentation results for combination of Bayesian classifier and FLD i: segmentation results for 

combination of KNN and FLD j: segmentation results for combination of ANN and FLD k: 

segmentation results for combination of SVM and FLD 
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