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Abstract.  The paper is concerned with the analytical description of a resistance mechanism, not considered 
in previous models, by which the hoops contribute to the shear capacity of RC columns with circular cross 
sections. The difference from previous approaches consists in observing that, because of deformation, the 
hoops change their original shape and, as a consequence, their slope does not match anymore the original 
one in the neighborhood of a crack. The model involves two parameters only, namely the crack inclination 
and the hoop strain in the neighborhood of a crack. A closed-form analytical formulation to correlate the 
average value of the crack width and the hoop strain is also provided. Results obtained using the proposed 
model have been compared with experimental data, and a satisfactory agreement is found. 
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1. Introduction 

 

The analysis of columns in reinforced concrete (RC) constructions subjected to lateral loads 

(e.g. wind pressure or earthquake ground motion) remains an area of concern for structural 

engineers (Sezen 2008). The shear capacity of such RC members can be calculated by considering 

the resistance mechanisms of concrete and transversal reinforcement. Typical concrete-based 

resistance mechanics are the shear stress transferred by compressed zones, the dowel action, the 

aggregates interlock and the so-called arch effect. These resistance mechanisms depend on many 

factors, such as the tensile longitudinal steel ratio, the concrete grade, the axial load level, and the 

aggregates size. The evaluation of this contribution is still a debated topic, and is essentially based 

on empirical or semi-empirical approaches. The second contribution to the shear capacity accounts 

for shear reinforcement-based resistance mechanisms, and it is usually formulated using a truss-

based analogy. Among the others, circular RC columns can be preferred in place of rectangular-

shaped members because of architectural reasons and the strength-invariance with respect to the 

loading direction. Although the state-of-the-practice for RC buildings and bridges makes extensive 
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use of columns with circular cross sections, most of the current technical codes and guidelines 

usually provides specific design rules for RC columns with rectangular cross sections only. On the 

contrary, the shear capacity of a circular RC member is evaluated by means of some rules in which 

is implicitly assumed that the resistance is somewhat reducible to that of a member with an 

“equivalent” rectangular cross section. Following this approach, the shear strength model does not 

explicitly take into account the effects due to the shape of the cross section. So doing, it is not 

shown, therefore, to what extent the hoops contribute to the shear capacity, and how much this 

contribution differs from that of rectangular stirrups. One of the first model for the evaluation of 

the shear capacity of circular RC columns was presented by Ang et al. (1989). On addressing the 

shear strength of circular columns subjected to cyclic loading, these authors proposed a model in 

which the shear crack inclination was obtained on the basis of the lower bound plasticity, and a 

truss-based mechanism with fixed angle (equal to 45°) was introduced to evaluate the shear 

reinforcement capacity. This approach attracted considerable attentions, and motivated further 

researches (Wong et al. 1993, Priestly et al. 1994, Kowalsky and Priestley 2000). An attempt in 

exploring new resistance mechanisms for calculating the contribution of curved transverse 

reinforcement was done by Merta (2007). In that study, a deviatoric shear resistance mechanism of 

the hoops was identified and modeled as a concrete contribution to be added to the shear 

reinforcement capacity. This novel contribution was recognized by noting that a curved reinforcing 

bar under tension induces a compression state in radial direction which should be taken into 

account in order to define a shear resistance mechanism due to the hoops. Jensen and Hoang 

(2009) evaluated the shear strength of circular RC members by extending the plasticity-based 

crack sliding model originally developed for RC beams with rectangular cross section. In this 

work, the inclination of the crack was obtained by equating the load required to develop the crack 

to that needed to cause its sliding. A recent proposal was also presented by Turmo et al. (2009). 

These authors illustrated a formulation for evaluating the shear transferred by spiral reinforcement 

in solid members. Moreover, their work also considered the calculation of hollow core circular 

columns with both vertical and spiral reinforcement. In order to develop consistent theoretical 

models, the examination of experimental evidences about the behavior of circular RC columns is 

important. By analyzing several experimental data, Clarke and Birjandi (1993) concluded that the 

shear capacity of circular RC columns can be approximated using the approach for rectangular 

sections in (BS 5400, 1990), with some minor modifications. An artificial neural network based 

data-driven procedure was implemented by Caglar (2009) to determine the shear strength of 

circular reinforced concrete columns. More recently, Jensen et al. (2010) presented experimental 

results on heavily shear reinforced circular concrete members.  

This paper introduces a new point-of-view for the analysis of the hoop contribution to the shear 

capacity of circular RC columns. The reinforcement shear capacity is here calculated by observing 

that, because of deformation, the hoops change their original shape in the neighborhood of a crack 

and, as a consequence, their slope does not match the original one. Starting from this 

consideration, an analytical model has been derived in order to estimate the contribution of the 

transversal reinforcement in circular RC columns. Therefore, the proposed model has the merit of 

describing analytically a mechanism, not yet investigated in previous models, by which the hoops 

contribute to the shear capacity of RC columns with circular cross sections. Numerical results 

obtained using the proposed model have been compared with experimental data, and a satisfactory 

agreement is found. 
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2. Shear capacity of circular reinforced concrete columns 
 

2.1 Concrete shear capacity 
 

The total shear capacity V of RC columns can be evaluated as follows: 

,
c s

V V V                                 (1) 

where Vc and Vs are the concrete and the reinforcement shear contribution, respectively. Although 

this paper is basically concerned with a new analytical model for Vs, the concrete shear capacity Vc 

must be considered because the comparison with experimental data will be performed on the basis 

of the predicted total shear capacity V in Eq. (1). In doing so, no a priori restrictions are imposed 

by the proposed reinforcement shear capacity model, and then Vc can be estimated by selecting one 

among the numerous models existing in the available literature. In this study, Vc [N] is obtained by 

means of the formulation proposed in (Merta 2007), that is: 

 3.7 0.18 0.08 0.3 0.70 ,
c l c g

g

P
V k f A

A
   

  
    

  

               (2) 

where ρl is the longitudinal reinforcement ratio, P/Ag is the average compressive stress (being P 

[N] the axial load and Ag [mm
2
] the section gross area) and fc’ [N/mm

2
] is the uniaxial cylinder 

compressive strength. Merta (2007) experimentally carried out the influence of the main variables 

on the concrete shear capacity model by analyzing a total of 44 data of circular cross section 

specimens without shear reinforcement under monotonic load. The term 0.70Ag represents the 

section’s effective shear area. The shear enhancement coefficient k is 

1.00   2.50
,

1.25   2.50

a D
k

a D










                          (3) 

where a is the shear-span and D is the section’s diameter. 

 

2.2 Proposed reinforcement shear capacity 
 

A new reinforcement shear capacity model for circular RC columns is here described. To this 

end, a circular section crossed by a crack with constant width BB  is assumed, as shown in Fig. 

1a (for sake of clarity, the crack width in the figures has been amplified and the longitudinal 

reinforcement is hidden). An arc AB’ of the hoop in the neighborhood of the shear crack is 

considered, and it is subjected to a strain ε. It is assumed that – because of the tensile stress acting 

on it – this arc spalls the concrete cover and takes the rectilinear configuration AB. Before the 

crack opening, the length of the arc AB’ is 2Rδ (with R and δ shown in Fig. 1a) whereas, once the 

crack is opened, its length AB  becomes 2Rδ (1 + ε). Because of the symmetry, the two elements 

in which the circular section is divided by the crack are subjected to a relative vertical 

displacement. Hence, the following relation holds: 
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Fig. 1 Circular cross section crossed by crack 

 

 

   AH 2 1 cos 2 sin cos ,R R                            (4) 

where γ is the angle shown in Fig. 1a. By introducing the angle ψ = γ – 2δ, Eq. (4) yields: 

     
sin

1 cos 2 cos .


        
                    

 (5) 

Eq. (5) holds for ψ ≤ π/2. If the crack takes place in the upper part of the section, then Eq. (5) is 

modified by replacing ψ with ω (see Fig. 1b).  

Since the angle δ is small, the following series expansions can be considered when the crack 

occurs in the lower part of the circular section: 

   2 2
cos 2 sin 2 cocos 2 ,s o                           (6) 

   
2

2
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2
cos o
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                            (7) 

 2

2
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6

o
 
   


                            (8) 

By using Eqs. (6)-(8), Eq. (5) is rewritten as follows: 
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2 2
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2 2

2

1

     1

cos 2 sin

0.
6

2 cos

cos sin
2

cos

o

o o

        

 
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      



 
  
  
  

            (9) 

After some manipulations, the following quadratic equation is obtained from Eq. (9): 

   2 24
1 2 tan 2 0,

3
o           

 
 
 

                  (10) 

whose solution is: 
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       
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 

     (11) 

If the crack occurs in the upper part of the section, then δ is evaluated by replacing ψ with ω in 

Eq. (11). Furthermore, for simplicity, the hoops are replaced with a smeared distribution of 

transversal reinforcement whose area per unit of length is Ash/s, where Ash is the area of the shear 

reinforcement and s is the spacing. It is assumed that a crack forms an angle θ with respect to the 

longitudinal axis of the column (see Fig. 2). This crack crosses the longitudinal section from the 

lower edge up to the neutral axis. The distance between the neutral axis and the upper edge of the 

section is d. With these premises, the following relations hold: 

2 2

2 2

cos cos

sin 1 sin 1 .

tan 1 tan 1

     

     

        

                   (12) 

The reinforcement shear capacity of a ring with infinitesimal length equal to dycotθ is now 

considered (see Fig. 2). This ring passes through the crack at the point B, which identifies the 

angle ψ. Let dVs be the infinitesimal contribution of the ring. When the crack occurs in the lower 

part of the section, the contribution dVs is: 

 
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where  2
1 ,


       and fyh is the yielding stress of the transversal reinforcement. If the 

crack takes place in the upper part of the section, then the infinitesimal contribution dVs is 
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       (14) 

where  2
1 ,


       . Finally, the reinforcement shear capacity is evaluated by 

integration, thus obtaining:  
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   , ε 2 cot θ,sh

s yh

A
V d R f R

s
                        (15) 

where Ω(d/R,ε) is the following integral: 

 
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, ε .
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 
 




            (16) 

The integral in Eq. (16) can be calculated numerically. In order to facilitate the use of Eq. (15), 

numerical values of Ω (d/R,ε) can be listed by evaluating the integral in Eq. (16) for some values 

of d/R and ε (see Table 1). As expected and as inferred from Table 1, the shear capacity 

attributable to the transversal reinforcement grows as the strain ε increases. 

It is evident that the proposed formulation for Vs depends on two parameters (namely, θ and ε). 

As heuristic rule, the angle θ can be taken as 30°, thus resulting cot (30°) = 1.7321. This is a quite 

typical recommendation (Turmo et al. 2009, Priestley et al. 1996), and it is consistent with some 

building codes (for instance, the European code for RC structures imposes 1 ≤ cotθ ≤ 2.5, and thus 

1.7321 approximately falls in-between this range). Although refined theoretically-based models 

were recently proposed to calculate this angle (Jensen and Hoang 2009), θ = 30° is also assumed in 

this study. It is understood, however, that any other experimental-based rule or theoretical model  
 

 

 
Fig. 2 A crack forming an angle θ with respect to the longitudinal axis of the column 

 

Table 1 Numerical values for Ω (d/R,ε). 

ε Ω(d/R = 0.10,ε) Ω(d/R = 0.20,ε) Ω(d/R = 0.30,ε) 

0 0.771 0.744 0.711 

1/100 0.781 0.753 0.719 

5/100 0.809 0.778 0.741 

10/100 0.834 0.799 0.762 
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Table 2 Experimental data (Clarke and Birjandi 1993) and numerical results 

Specimen 
D 

[mm] 

D’ 

[mm] 

ρl 

[%] 

P 

[kN] 

a 

[mm] 

fc’ 

[MPa] 

fyh 

[MPa] 

Ash/s 

[mm] 

Vexp 

[kN] 

Vnum 

[kN] 

M1/2 152 126 2.22 0.0 210 23.8 250 0.57 45 44 

M1/3 152 126 2.22 0.0 230 23.8 250 0.57 46 44 

M1/4 152 126 2.22 0.0 240 23.8 250 0.57 38 44 

7a 300 252 2.3 0.0 230 29.2 250 0.67 262 145 

11a 300 252 5.6 0.0 560 20.5 250 0.67 186 162 

11b 300 252 5.6 0.0 560 20.5 250 0.67 188 162 

12a 300 252 5.6 0.0 560 20.2 250 1.34 211 214 

12b 300 252 5.6 0.0 560 20.2 250 1.34 239 214 

13a 300 252 5.6 0.0 560 41.1 250 0.67 227 209 

13b 300 252 5.6 0.0 560 41.1 250 0.67 228 209 

14a 300 252 5.6 0.0 560 42.9 250 1.34 279 267 

14b 300 252 5.6 0.0 560 42.9 250 1.34 288 267 

15a 300 252 3.6 0.0 560 20.7 250 0.67 145 143 

15b 300 252 3.6 0.0 560 20.7 250 0.67 148 143 

16a 300 252 3.6 0.0 560 39.7 250 0.67 185 178 

16b 300 252 3.6 0.0 560 39.7 250 0.67 186 178 

17a 300 254 2.3 0.0 560 20.1 250 0.38 117 105 

17b 300 254 2.3 0.0 560 20.1 250 0.38 115 105 

19a 300 254 3.6 0.0 560 22.6 250 0.38 113 123 

19b 300 254 3.6 0.0 560 22.6 250 0.38 129 123 

20a 300 254 3.6 0.0 560 41.9 250 0.38 149 158 

20b 300 254 3.6 0.0 560 41.9 250 0.38 137 158 

21a 300 254 5.6 0.0 560 18.9 250 0.38 131 133 

21b 300 254 5.6 0.0 560 18.9 250 0.38 151 133 

22a 300 254 5.6 0.0 560 38.7 250 0.38 163 179 

22b 300 254 5.6 0.0 560 38.7 250 0.38 164 179 

23a 300 254 2.3 0.0 560 21.3 250 0.38 101 108 

23b 300 254 2.3 0.0 560 21.3 250 0.38 113 108 

24a 300 254 2.3 0.0 560 41.7 250 0.38 114 139 

24b 300 254 2.3 0.0 560 41.7 250 0.38 128 139 

25a 300 254 3.6 0.0 560 20.7 250 0.38 98 118 

25b 300 254 3.6 0.0 560 20.7 250 0.38 122 118 

26a 300 254 3.6 0.0 560 40.0 250 0.38 114 155 

26b 300 254 3.6 0.0 560 40.0 250 0.38 150 155 

27a 300 254 3.6 0.0 560 19.4 250 0.38 125 116 

27b 300 254 5.6 0.0 560 19.4 250 0.38 134 135 

28a 300 254 5.6 0.0 560 38.5 250 0.38 158 179 
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Table 2 Continued 

Specimen 
D 

[mm] 

D’ 

[mm] 

ρl 

[%] 

P 

[kN] 

a 

[mm] 

fc’ 

[MPa] 

fyh 

[MPa] 

Ash/s 

[mm] 

Vexp 

[kN] 

Vnum 

[kN] 

28b 300 254 5.6 0.0 560 38.5 250 0.38 175 179 

37a 300 252 5.6 270.9 560 37.3 250 0.67 232 241 

37b 300 252 5.6 0.0 560 37.3 250 0.67 218 201 

38a 300 252 5.6 270.9 560 30.7 250 0.67 209 224 

38b 300 252 5.6 0.0 560 30.7 250 0.67 206 187 

39a 300 252 5.6 270.6 560 30.9 250 0.67 217 224 

39b 300 252 5.6 0.0 560 30.9 250 0.67 197 188 

40a 300 252 5.6 274.1 560 29.0 250 0.67 225 220 

40b 300 252 5.6 0.0 560 29.0 250 0.67 183 183 

43a 500 452 2.6 0.0 1100 32.1 250 0.72 313 378 

43b 500 452 2.6 0.0 1100 32.1 250 0.72 366 378 

44a 500 452 2.6 0.0 1100 28.0 250 0.72 301 359 

44b 500 452 2.6 0.0 1100 28.0 250 0.72 329 359 

 
 
can be used to evaluate θ for Vs  in Eq. (15). In this sense, the proposed resistance mechanism for 

the analysis of the hoop contribution does not impose special restrictions. On the other hand, the 

deformation ε is intended as a constant “effective” value of the hoop strain localized in the 

neighborhood of a crack. Its real value should be measured experimentally or obtained indirectly 

from laboratory tests.  

The proposed analytical model can be further developed to obtain more information about ε, i.e. a 

correlation between the hoop deformation and the crack width. In fact, it must be pointed out that, 

for sake of simplicity, a constant (localized in the neighborhood of a crack) value of the hoop 

strain ε is assumed, even if a more advanced model should consider its variability. A relevant 

consequence of this assumption is that the crack width BB  is not constant along the column. On 

the contrary, it depends on the angle ψ (if the crack occurs in the lower part of the columns) or ω 

(if the crack occurs in the upper part of the column). If the crack is placed in the lower part of the 

column, then the following equation holds: 

     
BB

1 sin 2 sin sin .
2R

   


                           (17) 

For a crack placed on the upper part of the column, a similar relation is obtained: 

     
BB

1 sin 2 sin sin .
2R

   


                         (18) 

Therefore, the average value of the crack width  can be determined as follows: 
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 
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      (19) 

 

where ωn is the value of ω corresponding to the neutral axis position. Equation (19) provides 

further information about the hoop deformation ε. For instance, a numerical evaluation of the 

integral in Eq. (19) shows that  BB 2R  is equal to 0.00156 for an effective localized strain ε 

equal to 4/100. This average value of the crack width seems to be fully acceptable and confirms 

that the concrete contribution is still present when the crack is open.   

 
 
3. Comparison of predictions and experimental results 
 

3.1 Database of experimental data 

 

Numerical and experimental data are now compared. The numerically predicted shear capacity 

and the experimental one are denoted as Vnum and Vexp, respectively. Vnum is obtained as in Eq. (1), 

in which the concrete shear capacity and the reinforcement shear capacity are calculated as in Eq. 

(2) and Eq. (15), respectively. The considered database includes experimental data presented by 

Clarke and Birjandi (1993), McDaniel (1997) and Hamilton et al. (2002). Experimental data from 

(Clarke and Birjandi 1993) are listed in Table 2 (the symbol D’ denotes the diameter of the 

confined core). 

 

3.2 Results and discussion 
 

The exact neutral axis position for each specimen has been calculated in order to obtain the 

numerical shear strength value. In doing so, a parabola-rectangular diagram is assumed for 

modeling the stress-strain relationship in concrete whereas a linearly elastic-perfectly plastic 

stress-strain relationship is considered for modeling the reinforcement. Predicted shear strength 

values and experimental results from Clarke and Birjandi (1993) are listed in Table 2. The 

Vnum/Vexp values obtained by means of the model proposed in this study are listed in Table 3, and 

they are compared with those in (Clarke and Birjandi 1993) and (Jensen and Hoang 2009). The 

adopted numerical value for ε in Table 2 and Table 3 is 4/100. The calculated mean value over the 

considered set of specimens is 1.01 (see Table 3, row “Mean”), which is appreciably better than 

the mean value obtained by Clarke and Birjandi (1993). It is also in excellent agreement with the 

mean value obtained by Jensen and Hoang (2009). The standard deviation value calculated using 

the presented model is 0.15 (see Table 3, row “Std”), which is close to that calculated by Clarke 

and Birjandi (1993), whereas it is 1.5 times the value obtained by Jensen and Hoang (2009). 

Experimental data from (Clarke and Birjandi 1993), (McDaniel 1997) and (Hamilton et al. 

2002), 
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Table 3 Comparison with two existing shear capacity models (Clarke and Birjandi 1993, Jensen and Hoang 

2009) 

Specimen 

Clarke and Birjandi 

(1993) 

Vexp/Vnum 

Jensen and Hoang  

(2009) 

Vexp/Vnum 

This study 

Vexp/Vnum 

M1/2 1.25 0.95 1.02 

M1/3 1.33 0.99 1.04 

M1/4 1.10 0.83 0.86 

7a 1.50 1.12 1.81 

11a 1.58 1.09 1.15 

11b 1.60 1.10 1.16 

12a 1.37 0.90 0.98 

12b 1.55 1.02 1.12 

13a 1.63 1.03 1.09 

13b 1.64 1.03 1.09 

14a 1.57 0.96 1.04 

14b 1.62 1.00 1.08 

15a 1.35 1.00 1.02 

15b 1.37 1.02 1.04 

16a 1.48 1.01 1.04 

16b 1.49 1.02 1.04 

17a 1.43 1.10 1.11 

17b 1.40 1.08 1.09 

19a 1.21 0.88 0.92 

19b 1.38 1.01 1.04 

20a 1.35 0.91 0.95 

20b 1.24 0.84 0.87 

21a 1.32 0.91 0.98 

21b 1.52 1.05 1.13 

22a 1.35 0.84 0.91 

22b 1.36 0.85 0.91 

23a 1.28 0.93 0.94 

23b 1.43 1.04 1.05 

24a 1.21 0.81 0.82 

24b 1.36 0.91 0.92 

25a 1.13 0.79 0.83 

25b 1.40 0.99 1.02 

26a 1.09 0.71 0.74 

26b 1.44 0.93 0.97 

27a 1.31 1.04 1.07 

27b 1.40 0.92 1.00 

28a 1.36 0.82 0.88 

28b 1.51 0.91 0.98 

37a 1.50 1.09 0.96 

37b 1.61 1.03 1.08 

38a 1.42 1.06 0.93 

38b 1.59 1.04 1.10 

39a 1.47 1.10 0.97 
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Table 3 Continued 

Specimen 
Clarke and Birjandi 

(1993) Vexp/Vnum 

Jensen and Hoang 

(2009) Vexp/Vnum 

This study 

Vexp/Vnum 

39b 1.52 1.00 1.05 

40a 1.54 1.16 1.02 

40b 1.43 0.95 1.00 

43a 1.25 0.92 0.83 

43b 1.46 1.08 0.97 

44a 1.24 0.93 0.84 

44b 1.36 1.01 0.92 

Mean 1.41 0.97 1.01 

Std 0.14 0.10 0.15 

 

 
Fig. 3 Theoretical vs. experimental shear strength values (ε = 4/100) 

 

 
Fig. 4 Sensitivity analysis for ε. 
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together with the corresponding numerical predictions, are presented in Fig. 3. A sensitivity 

analysis for ε is also shown in Fig. 4. Based on this numerical analysis, it can be concluded that the 

proposed reinforcement shear capacity model appears physically consistent and numerically 

comparable to existing models. As a consequence, the proposed analytical model highlights an 

effective mechanism by which the hoops contribute to the total shear capacity in circular RC 

columns. It is expected, however, that a better approximation of the experimental data can be 

obtained by varying θ and ε appropriately.   

 

 

4. Conclusions 
 

This paper proposed a resistance mechanism, not yet considered in previous works, for the 

assessment of the hoop contribution to the total shear capacity in circular RC columns. In 

particular, it has been noted that, even for small crack widths, the slope of the hoops does not 

match the original one in the neighborhood of a crack. Moving from this physical observation, a 

simple analytical formulation for determining the reinforcement shear capacity was developed. 

The results obtained using the proposed model have been compared with experimental data, and a 

satisfactory agreement is found. It is worth highlighting that the proposed analytical model 

involves the assessment of the hoop strain localized in the neighborhood of a crack, but a different 

formulation of the considered resistance mechanism based on the crack width rather than the hoop 

strain can be explored.   
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