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Abstract.  Multivariate analysis is a statistical technique that investigates relationship between multiple 
predictor variables and response variable and it is a very commonly used statistical approach in cement and 
concrete industry. During model building stage, however, many predictor variables are included in the model 
and possible collinearity problems between these predictors are generally ignored. In this study, use of 
partial least squares (PLS) analysis for evaluating the relationships among the cement and concrete 
properties is investigated. This regression method is known to decrease the model complexity by reducing 
the number of predictor variables as well as to result in accurate and reliable predictions. The experimental 
studies showed that the method can be used in the multivariate problems of cement and concrete industry 
effectively. 
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1. Introduction 
 

As a strongly demanded engineering material, concrete comprised of coarse granular material 

embedded in a hard matrix of material (cement or binder) that fills the space among the aggregate 

particles and glues them together. The main characteristics of major constituents of concrete 

mixtures such as aggregates, cementitious materials, water, and admixtures should be 

comprehended first to better learn the properties and performance of concrete (Li 2011).  In 

addition to these characteristics, workability of a concrete can be recorded as one of the important 

parameters. A concrete having a high workability with good consistency can manifest the 

properties of high dimensional stability and high durability (Mehta and Monteiro 1993). 

Investigation of the relationships among the cement and concrete characteristics such as 

chemical and mechanical properties is still a novel topic. In addition to modeling workability 

behavior of High Performance Concrete (HPC) from ingredients, predicting mechanical and 

chemical properties of cement and concrete is very important due to costs. Furthermore, using a 

smaller number of predictors, variables can also reduce the computation time considerably.  

Recently, there have been many conventional works recorded on modeling the cement and 

concrete characteristics in literature ((Eswari et al. 2011, Ahangar-Asr et al. 2011, Miled et al. 

2012). In addition to the conventional approaches, computational intelligence-based modeling 

algorithms have been extremely popular. By using Artificial Neural Networks (ANN) (Yeh IC 
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1999, Bai et al. 2003, Rasa et al. 2009) and neural-fuzzy synergism (Zarandi et al. 2008, Tutmez 

2009, Mohammadhassani et al. 2013) in modeling and calibration problems, many strong model 

structures, which were aimed to provide high performance capacity, were published. On the other 

hand, as discussed in different works (Taha 2012) even though neural network-based models 

produce some successful predictions, their disadvantages include its “black box”, greater 

computational burden, proneness to over fitting, and the empirical nature of model development. 

Furthermore, in case of the training set consists of too little or too much data, they may be very 

sensitive and not perform well.  

Multivariate analysis is a well-known statistical technique that investigates the nature and 

significance of the relationship between multiple predictor variables and response variable (Neter 

et al. 1996). It is a very commonly used statistical approach while dealing with complex problems 

in engineering since it provides power with high performance compared to the simple regression 

analysis (Musa 2013). However, in multiple regression analysis there exist some crucial statistical 

phenomenons that should be taken into account such as decreasing the model complexity by 

reducing number of predictor variables in the model and handling the collinearity problems 

between these predictors. 

As a general shortcoming, the multicollinearity problem, which is the presence of highly inter-

correlated predictor variables in multivariate regression models, is ignored in engineering 

modeling works. However, it has a crucial importance to obtain reliable and meaningful model 

outputs (Yeniay and Goktas 2002, Chen 2012, Chen 2012). It usually leads to unreliable estimates 

of the regression coefficients, which then have large variances and covariances. (Draper and Smith 

1998). Since a notable relationship between concrete variables is expected, diagnosing 

multicollinearity between the independent variables and developing strong model structures by 

eliminating the collinearity effect is required. This study examines the use of Partial Least Squares 

(PLS) method (Wold et al. 2001), which solves collinearity problem in the data and reduces the 

number of predictor variables, in cement and concrete industry. Besides, in many engineering 

solutions, computation time is an important parameter that cannot be neglected, especially in 

cross-validation and variable selection steps (Martins et al. 2008). The computation time mainly 

depends on the matrix dimension (number of predictors) used in the solution. Therefore, a fast 

algorithm is needed for such cases, since the computation time can be reduced during model 

development works.  

The rest of the paper is structured as follows. Section 2 describes the methodology of PLS 

calibration and regression (PLSR). Section 3 presents the case studies. Results, performance 

comparisons and discussion are given in Section 4. Section 5 concludes the paper. 

 

 
2. Methodology 
 

2.1 Multiple regression and multicollinearity 
 

A multivariate regression model deals with several x-variables 𝑥1 , 𝑥2 , … , 𝑥𝑝 , on the same 

individuals. This results in the values 𝑥𝑖𝑗  where 𝑖 = 1, … , 𝑛 is the index for the objects and 

𝑗 = 1, … , 𝑚 is the index for the variables. In this problem, the target variable can be observed on 

the same objects with the corresponding values 𝑦1 , 𝑦2 , … , 𝑦𝑛  and a linear model can be 

established to relate all x-variables with y. 

In a general multi-linear regression structure, y is related to a linear combination of the x-
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variables, plus an additive error term e. Based on input matrix X and output vectors y and e, the 

multi-linear model is formulated as follows 

𝑦 = 𝑋𝑏 + 𝑒                                (1) 

where b denotes the regression coefficients 𝑏 =  𝑏0 , 𝑏1, … , 𝑏𝑚  𝑇. The least squares solution for 

the coefficients can be given by 

𝑏 =  𝑋𝑇𝑋 −1𝑋𝑇𝑦                            (2) 

If the term 𝑋𝑇𝑋 is singular, an inversion cannot be made and the normal equations do not have 

a unique solution. It seems from the fact that there is at least one linear combination of the 

columns of the X matrix that is zero. In other words, at least one column of X is linearly dependent 

on the other columns. Thus, collinearity among the columns of X arises (Draper and Smith 1998). 

Diagnosing and eliminating collinearity has critical importance in modelling problems. It 

usually leads to unreliable estimates of the regression coefficients, which then have extremely 

large variances and covariances (Neter et al. 1996). One of the tools for reducing the number of 

predictor variables and removing multicollinearity is using the variable selection methods such as 

stepwise selection and best-subset regression. Although the variable selection approach may lead 

to a regression model with a good interpretability, the price to pay requires a high computational 

effort, especially for a large number of independent variables (Dobrska et al. 2012). As an 

alternative approach, Principal Component Regression (PCR) solves the problem of data 

collinearity and reduces the number of predictor variables, but the predictor variables are no longer 

the original observed independent predictor variables but linear combinations thereof (Martens and 

Naes 1998). 

 

2.2 Partial least squares method 
 

In its general form PLS produces orthogonal score vectors (also called latent vectors or 

components) by maximizing the covariance between different sets of variables. It extracts the 

score vectors which serve as a new predictor representation and regresses the target variables on 

these new predictors (Rosipal and Kramer 2006). 

In handling numerous and collinear x-variables, and response profile (y), PLS regression gives 

an opportunity to handle more complex problems, and analyze available data in a more realistic 

way (Wold et al. 2001). Essentially, the model structures of PLS and PCR are very similar: the 

data are first transformed into a set of a few „intermediate linear latent variables‟ and the 

dependent variable y is regressed on these new variables. The criterion for the intermediate latent 

variables that is mostly applied in PLS is maximum covariance between scores and y (Liebmann et 

al. 2010). 

The PLS algorithm aims to find a linear relation considering the linear structure in Eq. (1) with 

𝑛 × 𝑚  matrix X of independents and 𝑛 × 𝑝  matrix Y of dependent variables. One can 

approximate  

𝑋 ≈ 𝑇𝑃𝑇  

                      𝑌 ≈ 𝑈𝑄𝑇                                 (3) 

where T and U represent the respective score matrices that comprise of linear combinations of the 
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variables and P and Q represent the loadings matrices of X and Y , respectively (Varmuza and 

Filzmoser 2009). There is an inner relation between T and U as follows: 

    𝑈 = 𝑇𝐷 + 𝐻                               (4) 

where H is matrix of the residuals and D covers the regression coefficients on diagonals,                                                

𝐷 = 𝑑𝑖𝑎𝑔 𝑑1 , 𝑑2 , … 𝑑𝑎  . 

The estimator for D presents an estimate for 𝑈 = 𝑇𝐷  and in turn, that for  𝑌 = 𝑇𝐷 𝑄𝑇. Based 

on the general linear relationship 𝑌 = 𝑋𝐵 , the estimator of PLS can be provided as follows 

((Liebmann et al. 2010): 

𝐵 𝑃𝐿𝑆 = 𝑃𝐷 𝑄𝑇                               (5) 

Due to technical reasons, orthogonal weight vectors w and c, and loadings 𝑡 = 𝑋𝑤 and 

𝑢 = 𝑌𝑐 are used. Finally, the maximization of the objective function of PLS can be expressed as 

follows 

          𝑐𝑜𝑣 𝑋𝑤, 𝑌𝑐 → max    𝑡 =  𝑋𝑤 = 1 and  𝑢 =  𝑌𝑐 = 1      (6) 

where „cov‟ represents the sample covariance. It should be noticed that the constraints have to be 

either length of score vectors equals 1 or length of weight vectors w and c equals 1 (Varmuza and 

Filzmoser 2009).  

Among the novel PLS algorithms, the SIMPLS algorithm is mostly preferred (de Jong 1993). 

This algorithm directly maximizes the objective function of PLS under the constraint of 

orthogonality of the t-scores for different components (Mevik and Wehrens 2007). One advantage 

of the SIMPLS method is that it is not necessary to deflate X or Y, which may result in faster 

computation and less memory requirements (Martins et al. 2008). 

 In SIMPLS algorithm, the deflation is conducted for the cross-product matrix, 𝑆 = 𝑋𝑇𝑌 

between the data, not for the centered data matrices, X and Y. The pseudocode for the SIMPLS 

algorithm is given in Appendix A (Varmuza and Filzmoser 2009).  

As a result of the SIMPLS implementation, the resulting weights w and scores t are stored as 

columns in the weight matrix W and score matrix T, respectively. Thus, the final regression 

coefficients are provided by the following expression: 

           𝐵 = 𝑊𝑇𝑇𝑌                              (7) 

 

 

3. Case studies 
 

To illustrate the PLS analysis on concrete properties, two case studies are considered. 

Performance of the SIMPLS algorithm in cement and concrete industries are assessed through 

these data sets. The major parts of the analyses were carried out using the pls (Mevik and Wehrens, 

2007) and chemometrics (Varmuza and Filzmoser 2009) packages in R (R Development Core 

Team 2008). 
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3.1 Case study 1 
 

Predicting workability behaviour of HPC from concrete ingredients can provide many practical 

advantages. In this context, to evaluate the prediction capacities of two models which are second 

order regression and Neural Network models, Yeh (2007) investigated the relationship between 

slump flow (cm) of the fresh concrete and seven ingredients: cement (kg/m
3
), blast furnace slag 

(kg/m
3
), water (kg/m

3
), fly ash (kg/m

3
), coarse aggregate (kg/m

3
), fine aggregate (kg/m

3
), and 

super-plasticizer (kg/m
3
). In our first application, based on the data and model structures given in 

Yeh (2007), a PLS model is developed. The data set used in this study comprises of 78 

measurements. 
 

3.1.1 Determining multicollinearity 
It is known that when the predictor variables in a multiple regression model are uncorrelated, 

the relationship between a predictor variable and the response variable is the same as their 

relationship in a simple regression model. Any deviations may be indicative of multicollinearity. A 

way of exploring the presence of the multicollinearity is computing the variance inflation factor 

(VIF) statistics for each predictor variable. This statistics is obtained when one of the predictor 

variables regressed on the remaining predictor variables. Simple regression, multiple regression 

analysis and collinearity statistics are depicted in Table 1. 

 

 
Table 1 Regression results and collinearity statistics for case study 1 

 Simple regression Multiple regression 
Collinearity 

statistics 

 Coefficient Std. error t Coefficient Std. error t VIF 

Intercept    459.836 3985.116 0.115  

Cement 0.029 0.023 1.295 -0.165 1.268 -0.130 4309.951 

Slag -0.044 0.030 -1.489 -0.301 1.794 -0.168 4977.699 

Water 0.454 0.084 5.408 -0.016 3.976 -0.004 2295.287 

Flyash -0.005 0.023 -0.197 -0.180 1.397 -0.129 5320.860 

Caggr -0.047 0.022 -2.125 -0.204 1.567 -0.130 6773.331 

Faggr 6.598e-04 3.179e-02 0.021 -0.184 1.567 -0.118 3447.220 

SP -1.749 0.594 -2.945 -0.473 3.388 -0.140 41.483 

 

 

 

Fig. 1 Determining number of components 
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3.1.2 Model development 
In the first stage, four sample testing sets were sampled from the original data set. The numbers 

of the observations in these sets were defined as 20, 20, 20, and 18, respectively, similar to the 

selection process of Yeh (2007). The remaining values of the data were employed for building the 

regression models. To be accordant with the model structures of the referred study, interactions of 

the independent variables were also taken into account in this application.  

In the second stage, the optimum number of components was determined as four by a cross-

validation (CV) method (Fig. 1). Because the correlations between independent variables are not 

small, a dimension reduction is possible without loss of variance (Fig. 2). In addition, Fig. 3 

indicates the loading values via spectral peaks of the components.             

 

 

 
Fig. 2 Cross correlations between the variables 

 

 
Fig. 3 Changes of loading values for components 
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3.2 Case study 2 
 
As a concrete ingredient, cement is a crucial industrial material used in construction and 

building works. Few construction projects can take place without utilizing cement somewhere in 

the design. The fineness of cement particles is an important property and it can be determined by 

the value Blaine (kg/m
2
). Although Blaine value addresses a surface parameter, some relationships 

between Blaine and chemical components such as CaO, SiO2, Al2O3, Fe2O3, Na2O, K2O, SO3, 

SCaO, C3S are expected.  

To investigate the relationships between Blaine and chemical properties (9 parameters), a real 

data set obtained from Adana Cement Factory (Sahin 2009, Tutmez and Dag 2012) was 

considered. The data set covers 40 laboratory measurements for each parameter.  

 

3.2.1 Determining multicollinearity 
Similar to the Case Study 1, a simple regression, multiple regression analysis and collinearity 

statistics are computed and reported in Table 2. It especially shows that multiple regression 

analysis results in estimates and estimated variance, which are very large in magnitude. In fact, 

VIF statistics other than Na2O, K2O and SO3 are fairly large than 20, which indicate these 

predictors are strongly correlated with each other.  

 

3.2.2 Model development 
To assess the model capacities by different numbers of data, two minor applications have been 

carried out.  For the first application, the data set was randomly divided into two subsets: the 

training set (50%: 20 records) and the testing set (50%: 20 records), respectively. Similarly for the 

second application, the training set (75%: 30 records) and the testing set (25%:10 records) were 

sampled, respectively. To make a comparative assessment, the PCR method was performed for 

each application as well. 

In the first application, by using the CV approach, the numbers of components have been 

determined for both PLSR and PCR methods (Fig. 4).  As seen in the Fig. 4, these numbers have 

been recorded as 6 and 4 for PLSR and PCR models, respectively. Fig. 5 summarizes the cross-

correlations between the variables for optimal numbers of components. The loading values of the 

models can be followed in Fig 6. The similar procedures were applied to take the results for 

second application. 

 
 

  
(a) (b) 

Fig. 4 Determining number of components (a) PLSR model (b) PCR model 
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(a) (b) 

Fig. 5 Correlations between the variables (a) PLSR model (b) PCR model 

 
Table 2 Regression results and collinearity statistics for case study 2 

 Simple regression Multiple regression 
Collinearity 

statistics 

 
Coefficien

t 
Std. error t Coefficient Std. error t VIF 

Intercept    23571.6 12767.0 1.846  

CaO -104.02 60.22 -1.727 -1940.3 19098.3 -0.102 121857.6e+05 

SiO2 -27.56 30.80 -0.895 3126.2 35752.3 0.087 1724232e+06 

Al2O3 -89.49 164.88 -0.543 2474.6 31644.8 0.078 47761.63e+04 

Fe2O3 -57.05 146.07 -0.391 465.1 6727.2 0.069 2760.563e+03 

Na2O 220.2 810.2 0.272 -721.4 1126.9 -0.640 2.523 

K2O -163.1 396.2 -0.412 -855.0 454.2 -1.883 1.709 

SO3 280.2 119.1 2.352 178.6 161.0 1.109 2.084 

SCaO 71.05 63.23 1.124 1838.3 19152.3 0.096 116022.0e+05 

C3S 1.071 4.088 0.262 412.1 4702.6 0.088 1726104e+06 

 
 
4. Results and discussion 
 

The results of the models were appraised by some performance measures from a comparative 

perspective. Like Yeh (2007), in the first case study the well-known indicators, coefficient of 

determination (r
2
) and roots mean squared error (RMSE) were utilized.  In the second case study, 

three performance indicators: mean absolute error (MAE), coefficient of correlation (CoC) and 

standard deviation (Std) were employed. 

The slump flow models developed in the first case study provided some reliable results as in 

Fig. 7. The performances of the models with the results given in Yeh (2007) are summarized in 

Table 3. 

The PLS algorithm also produced the reliable results for Blaine prediction from the chemical 

ingredients. Table 4 and Fig. 8 indicated better performances for PLS algorithm compared to PCR 

algorithm via different performance indicators. In addition, it should be stressed that the PLS 

model reproduces the variability of the measured data in the value of predicted values. This result  
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Table 3 Performances of different models 

Testing data set  
Second-order regression 

(Yeh 2007) 

Neural network 

(Yeh 2007) 
PLS analysis 

Data set 1 
r

2
 0.131 0.696 0.709 

RMSE 15.15 9.93 10.11 

Data set 2 
r

2
 0.466 0.812 0.770 

RMSE 10.11 9.10 11.57 

Data set 3 
r

2
 0.304 0.775 0.702 

RMSE 22.29 7.51 18.38 

Data set 4 
r

2
 0.446 0.803 0.801 

RMSE 10.81 8.14 8.97 

Integral testing set 
r

2
 0.323 0.724 0.707 

RMSE 15.57 8.51 10.25 

 

Table 4 Performance measure for PCR and PLSR 

Performance 

Measure 

Measured data PCR PLSR 

20 

observations 

10 

observations 

20 

observations 

10 

observations 

20 

observations 

10 

observations 

CoC (r) - - 0.678 0.806 0.794 0.843 

MAE - - 83.14 64.64 36.99 60.44 

Std 70.740 95.922 46.068 26.725 54.611 34.669 

 

  

(a) (b) 

Fig. 6 Changes of loading values for number of components 

 

 

showed that the PLS algorithms can remove the smoothing problem substantially. 

Although both neural network and the proposed model produced similar r
2
 and RMSE values 

for the slump flow models, it should be kept in mind that neural network models work under the 

assumption of no collinearity. Table 1 indicates the presence of the multicollinearity in the data and 

it is justified through VIF statistics. For that reason, although PLS gives relatively lower 

performance compared to neural network, an inference made upon this model is more reliable 

compared to the Neural Network since it takes multicollinearity into account. In addition, as 

presented in introduction section, neural network-based models are “black box” models and the 
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knowledge of their internal working is never known nature. However, PLS model provides some 

transparency and a clear mathematical ground for understanding the internal working. 

When two methods that consider multicollinearity are compared with each other through Blaine 

data, it is seen that PLS yields the lowest MAE‟s compared to PCR. This study reveals that the 

performance of PLS is comparable to other methods in case of multicollinearity. However, 

existence of outliers in the data, which is the beyond the scope of this study, can be considered as 

the achilles‟ heel of SIMPLS and use of alternative methods would be preferred. 
 

 

  
(a) (b) 

  

(c) (d) 

 
(e) 

Fig. 7 PLSR performances for case study1 
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(a) (b) 

Fig. 8 Performance plots for PLSR and PCR 

 

 

5. Conclusions 
 

Although the multiple regression analysis is a very important tool for cement and concrete 

industry, the multi-collinearity problem which describes the dependency between the independent 

variables handled in the system modeling works is not seriously considered. In addition, the model 

complexity has a practical importance and it is also disregarded in general. By this paper, use of 

the Partial Least Squares (PLS) method, which solves the problem of data collinearity and reduces 

the number of predictor variables observed in the problems of cement and concrete industry, was 

examined. 

The prediction capacity of the method and its superiority was appraised by using two different 

type real problems. The outcomes and performance comparisons showed that the proposed 

algorithm produced better results comparing with the traditional regression models. In addition, 

the PLS algorithm can reduce the computation time and it also partly remove the smoothing 

problem of the prediction. As a consequence, it can be stressed that the PLS regression can be used 

for multivariate modeling problems in cement and concrete industry efficaciously. 
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APPENDIX A 

 

The pseudocode for the SIMPLS algorithm (Varmuza and Filzmoser 2009) 

 

1. initialize 𝑺𝟎 = 𝑿𝑻𝒀and iterate steps 2 to 6 for j=1,…,a 

2. if j=1, 𝑺𝒋 = 𝑺𝟎; if j>1, 𝑺𝒋 = 𝑺𝒋−𝟏 − 𝑷𝒋−𝟏 𝑷𝒋−𝟏
𝑻 𝑷𝒋−𝟏 

−1
𝑃𝑗−1

𝑇 𝑆𝑗−1 

3. compute wij as the first (left) singular vector of 𝑆𝑗  

4. 𝑤𝑗 = 𝑤𝑗 / 𝑤𝑗  

5. 𝑡𝑗 = 𝑋𝑤𝑗  

6. 𝑡𝑗 = 𝑡𝑗 / 𝑡𝑗  

7. 𝑝𝑗 = 𝑋𝑗
𝑇𝑡𝑗  

8. 𝑃𝑗 =  𝑝1 , 𝑝2 , … , 𝑝𝑗−1  
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