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Abstract.  This paper presents a mixed formulation frame element with the assumptions of the Timoshenko 
shear beam theory for displacement field and that accounts for interaction between shear and normal stress 
at material level. Nonlinear response of the element is obtained by integration of section response, which in 
turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at 
section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic damage 
model is implemented to describe the hysteretic behavior of concrete. Comparisons with available 
experimental data on RC structural walls confirm the accuracy of proposed method. 
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1. Introduction 
 

The shear response of reinforced concrete (RC) structural walls is mainly affected by the 

compressive zone in the wall; where triaxial compression stress conditions arise that enhance the 

shear resistance. The presence of axial compression not only increases the axial and lateral 

stiffness of the wall, but also increases the lateral load carrying capacity with increasing height to 

width (aspect) ratio. The modeling of these actions can be accomplished either with microscopic or 

macroscopic models. Microscopic models depend on the detailed description of the material 

response, which is integrated in 2d or 3d continuum finite elements to give the global load-

deformation response of the member. With the rapid advances in finite element theory and 

computer hardware technology many such models have been proposed in the last 40 years. While 

such models may be suitable for the response prediction of a single member under complex 

loading conditions, their use is prohibitively expensive for the response analysis of large structural 

systems. Macroscopic models simplify the structural member by introducing approximations and 

assumptions that take advantage of its stress and deformation states under typical loading 

conditions.  

Rericha (1991) proposed a frame element model by using a displacement-based beam finite 

element within the framework of the Timoshenko beam theory. The study included transverse 

strains by satisfying the transverse equilibrium equations for concrete and transverse 
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reinforcement. The constitutive equations used for concrete were based on an approach similar to 

the rotating crack models.  

Petrangeli, Pinto et al. (1999) proposed a force-based beam element within the framework of 

the Timoshenko beam theory. They considered the interaction between axial force, shear force and 

bending moment through fiber discretization of the section. At a material point, the normal stress 

and shear stress were coupled through the multi-axial micro-plane concrete material model by 

Bazant and Prat (1988). The transverse strains were included by satisfying the transverse 

equilibrium equations of concrete and transverse reinforcing steel. In a follow-up paper, Petrangeli 

(1999) presented correlation studies showing that the inclusion of shear deformations causes 

additional pinching of the hysteretic behavior of RC members yielding in flexure.  

The authors of the present study previously presented a force-based frame finite element model 

for analysis of shear critical RC beams (Filippou and Saritas 2006). A similar work was 

undertaken by Navarro Gregori, Miguel Sosa et al. (2007) using a displacement-based frame finite 

element model for the analysis of RC beams. In both studies the modified compression field theory 

by Vecchio and Collins (1986) was used to couple the normal and shear stress at a material point 

of the section. While these studies produced good results in the estimation of the ultimate strength 

of shear critical RC beams, they were not able to trace the post peak response due to the inability 

of the constitutive model to capture permanent deformations and damage. 

Martinelli (2008) used a displacement-based element that adopts Timoshenko beam theory for 

the description of shear-flexure interaction in RC members, as well. Later, Saritas and Filippou 

(2009b) used a force-based beam element with a 3d plastic-damage concrete material model and 

accurately simulated the shear critical beams tested by Vecchio and Shim (2004), and they were 

able to trace the post-peak range, as well. In a recent study, Valipour and Foster (2010) considered 

a force-based frame element including shear effects for the analysis of RC columns. The main 

focus in their study was the lack of objectivity due to softening of concrete, where this issue was 

handled at the material level by the use of crack band approach.  

The use of frame elements is less common for modeling of RC shear walls than of beams and 

columns. As the wall height to depth ratio decreases, the kinematics of wall deformation may not 

be represented accurately with a line element whose axis coincides with the wall centerline. It is 

worth to mention that above efforts directed on RC beams and columns could also be applied to 

the analysis of RC walls, as well. For that purpose, the literature survey on the use of frame 

elements on RC members is still valid in terms of element formulation. Focusing specifically on 

the analysis of RC walls with frame finite elements, Kotronis and Mazars (2005) used a 

displacement-based beam element to describe the response of RC walls yielding in flexure. For the 

2d model they use the assumptions of the Euler-Bernoulli beam theory to derive the displacement 

field for the element. For the 3d model they use a displacement-based Timoshenko beam element 

developed by Friedman and Kosmatka (1993). The uniaxial concrete material model by La 

Borderie (1991) describes the stiffness degradation of concrete in the longitudinal direction, while 

the shear response remains elastic and uncoupled. For the coupling between normal and shear 

stress, they used a biaxial concrete damage model by Mazars (1986), which is, however, limited to 

monotonic behavior. In order to incorporate the biaxial material model in the beam element they 

make the assumption that the transverse normal strains can be obtained by multiplying the 

longitudinal strains with the Poisson ratio of concrete.  

In a recent effort, Ceresa, Petrini et al. (2009) presented a frame element based on Timoshenko 

beam theory and displacement-based finite element approach for the analysis of RC members. To 

avoid shear locking phenomena, linear shape functions were enriched by the introduction of a 
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bubble function. In the study modified compression field theory by Vecchio and Collins (1986) 

was used for the interaction between normal and shear stress at material points of concrete. The 

study presented accurate results for the cyclic analysis of RC walls.  

While above frame type models consider distributed inelasticity along element length, an 

alternative is the use of frame type element models with rigid or linear elastic behavior along 

element length in conjunction with axial, shear and rotational springs placed at certain locations to 

capture nonlinear material behavior, i.e. the use of lumped plasticity models. Vulcano and Bertero 

(1987) used such an approach to idealize the wall with three vertical line elements, which act in 

parallel and are connected by infinitely rigid beams at the ends of the wall. The outer elements are 

trusses representing the axial stiffness of the boundary columns. The central element is a macro-

element composed of a horizontal, spring that represents the shear stiffness of the entire wall, and 

of a vertical and rotational spring representing the axial and flexural stiffness of the central wall 

panel, respectively. Ghobarah and Youssef (1999) represented the wall with four steel springs, four 

concrete springs, and a shear spring. The effect of the axial force and bending moment on the 

response of the shear spring was included by means of a sectional analysis based on the equations 

of the modified compression field theory (Vecchio and Collins 1986). The study focused on 

describing the strength deterioration of squat walls. In a later study, Orakcal and Wallace (2004) 

proposed such a model for the study of the flexure response of rectangular and T-shaped slender 

walls, where the model consists of several truss elements that act in parallel and are connected at 

the wall ends by infinitely rigid beams, and a shear spring that describes the shear response of the 

wall, which is assumed to be uncoupled from the flexural response. In a recent study by Lee, Jeong 

et al. (2012), experimental results of cyclic reversed lateral force test on a two-story reinforced 

concrete shear wall sub-assemblage are simulated analytically by using the frame type elements 

with lumped plasticity models in  PERFORM-3D program.  

An alternative to the frame type modeling strategies is the use of general purpose finite element 

programs with their available solid finite element and multi-axial concrete material models. As 

mentioned before, this alternative is mostly applicable for the analysis of fairly small systems 

(mostly components, members) and not suitable for the analysis of large structural systems due to 

modeling difficulties and robustness issues. Such a study was recently presented by Kazak (2011), 

where ANSYS finite element program was used and the available plasticity material models were 

calibrated, and the dynamic response of a squat shear wall that had been tested on a shaking table 

as part of an experimental program conducted in Japan was analyzed in detail. 

The work in this paper strikes a balance between the computational efficiency of frame type 

models and the accuracy of solid finite element models by proposing a frame finite element that 

accounts for the interaction of shear force, bending moment and axial force using a multi-axial 

constitutive material model for concrete based on plasticity and damage mechanics theories. 
 
 
2. Frame finite element formulation 
 

The frame finite element is cast starting from the force equilibrium relations. First, the 

differential equations of equilibrium for a beam element in the undeformed configuration is written 

 ( ) 0; 0; ( ) 0
x y

N w x M V V w x         (1) 

where N, M, and V are the axial, flexure and shear forces at a section, respectively. Prime symbol 
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Fig. 1 Basic forces and deformations of beam element 

 

 

in Eq. (1) denotes derivative with respect to x; and wx and wy are the axial and transverse 

components of the distributed element load acting along the beam, respectively. The beam element 

axis corresponds to the x-axis in the formulation. 

Under linear geometry, Eq. (1) can be solved independent of the displacements and of the 

material response. The boundary values in Fig. 1 are used as the basic element forces q


, and the 

equilibrium for the beam element with length L is expressed as follows 

 

1

2 p p

3

( ) 1 0 0

( ) ( ) 0 / 1 / ( ) ( ) ( )

( ) 0 1/ 1/

N x q

x M x x L x L q x x x

V x L L q

     

 

     
    
    
         

s s b q s
   

 (2) 

where ( )xs


 is the vector of the section forces, and ( )xb


 is the matrix of force interpolation 

functions. For uniform distributed element loading, the particular solution 
p
( )xs


 can be easily 

found from equilibrium, and added to the right hand side of Eq. (2). The particular solution for 

uniform distributed element loading is presented by Saritas and Filippou (2009a). 

The compatibility statement of the element is obtained from principle of virtual forces. From 

the equality between the external and internal work done as a result of the application of a virtual 

force system, i.e. ( ) ( )x x  s b q
  

, the basic element deformations v


 are obtained in terms of the 

section deformations ( )xe


 along the beam length L. 

 

 
T
( ) ( )

L

x x dx v b e
  

 (3) 

where ( )xe


 is the vector of section deformations with following terms in given order: the axial 

deformation ( )
a

x , curvature ( )x , and shear deformation ( )x . 

 
2.1 Element state determination 

 
The element is implemented in a standard finite element program that is based on direct 

stiffness method of analysis. Any element implemented in such a platform should return its 

resisting forces and current stiffness matrix. The resisting forces in a displacement-based element 

are a function of the current deformations of the element, ( )q q v
 

; therefore element state 
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determination is straightforward with displacement-based elements. However, in a force-based 

element such a direct relation cannot be obtained; because the current deformations can only be 

expressed as a function of the element resisting forces, ( )v v q
  

. 

The element response is obtained from the fact that the given element deformations v



 should 

be equal to the element deformations compatible with element forces, i.e., ( ) v v q 0


  
. The 

solution to this equality is achieved by linearization, and the following updating scheme with an 

iteration counter j is obtained.  

  
1

( 1) ( ) ( ) ( 1) ( ) ( 1)
and

j j j j j j


  
       q f v v q q q



     
 (4) 

where v


 in Eq. (4) is obtained from Eq. (3) with numerical integration at discrete sections.  

Constitutive relations at the section level are mostly derived from section deformations,      

s ̂=s (̂e), where the hat notation signifies that these section forces are deformation dependent. 

However, the section forces of the force-based element are given by the basic element forces in 

Eq. (2), and we denote this as 
p

 s b q s
  

. These two relations should be equal to each other in 

order to obtain a compatible section response for given element forces, i.e.,  ˆ( ) s s e 0
  

. The 

solution to this equality is achieved by linearization again. Iterations at the section and element 

level can be done in a nested fashion as suggested by Spacone, Filippou et al. (1996). Therefore, 

the section iteration counter is selected to follow the element iteration counter, j. 

  
1

( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1)

p
ˆ( ) and

j j j j j j j

s


   

        e k bq s s e e e e
       

 (5) 

where 
s

k


 is the section stiffness matrix.  

In depth discussion on above solution algorithms is presented by Saritas and Soydas (2012). In 

that work, the element state determination algorithms for the force formulation elements are 

derived from a three-field variational principle presented by Taylor et al. (2003). 

 

2.2 Section modeling 
 
Most common RC members such as beams, columns or walls have regular symmetric and 

rectangular cross-sections. Strains at a material point on the section can be written with the 

kinematic assumptions of the Timoshenko beam theory modified here to include variation on the 

shear strain as follows  

 
m s s s

1 0
, where ( )

0 0 ( )

y
y

y


  

 
 
 

ε a e a a
    

 (6) 

where  
T

( )
a

x  e


 is the section deformation vector and 
T

m xx xy
    ε


 is the strain 

at the material point written in vector form. The axis y corresponds to the perpendicular direction 

to the element x-axis on the plane. If constant shear strain profile is assumed on the section, then 

the shear strain profile ( )y  is equal to  , where   is the shear correction coefficient that 
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depends on the geometry of the section area, and 5 / 6   for a rectangular section. The shear 

strain profile of a homogeneous rectangular section with 2d total depth may be estimated with the 

following parabolic relation as presented by Saritas and Filippou (2009a)  

  2 2
( ) 5 4 1 4y y d    (7) 

The section forces are derived from the section deformations, and the corresponding section 

stiffness matrix can be obtained from the integration of material values over the section as follows 

𝐒 =  𝑁 𝑀 𝑉  
T =  𝐚𝑠

T𝛔𝑚𝑑𝐴
𝐴

and𝐤𝑠 =
𝜕𝐬 

𝜕𝐞
=  𝐚𝑠

T 𝑦 𝐤𝑚𝐚𝑠 𝑦 𝑑𝐴
𝐴

             (8) 

where 
T

m xx xy
    σ


, and 

m
k


 is the material tangent stiffness 
m m m

= d dk σ ε
  

. The hat over 

the section forces in (8) distinguishes these from the section force values that satisfy the element 

equilibrium relations according to 
p

 s bq s
  

. This distinction results from the use of a mixed 

formulation in the development of the beam finite element. The components of the section 

stiffness matrix in Eq. (8) are fully coupled through the use of a multi-axial material model.  

Gauss-quadrature, midpoint or trapezoidal rule can be used for the numerical evaluation of the 

integrals in Eq. (8). Under the fiber discretization of the cross section, an integration point i is 

characterized by the distance of its centroid 
iy  from the reference axis and the corresponding 

weight 
i

A . The 2d tangent material stiffness at integration point i with axial and shear strain 

contributions is 

 
,

aa as

m i

sa ss i

k k

k k

 
 
 

k  (9) 

Plugging in Eq. (9) into Eq. (8) yields the section stiffness, which is written out in detail to 

illustrate the coupling of axial and shear strain effects 

 

, , ,

2

s , , ,

1 2

, , ,

( )

( )

( ) ( ) ( )

aa i i aa i i as i
nL

i aa i i aa i i i as i i

i

i sa i i i sa i i ss i

k y k y k

y k y k y y k A

y k y y k y k





  




  



 
 
 
  

k  (10) 

where nL is the number of layers in the section. The section stress resultants are written from Eq. 

(8) as follows 

 

,

,

1

,

ˆ

ˆˆ

ˆ ( )

xx i
nL

i xx i i

i

i xy i

N

M y A

V y




   



    
    

    
   
    

s  (11) 

 
 

524



 

 

 

 

 

 

Analysis of RC walls with a mixed formulation frame finite element 

3. Material model 
 

In this study the coupling of normal and shear stresses at a concrete material point is achieved 

by the use of a 3d plastic damage model. In order to use the 3d stress-strain relations in a beam 

finite element, the stress conditions in a beam element should be imposed as a constraint on the 3d 

constitutive model. A detailed description of the material model and its implementation in a beam 

finite element is presented by Saritas and Filippou (2009b). In the following, we summarize the 

integration of the 3d material model and the condensation of the necessary stress components for 

the sake of completeness of current presentation.  

 
3.1 Continuum equations for plastic-damage model 
 

A plasticity model with small strain theory can be written as 
e p

 ε ε ε , 
e

σ Eε , 

( , )
p

ε m σ κ  and ( , )κ p σ κ . Here ε , 
e
ε  and 

p
ε  are the total, elastic and plastic strain 

tensors respectively, σ  is the stress tensor, E is the elastic stiffness tensor, m is the flow vector, p 

are the plastic moduli, and κ  is the set of internal variables. In a damage model, the effective 

stress tensor σ  is defined in terms of a damage parameter D, such that (1 )D σ σ . The plastic 

multiplier   is determined from the Kuhn-Tucker loading/unloading conditions by replacing σ  

with σ : ( , ) 0F σ κ , 0   and ( , ) 0F  σ κ  , where F is the yield function defining 

admissible stress states.  

 

3.2 Constitutive equations 
 
In the work by Lee and Fenves (1998), two damage variables, one for tensile damage Dt , and 

other for compressive damage Dc are defined independently. The model has two internal damage 

variables, 
T

,t c   κ  for tension and compression. The evolution of internal variables is 

defined in the principal stress space as 

κ = 𝜆  p σ , κ ; p = h σ , κ ∙ ∇σ ϕ σ , κ ;  h σ , κ  
𝑟 σ  𝑓𝑡 𝜅𝑡 /𝑔𝑡 0 0

0 0  1 − 𝑟 σ  𝑓𝑐 𝜅𝑐 /𝑔𝑐 
      (12) 

A non-associative flow rule is necessary to control the dilatancy in modeling concrete. A 

hyperbolic form of the Drucker-Prager function is used for the plastic potential function ( , ) σ κ  

in (12), while the yield function ( , )F σ κ  is the Barcelona model which is a combined geometric 

shape from two different Drucker-Prager type functions. In (12) gN is the specific fracture energy 

normalized by the characteristic length lN where  ,N t c , leading to 
N N N

g G l . In order to 

maintain objectivity in the results, lN  should be objective. For the case of the beam element 

formulation, the characteristic length is selected equal to the integration weight of the 

corresponding section, and objective results are obtained for the beam element as presented by 

Saritas and Filippou (2009b). The model by Lee and Fenves (1998) was recently improved by 

Omidi and Lotfi (2010) in order to consider the possibility of large crack opening/closing during 

cyclic loadings.  
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3.3 Integration of damage evolution equations 
 
The time integration of the relations with a backward Euler method results in the following 

residual expressions 
1 1 1 1( , ) Trial

n n n n      σR σ Em σ κ σ 0 , 1 1 1( , )n n n n     κR κ Em σ κ κ 0  and 

1 1( , ) 0n nF   R σ κ . For the solution of these nonlinear equations, linearization is used with an 

iterative scheme that makes use of sub-stepping. It is important to emphasize that the damage 

correction step is independent of the plastic correction steps. It is observed that the rate of 

convergence of plastic-damage concrete model is close to quadratic; however when a large step is 

imposed convergence rate drops to linear. In order to resolve these difficulties, solution algorithms 

are used in conjunction with sub-stepping strategies, and convergence is typically achieved in 3 to 

5 iterations when nonlinearity exists. Further discussion on the convergence of algorithms is 

available in Saritas (2006). 
 

3.4 Condensation of the 3D stress-strain relations for a frame element 
 
The section response of the proposed beam element has two nonzero stress values, namely the 

normal and shear stress at a material point of the cross section. On the other hand, the material 

model has six stress components. For the case with transverse reinforcement, transverse 

equilibrium gives y vy vyf    and z vz vzf   , where the transverse reinforcing ratio in the y 

and z directions is vy  and vz  and the steel stress is vyf  and vzf , respectively. Thus the 

equilibrium of normal stresses in the transverse direction can be obtained by satisfying the 

following residuals: 0y y y vyR f     and 0z z z vzR f    , where y  and z  are the 

normal stresses in concrete for given directions y and z, respectively. Linearization of these 

residuals with respect to an initial strain in the y and z directions gives the update scheme for the 

unknown transverse strain fields. The material stiffness mk  in Eq. (9) is calculated by condensing 

out the stress and strain tensor components that do not appear in the beam formulation. To this end 

the material tangent is first set up with six components of stress and strain in incremental form, 

and the transverse strain increments are subsequently used to derive the condensed material 

stiffness for the converged state of residuals.  

 
3.5 Selection of material parameters 
 
The tensile strength and modulus of elasticity of concrete is usually expressed in proportion to 

the square root of the compressive strength cf  . In this study, 0.33 (MPa)cf   is used for the 

cracking strength as suggested by ACI Committee 318 (1989), and the elastic modulus of concrete 

is taken equal to 3925 (MPa)cf  .  

The tensile fracture energy of concrete is provided by CEB (1991), and the suggested values 

are used throughout the analysis in this paper. The compressive fracture energy of concrete is 

affected by the maximum aggregate size, the average distance between aggregates and the 

compressive strength of concrete. Furthermore, the presence of reinforcing steel also changes the 

fracture energy in compression, if reinforced concrete is modeled as a composite material. 

Currently, there is not enough information on the compressive fracture energy value for plain and 
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reinforced concrete material models. Nakamura and Higai (2001) propose that the compressive 

fracture energy increase nonlinearly with compressive strength according to 8.8 (MPa)c
cfG f  , 

where c

fG  is expressed in N/mm. The same authors also recommend the following relation 

between tensile and compressive fracture energy 250c t
f fG G . However, the use of these two 

relations for a given concrete compressive strength does not give results that are consistent with 

the tensile fracture energy values in CEB (1991). Because of the paucity of information on this 

issue, the compressive fracture energy for plain concrete is assumed in line with similar values 

used by Feenstra and De Borst (1996) and Lee and Fenves (1998). In the analysis of RC beams, 

Oller, Onate et al. (1990) considered 25000 N/m compressive fracture energy value, and in the 

analysis of RC walls, Oller, Onate et al. (1990) arbitrarily chose 50000 N/m value for compressive 

fracture energy for a concrete with 35 MPa compressive strength. It is worth to mention that the 

load-displacement responses of ductile yielding RC walls analyzed in this paper are not sensitive 

to slight variations of suggested values of tensile fracture energy by CEB. However, due to lack of 

data, selection of compressive fracture energy has an influence on the response of RC members. 

Further discussion of this influence is available in Saritas (2006). 

 
 

4. Comparison studies with RC structural walls 
 

The following comparison studies on RC walls include two short walls tested by Lefas, 

Kotsovos et al. (1990) under monotonic loading conditions, and a slender wall tested by Thomsen 

and Wallace (2004) under cyclic loading conditions. All of these walls had rectangular cross-

section where a typical cross section is subdivided into cover regions, boundary zones and web 

regions as shown in Fig. 2. 

Lefas, Kotsovos et al. (1990) tested short RC walls, where the level of the axial force in these 

tests was between 0 to 20% of the axial load capacity of the wall. The walls were connected to an 

upper and a lower beam. The upper and lower beams in Fig. 3 were both 1150 mm in length and 

200 mm in width, and the upper beam had 150 mm depth, while the lower beam had 300 mm 

depth. The lower beam was properly reinforced in order to provide full restraint to the base of the 

wall. The upper beam serves for the application of axial and horizontal loads. Two walls with 

rectangular cross-section are selected for correlation studies, and these have the following 

geometric dimensions: 650 mm wide x 1300 mm high × 65 mm thick.  

A typical cross section is subdivided into cover regions, boundary zones and web regions as 

shown in Fig. 2. 8 mm and 6.25 mm diameter steel bars were used in the vertical and horizontal 

directions, respectively. The boundary zones shown in Fig. 2 are confined with 4 mm diameter 

hoops. The horizontal and hoop bars were placed with a spacing of 115 mm over the wall height. 

These reinforcement values result in the following reinforcement ratios: ratio of horizontal 

reinforcement to gross concrete area of vertical section of wall web 0.8%hor  ; ratio of vertical 

web reinforcement to gross concrete area of horizontal section of wall web 2.5%ver  ; ratio of 

main flexural reinforcement to gross concrete area of edge element 3.3%flex  ; ratio of effective 

volume of confinement reinforcement to the volume of the core 0.9%s  .The material 

properties of 8 mm reinforcement bars are provided in Table 1. The elastic modulus of steel is 

taken as 200 GPa throughout the analysis, and the ratio between ultimate and yield strength 
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resulted in a strain hardening ratio of 0.5% of the elastic modulus of steel.  

With regards to the concrete material properties, only the compressive strength from cubic 

specimens was provided by Lefas, Kotsovos et al. (1990). The compressive strength of concrete 

for Walls SW21 and SW22 were provided in the experiment as 36.4 and 43 MPa, respectively. 

The cylinder strength of concrete is used in the analysis, and it is taken equal as 85% of the cube 

strength. The tensile strength and Young modulus are calculated from the reported compressive 

strength by 0.33 cf   (MPa) and 3925 cf   (MPa), respectively.  

Both of the walls are analyzed with one element and 5 Gauss integration points (IP) along the 

wall height. 15 layers are used over the wall section to get the section stress resultants and 

stiffness. The location of these layers is obtained from midpoint integration rule. The distribution 

of the layers among the regions over the wall section as described in Fig. 2 is as follows: the web  

 

 

Table 1 Material properties of reinforcement bars for RC Walls by Lefas et al. (1990) 

Type Yield strength (MPa) Ultimate strength (MPa) 

8 mm bar 470 565 

6.25 mm bar 520 610 

4 mm bar 420 490 

 

 
Fig. 2 Description of regions in RC wall cross-section 

 

 

Fig. 3 Set up of Lefas et al. (1990) specimens 
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region is divided into 7 layers, each boundary zone has 3 layers, and each cover zone has 1 layer. 

Wall specimen SW21 is loaded with zero axial load ( 0  ), and SW22 is loaded with 10% of 

the axial load capacity 
g cA f   ( 0.1  ), where 

gA  is the gross area of the wall section.  

The tensile fracture energy for SW21 is calculated from CEB (1991) as 80 N/m, and for SW22 

as 90 N/m. The compressive fracture energy for both walls is assumed as 75000 N/m due to the 

high density of reinforcement in horizontal and vertical directions.  

As can be seen from Fig. 4, not only the initial stiffness of the wall is represented accurately for 

both walls, but also the entire load-deformation curves of the experimental results are traced very 

closely by the analytical results.  

The damage distribution of the wall specimen SW21 shows significant tensile damage in Fig. 5 

where this can be related with the orientation of the plastic strains presented in Fig. 6. There was 

no significant spread of compression damage in the wall, and thus this is not presented. The 

rotation of the plastic strains over the wall height suggests the formation of compressive load path 

over the wall height. The analyzed walls go through significant flexure yielding and are ductile. In 

contrast to the orientation of strains in beams failing in flexure as presented in Saritas and Filippou 

(2009b), the orientation of strains in the walls is diagonal and shear cracks are distributed over the 

entire height of the wall.  

The spread of compression damage in the walls is lower than the beams since the 3d state of 

compressive stresses delays the damage. The proposed model was able to capture these effects in 

the wall as a result of the use of a 3d concrete material model. Comparison of Fig. 7 with Fig. 5 

reveals that the compressive force on wall SW22 reduced the spread of tensile damage over the 

wall height compared to wall SW21. The point numbers in Figs. 4 to 7 represent the loading step 

number during the nonlinear analysis of that member.  

Furthermore, the stiffness increase as a result of the application of compressive load for the two 

cases of 0   and 0.1   multiple of axial load capacity g cA f   on the wall is also evident in 

the load-deformation curves, and this increase is closely captured by the proposed model when 

results are compared with experimental data in Fig. 8. 

 

 

  
(a) Wall SW21 (b) Wall SW22 

Fig. 4 Lateral load vs. top displacement response for walls SW21 & SW22 by Lefas et al. (1990) 
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Fig. 5 Evolution of tensile damage distribution in numerical analysis for wall SW21 by Lefas 

et al. (1990) 

 

 
Fig. 6 Evolution of plastic strain directions in numerical analysis for wall SW21 by Lefas et al. (1990) 

 

 
Fig. 7 Evolution of tensile damage distribution in numerical analysis for wall SW22 

by Lefas et al. (1990) 
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Fig. 8 Comparison of load-deformation responses of walls SW21 and SW22 
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Fig. 9 Thomsen and Wallace (2004) specimen 

 

 
 

Fig. 10 Loading history of wall RW2 from Thomsen and Wallace (2004) 
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The comparison studies continue with the experimental work conducted by Thomsen and 

Wallace (2004). In that study, Thomsen and Wallace (2004) originally tested six slender RC wall 

specimens built to 1/4 scale, where only the four of the specimens without openings were 

presented in their study. The aspect ratio of these walls was 3 for all of the specimens. The walls 

included two walls with rectangular cross-section and two walls with T-shaped cross-section. The 

geometry and the configuration of the wall specimens RW1 and RW2 from Thomsen and Wallace 

(2004) are similar, and are shown in Fig. 9, where the cross-section detail is presented for 

specimen RW2. Both of these specimens showed significant flexural yielding for drift ratios in 

excess of 2% of the wall height. Buckling of the boundary longitudinal reinforcement was delayed 

in RW2 by the use of closer transverse hoops as compared to RW1. As the results were very 

similar for both walls, specimen RW2 is chosen for comparison with the analytical model. 

A constant axial load of 0.07 g cA f   was applied at the top of the wall, then the top of the wall is 

laterally cycled with the loading history shown in Fig. 10. 

The yield strength of #2, #3 and the hoop bars were 414 MPa, and Young Modulus for steel is 

taken as 200 GPa in the analysis. The ultimate strength of #2 and #3 bars were 600 MPa. The 

longitudinal bars are modeled with the GMP model, where the strain hardening ratio for these two 

bars is calculated as 1%. The hoop bars are modeled with a bilinear hysteretic model, and the 

strain hardening ratio for these bars is taken as 0.5% due to its lower ultimate strength. The design 

compressive strength of concrete was 27.6 MPa; however compressive strength at the day of 

testing was reported as 42.8 MPa. The applied axial load on the wall was calculated from the 

design strength. The tensile strength and Young modulus are calculated from the test day 

compressive strength as 0.33 (MPa)cf   and 3925 (MPa)cf  , respectively. The maximum 

aggregate size for concrete was reported as 10 mm in the test, thus the tensile fracture energy is 

calculated from CEB (1991) as 75 N/m. The compressive fracture energy of concrete is assumed 

as 50000 N/m, 40000 N/m in the boundary zone, web region, respectively. The compressive 

fracture energy for the cover regions is assumed as 10000 N/m.  

The wall is analyzed with one element and 5 Gauss integration points (IP) along the beam. The 

wall section is subdivided into 15 layers where the locations are calculated from midpoint 

integration rule, and the subdivision is based on the relative length of each region with respect to 

the wall depth. The cover regions at the top and bottom are each represented with a single layer, 

each boundary zone is subdivided into 2 layers, and the web region is represented with 9 layers. 

The lateral load versus the top displacement relations from the analysis and the test are 

presented in Fig. 11. The ultimate lateral load is perfectly captured with the proposed model, and 

the model is able to predict stiffness degradation in the wall. The unloading branches in the 

analytical response deviate from the measured response as seen in the figures due to the linear 

unloading curves in the plastic-damage concrete model used in this paper. Furthermore, the 

longitudinal steel bars have significant influence in the unloading and pinching responses, as well.  

In order to capture this response more closely in the load-displacement curves, unloading and then 

reloading behavior resulting from the constitutive models should reflect prior occurrence of 

nonlinearities better.  Because the proposed model does not initiate unloading behavior earlier, 

the pinching effect is more pronounced in the analytical results. Despite this slight discrepancy, the 

analytical model has captured the overall nonlinear behavior and the absorbed energy very well 

with a consistent selection of material parameters.  

The evolution of tensile damage in the wall at various instances in the load-deformation 

response in Fig. 12 is presented in Fig. 13, where the point numbers represent the loading  
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(a) Analytical response (b) Measured response 

Fig. 11 Shear force-top displacement responses for wall RW2 of thomsen and wallace (2004) 

 

 
 

Fig. 12 Location of the points for the damage distribution graphs 

 

 
Fig. 13 Evolution of tensile damage 

 

-100 -50 0 50 100
-200

-150

-100

-50

0

50

100

150

200

Top Displacement (mm)

S
h
e
a
r 

F
o
rc

e
 (

k
N

)

Point15

Point40

Point45

Point70

Point100

Point300

Point40

Wall depth

-0.5 0 0.5

0.5

1

1.5

2

2.5

3

Point45

Wall depth

-0.5 0 0.5

0.5

1

1.5

2

2.5

3

Point70

Wall depth

-0.5 0 0.5

0.5

1

1.5

2

2.5

3

Point100

Wall depth

-0.5 0 0.5

0.5

1

1.5

2

2.5

3

Point300

Wall depth

W
a
ll 

a
x
is

-0.5 0 0.5

0.5

1

1.5

2

2.5

3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tension Damage Distribution

Point15

Wall depth

-0.5 0 0.5

0.5

1

1.5

2

2.5

3

533



 

 

 

 

 

 

Afsin Saritas and Filip C. Filippou 

 
Fig. 14 Evolution of total damage 

 

 

step number during the nonlinear analysis of that member. The compression damage distribution is 

not presented in here, and is only apparent at the outer faces of the wall at later phases of the 

deformations (its influence is visible in the total compression damage distribution in Fig. 14 for the 

response of analysis point 300). The evolution of tensile damage is much more pronounced, and 

the spread of tensile damage occurs quickly in the initial phases of the loading. At analysis point 

100 which corresponds to 0.5% of lateral drift, the spread of tensile damage stabilizes over the 

wall height. The distribution of total damage in Fig. 14 clearly shows the cyclic nature of the total 

damage parameter, where the total damage D  is calculated from tensile damage tD  and 

compressive damage cD  through the use of equation 1 (1 )(1 )t cD D D    . More in depth 

discussion on the plastic damage concrete model used is available in Saritas (2006). 

It is worth to emphasize that the analysis conducted in this paper did not consider RC walls 

where softening behavior is observed. Such an effort in capturing the post-peak softening response 

of RC members through the use of proposed models was presented in an earlier study by the 

authors in the analysis of shear critical RC beams (Saritas and Filippou 2009b). 

 

 
6. Conclusions 
 

The proposed model is able to capture the overall load-deformation response of RC structural 

walls of varying aspect ratios. The analyzed walls are ductile and go through significant flexural 

yielding. The overall response in the elastic and inelastic range is captured well with a single 

element discretization of the member without shear locking, while equally satisfactory agreement 

is obtained for local response measures such as tensile and compression damage distributions, and 

orientation of principal strains and cracks as well as concrete and reinforcing steel stresses. 
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