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Abstract.  A detailed finite element modeling is presented for the simulation of the nonlinear behavior of 
reinforced concrete structures which manages to predict the nonlinear behavior of four different 
experimental setups with computational efficiency, robustness and accuracy. The proposed modeling method 
uses 8-node hexahedral isoparametric elements for the discretization of concrete. Steel rebars may have any 
orientation inside the solid concrete elements allowing the simulation of longitudinal as well as transverse 
reinforcement. Concrete cracking is treated with the smeared crack approach, while steel reinforcement is 
modeled with the natural beam-column flexibility-based element that takes into consideration shear and 
bending stiffness. The performance of the proposed modeling is demonstrated by comparing the numerical 
predictions with existing experimental and numerical results in the literature as well as with those of a 
commercial code. The results show that the proposed refined simulation predicts accurately the nonlinear 
inelastic behavior of reinforced concrete structures achieving numerical robustness and computational 
efficiency. 
 

Keywords:  reinforced concrete; smeared crack; embedded reinforcement; natural beam-column element; 

flexibility element 

 
 
1. Introduction 
 

A number of numerical models have been proposed for the analysis of Reinforced Concrete 

(RC) structures but none of them has managed to provide the desired combination, at an 

acceptable level, of accuracy, robustness and computational efficiency in predicting the nonlinear 

inelastic behavior of different types of RC structures and structural members. 1D beam-column 

elements, based on either concentrated plasticity models (plastic hinges, see Clough et al. 1965, 

Takizawa 1976, Bertero 1985, Ciampi and Nicoletti 1986, Mergos and Kappos 2008) or distributed 

plasticity (fiber models, see Zeris and Mahin 1988, Mazars et al. 2006, Navarro et al. 2007, 

Papaioannou et al. 2005, Saritas and Filippou 2009), have difficulties in predicting the mechanical 

behavior of 3D RC framed structures due to their inability in capturing shear behavior and local 

phenomena that affect the global response of the structure. The use of 2D plane stress finite 
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element models (see Kwan and Billington 2001, Kwak and Kim 2001, Mazars et al. 2004, Kwak 

and Kim 2006, Jendele and Červenka 2009) can avoid some simplified assumptions that are 

inherent in 1D beam-column models, like the influence of shear stresses, but their inability of 

capturing the out of plane response made them inadequate for 3D full-scale structural analysis. 

Three-dimensional simulation with solid finite elements, based on triaxial stress-strain 

relationships and embedded rebars (see Cervera et al. 1987, Kotsovos and Pavlovic 1995, Ozbolt 

and Li 2001, Girard and Bastien 2002, Hartl and Handel 2002, Mirzabozorg and Ghaemian 2005, 

Spiliopoulos and Lykidis 2006, Sato and Naganuma 2007, Červenka and Papanikolaou 2008, 

Papanikolaou and Kappos 2009), provides the highest quality of approximation but it is hindered 

with high computational cost and in several cases lack of robustness. 

The computational complexity of such detailed models makes their use impractical for full-

scale simulations. Furthermore, with the use of numerically unstable material models, such as the 

smeared crack approach in concrete, the sensitivity of these models to various user-defined 

parameters becomes more pronounced. These difficulties led a number of researchers (see Jendele 

and Červenka 2009, Cervera et al. 1987, Kotsovos and Pavlovic 1995, Ozbolt and Li 2001, Girard 

and Bastien 2002, Hartl and Handel 2002, Mirzabozorg and Ghaemian 2005) to use higher order 

elements (20-noded and 27-noded hexahedral elements) in connection with high integration rules. 

The use of this type of 3D elements and unstable material models has a direct consequence on the 

efficiency of the numerical simulations, requiring many Newton-Raphson (NR) iterations per load 

step and thus considerable computational effort even for small-scale finite element models. 8-

noded hexahedral elements combined with rod rebar elements were used by Hartl and Handel 

2002, while as presented by (Papanikolaou and Kappos 2009, the ATENA software code (Červenka 

et al. 2008) was used with 8-noded hexahedral isoparametric elements combined with 2-noded rod 

elements for the reinforcement). Furthermore, ABAQUS, ANSYS and LS-DYNA software were 

compared in Cotsovos et al. 2009. The numerical study on these three software, which also use 8-

noded hexahedral isoparametric elements combined with 2-noded rod elements for the 

reinforcement, showed that the required hexahedral element size had to be very small (1-3cm 

hexahedral edge size) in order for the analysis to proceed with an acceptable accuracy and 

numerical robustness. This modeling resulted into very fine meshes making this type of modeling 

impractical for real-scale RC structures. 

In this work an 8-noded hexahedral isoparametric element is used for the simulation of concrete, 

based on an improved concrete material model originally proposed by Kotsovos and Pavlovic 

1995. The material model of concrete was developed on the basis of experimental tests of concrete 

under multiaxial stress states (Kotsovos 1979), where cracking was treated as a complete sudden 

loss of stress for monotonic loading conditions and the only material parameter required is the 

uniaxial compressive strength of concrete. The reinforcement is modeled with an embedded steel 

bar simulated with the Natural Beam-Colum Flexibility-Based (NBCFB) element. The geometric 

treatment of the embedded reinforcement allows the rebar elements to have any orientation inside 

the concrete solid elements while the shear and bending stiffness of the rebars are taken into 

consideration. The formulation of the NBCFB element follows the nonlinear state determination 

presented by Spacone et al. 1996 and the natural mode method which was introduced by Argyris 

and co-workers (see Argyris et al. 1979, 1998). 

The above features of the detailed 3D finite element discretization of RC structures are 

incorporated into the proposed numerical model and validation of the obtained numerical results is 

performed with comparisons with experimental data and numerical results of different types of RC 

structural members, which are found in the literature (see Bresel and Scordelis 1963, Lefas 1988, 

444



 

 

 

 

 

 

Computationally efficient 3D finite element modeling of RC structures 

Červenka 1970). In this work the ATENA commercial software code (Červenka et al. 2008) was 

also used as a comparative tool for testing the accuracy and computational efficiency of the 

proposed formulation. 

 
 
2. Embedded reinforcement in hexahedral concrete elements 
 

Previous simulations with the embedded rebar reinforcement used 2-noded or 3-noded rod 

elements. Hence, the reinforcement is simulated as uniaxial element, without taking into 

consideration shear and bending stiffness. Although it is generally believed that shear and bending 

resistance of reinforcement is not significant, there are cases where the shear and bending 

resistance are important in capturing the nonlinear response of RC structural members. The 

discretization of the reinforcement is performed in this study with NBCFB elements which in 

addition to the consideration of shear and bending it was found to increase the numerical stability 

of the nonlinear incremental-iterative procedure due to its advanced formulation features. However, 

the choice of using 3D beam elements instead of uniaxial rod elements introduces some 

implementation issues. When 2-noded or 3-noded rod elements are used, the compatibility 

conditions between the end-nodes 1 and 2 of the rod and the corresponding hexahedral nodes (n1–

n8) is enforced through the translational degrees of freedom (Fig. 1a) of the hexahedral faces 

intersecting with the rebar element. When beam elements are used, the compatibility of rotation 

between the hexahedral nodal displacements and the rotation of the rebar nodes that are located on 

the corresponding hexahedral faces, must be also enforced. This is achieved by computing the 

hexahedral face rotation and imposing the compatibility with the corresponding rotational degree 

of freedom (dof) of the rebar node. 

Assuming that the angle between the longitudinal axis of the rebar and the normal n on the 

master triangle of the hexahedral face (Fig. 2) remains fixed before and after deformation, the 

required rotation can be derived through kinematic constraints. The assignment of a master 

triangle at each rebar node is performed prior to the analysis by detecting the three nearest 

hexahedral nodes of the corresponding face containing the rebar node. These three nodes n2, n3, 

n6 in Fig. 2 represent the master triangle of the rebar node 2 which controls the rotation of the 

corresponding rebar node.  

 

 

 

(a)                   (b) 
Fig. 1 Embedded rebar elements under imposed transverse deformation: (a) Rod element  

(b) Beam element 
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Fig. 2 Master triangles of beam element nodes 1 and 2 

 

 

2.1 Kinematic constraints 
 

Most researchers (Kotsovos and Pavlovic 1995, Ozbolt and Li 2001, Sato and Naganuma 2007, 

Barzegar and Maddipudi 1994, Elwi and Hrudey 1989) use standard kinematic relations in order to 

connect the rod nodal displacements with the corresponding hexahedral displacements. A more 

recent approach was proposed by the Jendele and Červenka (2009) where the solution of a multi-

point constraint conditions problem called Complex Boundary Conditions is performed. This 

procedure requires the solution of a system of non-symmetric constraint equations. 

For the purpose of the present implementation, the kinematic relations that connect the beam 

nodal displacements with the nodal translations of the corresponding hexahedral face, are given 

from the following expressions 

           12 1 12 24 24 1 24 1 24 12 12 1

 ,   B H H T B

x x x x x x

   u T U F T F                           (1) 

where u
B
and U

H
 are the displacement vectors of the beam and hexahedral elements, respectively, 

while F
B
and F

H
are the corresponding internal force vectors. The transformation matrix T is 

composed of 32 (3×3) submatrices which are computed from the natural coordinates of the 

hexahedral, the beam element and the master triangle nodes. 

 

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

1 1 1

4 5 8

2 2 2 2 2 2 2 212 24
1 2 3 4 5 6 7 8

2 2 2

2 3 6

0 0 0 0 0
,

0 0 0 0 0

x

 
 
 
 
 
  

Τ Τ Τ Τ Τ Τ Τ Τ

R R R
T

Τ Τ Τ Τ Τ Τ Τ Τ

R R R

                (2) 

The submatrices located in rows 1 and 3 of T correspond to the translational rebar 

displacements 𝑻𝑖
𝑗
 and those in rows 2 and 4 correspond to the rotational rebar displacements 𝑹𝑚

𝑗
. 

Eq. (2) refers to the case illustrated in Fig. 2 where the nodes 1 and 2 of the rebar correspond to 

(n4 - n8 - n5) and (n2 - n3 - n6) master triangles, respectively. 
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Fig. 3 Rotation ζ1 

 

 
 

Fig. 4 Embedded reinforcement inside hexahedral elements 

 

Each transformation matrix T (Eq. (2)) consists of 22 non-zero submatrices with dimension 3 × 

3. From Eq. (2) it can be seen that the translational dof of each beam element node are transformed 

through the use of 𝑻𝑖
𝑗
 matrices 

 3 3

0 0

0 0 ,   

0 0

j

i

j j

i i
x j

i

N

N

N

 
 

  
 
 

Τ                             (3) 

where 𝑁𝑖
𝑗
 (i = 1, 8) correspond to the 8 hexahedral shape functions and j = 1, 2 denote the 

embedded rebar nodes. After the computation of the value of each shape function 𝑁𝑖
𝑗
 at the 

natural coordinates of each beam node the corresponding matrices are assembled. As it can be seen 

from Eq. (3), submatrix 𝑻𝑖
𝑗
 contains the shape function value 𝑁𝑖 computed at the rebar node j. 

In order to handle the rotational dof of the embedded rebar beam element, the definition of a 

447



 

 

 

 

 

 

George Markou and Manolis Papadrakakis 

master triangle is necessary in order to compute the rotation along the three global axes. This 

master triangle is formed with the three nearest nodes to the rebar beam element node of the 

corresponding hexahedral face (Fig. 2). The computation of each master triangle rigid body 

rotations is performed with the natural mode concept of Argyris et al. 1997 (Appendix D).  

 

2.2 Generating reinforcement in FE modeling 
 
The most notable method for the generation of rebar reinforcement elements in FE modeling of 

concrete structures is proposed by Barzegar and Maddipudi 1994, which is an extension of the 

work of Elwi and Hrudey 1989. This approach has the advantage of allowing arbitrary positions 

for the rebars inside the concrete elements and a free geometry for the hexahedral elements. For 

this purpose, a nonlinear search procedure based on the NR method is required in order to 

calculate the natural coordinates of each steel bar node. Despite the fact that the convergence rate 

of the nonlinear search is rather high, the computational demand for relatively large-scale 

structures with thousands of steel rebars becomes excessive. In order to reduce the computational 

cost for generating rebar reinforcement, a geometrical constraint during the rebar search process is 

proposed in this work making its numerical implementation less computationally demanding. 

The proposed method considers arbitrary positioning of the rebars inside the concrete elements, 

as shown in Fig. 4, while avoiding a nonlinear search procedure the calculation of the natural 

coordinates of the embedded reinforcement nodes for each hexahedral element.  

The developed finite element code ReConAn (Markou 2010) uses the initial rebar node 

coordinates that were created with Femap software (Siemens 2009) and generates the geometry of 

the embedded rebars. The generation of the embedded rebar elements is performed for each initial 

rebar separately by performing an independent search in order to detect all its intersections with 

the surrounding solid elements. The outcome of this arithmetic procedure is the location of the 

embedded rebar elements in the corresponding hexahedral elements. 
Generation of embedded virtual nodes 

The virtual nodes correspond to the intersections of the rebars with hexahedral faces (i1, i2, i3 

in Fig. 4). This procedure becomes cumbersome when the FE model consists of a large number of 

hexahedral and rebar elements. It is evident that if we attempt to compute these possible 

intersection points without implementing any constraint on the search space, the computational 

cost of the search algorithm will be significant. The problem arises from the fact that it is required 

to locate all possible intersections that may exist between the hexahedral faces and the initial rebar 

geometry (Figs. 5-6).  

To avoid unnecessary calculations, a geometric constraint was introduced in order to restrict the 

search in the vicinity of the corresponding steel reinforcement. The geometric constraint is 

implemented with the definition of an active sphere with radius Rc 

,   cR c L                                    (4) 

where 

2 2 2   x y zL s s s                                  (5) 

and 
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     
8 8 8

1 1 1
,   ,   

8 8 8

cen n cen n cen n

x x y y z z

n n n

x y z

s s s s s s

s s s
  

     
       

       

  
        (6) 

with s
n
 and s

cen
 being the coordinates of the node n and the centroid of the hexahedral under 

consideration, respectively, while parameter c defines the active volume around each hexahedral 

where the constraint is implemented. Then the search is performed only when the following 

relation is satisfied, 

1 2   i i

n n cd or d R                                 (7) 

where 1 2

1 2,  i cen n i cen n

n i rebar n i rebard d   s s s s are the distances of the rebar end nodes 1 and 2 from 

the hexahedral centroid i under consideration as it is illustrated in Fig. 6. 

After an extensive parametric investigation the recommended value for the incremental 

parameter c was found to be equal to 5, which was used in our numerical implementations. Larger 

values for c would lead to unnecessary computations for the location of possible rebar-hexahedral 

face intersections, while smaller values would make the generation of the initial rebar mesh more 

complicated and time consuming. This value is related to the maximum penetrated hexahedral 

elements by a rebar member in order to assure that at least one rebar node will be located inside 

the hexahedral active sphere, as illustrated in Fig. 6. The proposed constraint technique reduces the 

computational effort since it allows less neighboring hexahedral elements to be checked during the 

rebar allocation stage. 

After the satisfaction of the constraint Eq. (7), the generation of the reinforcement rebar 

elements proceeds according to the following three cases. 
 

Case 1 
In this case, a check is performed to detect whether one or both rebar nodes (1, 2) are located 

on a hexahedral face (Fig. 7a). Before moving to the computation of the natural coordinates of the 

virtual node a check if the hexahedral shape is orthogonal or irregular is performed. If the shape is 

orthogonal then in order to locate the position of the corresponding rebar node, the distances dX, dY 

and dZ between the hexahedral centroid and the rebar node need to be computed. These distances 

are given by 
 

 

 

 
 

Fig. 5 Concrete FE mesh and steel reinforcements 
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Fig. 6 Geometric constraint for the search of embedded rebar nodes: (a) Geometric constraint is 

satisfied: Rc
1 > dn2 

1 ; (b) Rc
2 < dn2

j
< dn1

j
Geometric constraint is not satisfied: 𝑅𝑐

𝑗
< 𝑑𝑛2

𝑖 < 𝑑𝑛1
𝑗

 

 

 

(a) (b) (c) 

Fig. 7 Geometric configuration of the three cases. (a) Case 1: Rebar node on a hexahedral face; 

(b) Case 2: Rebar-hexahedral face intersection; (c) Rebar node inside the hexahedral volume 

 

 

1 1 1,   ,  n cen n cen n cen

X x x Y y y Z z zd s s d s s d s s                        (8) 

Finally the natural coordinates of any given point P of the rebar inside a hexahedral, are given 

from the following expressions 

,   ,   

P cenP cen P cen
y yx x z z

P P P

X Y Z

s ss s s s

d d d
  

 
                     (9) 

If the rebar is located on a hexahedral face, then the proposed algorithm searches for 

intersections with the hexahedral face edges and creates the corresponding virtual nodes of the 

rebar finite element (nodes 4, i3 in Fig. 4). For this subcase, the stiffness matrix of the embedded 

rebar finite element (element ER 3 in Fig. 4) is distributed between the two neighboring 

hexahedral elements (Hexahedral 2 and 3 in Fig. 4). Moreover, in order to avoid the warping 

problem during the computations of the rebar nodal rotations, this type of rebar are treated as 

uniaxial elements. 
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For the case where the hexahedral element shape is irregular, then the standard Barzegar and 

Maddipudi 1994 method (Appendix B) is performed in order to allocate the natural coordinates of 

the corresponding virtual node. 
 

Case 2 
In the second case, the rebar intersects with one or twohexahedral faces as illustrated in Fig. 7b. 

It is important to note here that all hexahedral faces are described by algebraic plane equations 

which are used in order to find a potential line-plane intersection, as described in Appendix A. 

Subsequently, if an intersection exists it has to be verified if it is located inside the hexahedral face 

bounded by the four hexahedral face nodes. 

The following constraint guaranties that the line-plane intersection is located inside the face of 

the hexahedral under consideration 

,  ,  1P P P                                   (10) 

where ξP, εP, δP are the natural coordinates of the intersection point. If this constraint is not 

satisfied, the intersection point is not retained (i3 in Fig. 8) and the algorithm proceeds with the 

computation of the next intersection point. 

 

Case 3 
When cases 1 and 2 are not applicable, then a check is performed whether the constraint 

,  ,  1P P P                                   (11) 

is satisfied, where ξP, εP, δP are the natural coordinates of the rebar node obtained either from Eq. 

(9) or from the Barzegar and Maddipudi procedure, depending on the element shape. If the above 

 

 

 

 

Fig. 8 Initial rebar element intersections with hexahedral faces. Nodes i1 and i2 are retained, 

node i3 is not acceptable 
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Fig. 9 Flow chart of the proposed embedded rebar element mesh generation method (Markou 

and Papadrakakis 2012) 
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inequality is satisfied, it means that the rebar node is located inside the volume of the hexahedral 

(Fig. 7c) and it is stored for further consideration, otherwise the node is located outside the 

hexahedral volume and no further action is taken. After the computation of the virtual nodes of the 

initial reinforcement grid, the mesh generation of the embedded rebar finite elements is performed. 

Following the described generation algorithm, all necessary data of each hexahedral element is 

determined regarding the corresponding virtual rebar nodes that were located inside the volume or 

on its faces. At this point, the main features of the embedded rebar element are calculated and 

stored: The type of element (Beam or Rod), nodal coordinates, the type of nodes (if a node is 

virtual or a physical node of the initial mesh) and the material properties. Fig. 9 illustrates the flow 

chart of the proposed embedded rebar element mesh generation algorithm. It has to be mentioned 

that, in order for the nodal natural coordinate’s computations to be applicable, hexahedral elements 

must be orthogonal parallepiped. If the hexahedral shape is irregular then the Barzegar and 

Maddipudi method, as described in the Appendix B, is used instead of Eq. (9).  
 
2.3 Numerical implementation 

 
In this section, a numerical verification of the efficiency of the proposed embedded 

reinforcement generation method will be presented. For this reason, two different FE models have 

been tested: A RC shear wall and a 3D RC frame. Different reinforcement properties and 

geometries are considered with the purpose of demonstrating the capability of the proposed 

method to allocate and generate embedded reinforcement elements with computational efficiency 

when dealing with large-scale models. All numerical tests were performed on a laptop with a 

1.9GHz processor and a 2GB DDR2 Ram. 

 
2.3.1 RC shear wall 
The RC shear wall consists of 1,680 hexahedral elements (0.10 m × 0.125 m × 0.0767 m) and 

1,320 initial rebars (vertical reinforcement Ø 12/10 and horizontal reinforcement Ø 8/15). As can be 

seen in Fig. 10, the RC shear wall has a total length of 2.80 m, a height equal to 2.30 m and a 0.25 

m thickness. The embedded rebar mesh generation procedure terminates the generation with the 

allocation of 3,080 rebar finite elements in 1.1 seconds. 

In order to test the proposed generation framework for larger discretizations we considered a 

tenfold increase of the previous model. The new FE model consists of 17,080 hexahedral elements 

and 13,192 initial rebar elements (Fig. 11). After the completion of the embedded rebar element 

mesh generation process, the total number of generated embedded rebar finite elements becomes 

34,327 and the corresponding required  computational time is 85 sec. The proposed algorithm 

managed to scan and generate all the embedded reinforcement elements within an affordable 

computational time. This is mainly attributed to the implementation of the geometric constraint of 

Eq. (7). The corresponding computational time for the embedded rebar element mesh generation 

process, when the geometrical constraint is not used, was 7 min. This shows the importance of the 

proposed constraint during the mesh generation process particularly for large-scale models. Since 

the required CPU time for the embedded mesh generation procedure cannot be explicitly measured 

when ATENA software is used, the comparison cannot be made for this case. Nevertheless, the 

required initiation CPU time, for these two numerical tests, were 3 and 25 min, respectively. The 

corresponding CPU times of ReConAn are 2 and 160 sec (including the embedded rebar mesh 

generation procedure). This differences are to a certain extend attributed to I/O procedures that 

ATENA performs during the initialization of the models. 
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Fig. 10 RC shear wall with 1,680 hexahedral elements and 1,320 initial rebar elements 

 

 
 

 

Fig. 11 RC shear wall with 17,080 hexahedral elements and 13,192 initial steel bar elements 

 

 
2.3.2 RC frame 
This model was created with the purpose of illustrating the ability of the proposed algorithm to 

generate embedded reinforcement for more complicated reinforcement layouts. The rebar layout 

for each structural member is depicted in Fig. 12. The RC frame has a 5 m span and consists of a 

shear wall, a beam, a column and two foundation footings in order to make the geometry more 

complex. 

Fig. 13 illustrates the initial discretization with hexahedral and rebar elements. The initial FE 

model The total number of embedded rebar elements created after the execution of the rebar 

element mesh generation process was 4,434 and the corresponding required time was 5 seconds. It 

can be seen that the mesh generation is completed in a minimal computational time despite the fact 

that the mesh of the hexahedral elements was very dense, especially in the foundation footings. 
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Fig. 12 RC frame. Geometry and reinforcement details 

 
 

 

 

Fig. 13 RC frame. Initial FE mesh (Hexahedral elements – Reinforcement mesh) 

 
 
2.4 The NBCFB element 

 
The Natural Beam-Column Flexibility-Based (NBCFB) element (Papaioannou et al. 2005, 

Papachristidis et al. 2009 and 2010) is a 2-noded three-dimensional beam finite element with 12 

degrees of freedom (6 per node). The computation of its flexibility-based stiffness matrix is done 

with the use of Gauss-Lobato integration points. The flexibility-based formulation relies on force 

interpolation functions that strictly satisfy the equilibrium of bending moments and axial force 

along the element and requires an iterative algorithm in order to calculate the internal forces during 

the element state determination, as described by Spacone et al. 1996. 

Assuming that xyz axes represent the global coordinate system, the nodal displacements are 

grouped in the vector (see Fig. 14) 
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Fig. 14 RC fiber beam elements in space 

 

 

 1 1 1 1 1 1 2 2 2 2 2 2u v w u v w     ρ
         

 (12) 

where u, v and w represent the translational dof and ζ, θ and ψ denote the rotational dof. These dof  

can refer either to a global or a local Cartesian coordinate system which are related through 

transformation matrices that contain directional cosines. 

A local Cartesian coordinate system x’y’z’ is assigned to the element and it is placed at its 

centroid to which local Cartesian dof are referred to 

1 1 1 1 1 1 2 2 2 2 2 2u v w u v w        ρ
         

 (13) 

A natural coordinate ξ spanning the beam’s axis is adopted, which coincides with the local 

Cartesian axis x’. The local Cartesian dof are transformed into natural invariant rigid body and 

straining modes π0, πΝ, respectively, so that a unique and reversible relation exists between the 

natural modes and the local and global dof in the sense 

0
(12 1) (12 1) (1 6) (1 6)

,

T

T T

N
x x x x

 
   

 
ρ ρ ρ ρ

                
        

 (14) 
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When fibers are considered, an additional coordinate system is defined for every fiber (i), 

namely the 123 coordinate system, with axis 1 along the longitudinal reinforcement direction and 

axes eo perpendicular to it. Note that material axis 3 is parallel to the local Cartesian axis z’. Then, 

for every fiber k, axis 1 forms an angle ζk, with the local axis x’ (see Fig. 14). Therefore, the 

NBCFB element comprises 12 Cartesian dof but the actual number of straining modes is 6. 

The two main differences of the flexibility-based element compared to the classical stiffness 

element are that the element stiffness matrix is calculated by inverting the flexibility matrix and 

that the element state determination begins from the elements internal force equilibrium. These 

two features enhance the numerical robustness and increase the accuracy of the incremental 

nonlinear solution procedure with respect to the size of the load steps. This property derives from 

the fact that the internal nonlinear state determination procedure computes the exact equilibrium 

solution, between the resisting forces and the nodal displacements of each element, inducing 

numerical stability in the incremental nonlinear solution procedure of the structure. 

 

2.4.1 Stiffness matrix of embedded NBCFB eements 

In order to extract the force distribution D(ξ) along the element from the generalized force 

vector Q the interpolation functions b(ξ) are defined as follows 

 
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. 1 . .    .

. . . 1    .

 



 
 

  
  

b

               
        

 (15) 

where ξ is the natural coordinate of the corresponding control-section of the Gauss-Lobato 

integration rule implemented for this element. 

When one of the sections enters into the nonlinear strain-stress field for the first time an update 

of the sections stiffness matrix is necessary. By storing the areas Aifiber of all fibers in vector A and 

the corresponding Young modulus Eifiber in E, the section tangent stiffness matrix is derived from 

      j T j

ifiber ifiber  k l E A l

              
        

 (16) 

where  l  is a compatibility matrix containing the local coordinates of each fiber. Eq. (16) 

results in 
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(17)

   

where  j k  is the sectional stiffness matrix (Spacone et al. 1996) located at the natural 

coordinate ξ. The updated natural stiffness matrix of the NBCFB element is obtained via the 
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flexibility matrix F, which is computed as the sum tangent or elastic flexibility matrices f 
j
(ξ) 

according to Eq. (18). 

     
(6 6)

(6 3) (3 3) (3 6)  1

. . .
nSections

T iSection iSection

x
x x xiSection

w  


 F b f b

        
        

 (18) 

where the w parameter represents the section’s integration weight factor and f 
j
(ξ) = [k 

j
(ξ)]

-1
. 

Finally, by inverting the natural flexibility matrix F the tangential natural stiffness matrix of the 

beam is obtained 

1

(6 6)(6 6)

[ ]beam

Natural beam
xx

   Κ F

                    
        

 (19) 

The final step for computing the global elemental stiffness matrix is to perform the standard 

transformation 
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 (20) 

where 𝑎 𝑁  is the connection matrix which contains only geometrical parameters (Argyris et al. 

1998). T04 is a matrix that contains submatrices of direction cosines (Argyris et al. 1997). 

 
2.4.2 Nonlinear internal state determination process 
In order to describe the nonlinear internal state determination process, the definition of the 

equilibrium equation must be given. Eq. (21) expresses the linearized relation between the applied 

unbalanced forces P
i 
- Q

i-1
 and the corresponding incremental displacements Δq

i
 at the element 

level (Spacone et al. 1996) 

1
1 1. -i i i i


     F q P Q

                  
        

 (21) 

Since the section internal resisting forces 𝑫𝑅
𝑗

(𝜉) cannot be obtained directly from the section 

force-deformation relation, they are determined by summation of the axial force and biaxial 

bending contribution of all the fibers of the section as shown below 

   . .j T j

R  D l E A

                   
        

 (22) 

and after carrying the multiplications  
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 (23) 

The end-node force vector Q is computed from the section internal resisting forces 𝑫𝑅
𝑗  𝜉  as 

follows 

   
(6 1) (6 3) (3 1)1

. .
nSections

T iSection iSection

R
x x xiSection

w 


Q = b D

            
        

 (24) 

where w is the parameter that represents the sections Gauss-Lobato integration weight factor and 

b(ξ) contains the interpolation functions (Eq. 15). Finally, the elemental internal forces with 

respect to the global system are computed from 

04
(6 1)(12 1) (12 12) (12 6)

. .T T

internal n
xx x x

P = T a Q

                   
        

 (25) 

After the computation of the elemental internal forces the internal stated determination 

procedure is performed as it is described by Spacone et al. 1996 (Appendix C). The state 

determination procedure is integrated with the natural mode method (Argyris et al. 1979, 1998). 
 
2.4.3 Idealization of the rebar dlements 
As can be seen in Fig. 15, the section of any rebar may be transformed into an equivalent 

square section which is subdivided into a number of fibers in x and y directions. The idealization 

of the rebar’s section into square is performed in order to simplify the discretization procedure. 

Given the diameter of the rebar, the  
 

 

dimensions of the square cross section are given by 

2

4

d
b h


 

                       
        

 (26) 

The material law adopted in this work for the inelastic modeling of the steel rebars was the one 

proposed by Menegotto and Pinto 1973. 

Numerical tests performed for both cross sections produced identical results since the stiffness 

coefficients that are mainly affected through the sectional simplification correspond to the bending 

coefficient which is by nature much smaller than the corresponding axial and shear coefficients of 

the rebar.  
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(a) 

 

(b) 

Fig. 15 Discretization of (a) a square and (b) a circular section with fibers 

 
 

2.4.4 Transformation of the stiffness matrix of the embedded NBCFB elements 
The contribution of the rebar stiffness to the stiffness matrix of the parent hexahedral element is 

given by 

   
 
     24 24 24 24 12 12 12 2424 121

nr
T rebar

Hexa Hexa i i i
x x x xxi

   K K T K T


            
        

 (27) 

where Ti is the transformation matrix given in Eq. (2) for imposing the compatibility condition 

between the rebar and the corresponding hexahedral’s nodal displacements. HexaK is the stiffness 

matrix of the hexahedral concrete element and nr is the number of rebars embedded in the element.  
 
 
3. Concrete 3D material model 
 

Several material models have been proposed or studied for the modeling of concrete (Fardis et 

al. 1983, Kolleger and Mehlhorn 1987, Simo and Ju 1987, Lubliner et al. 1989, Armero and Oller 

2000, Balan et al. 2001, Lee and Fenves 2001, Nechnech et al. 2002, Borja et al. 2003, Park and 

Kim 2005, Jason et al. 2006, Desmorat et al. 2007, Oliver et al. 2008). A comprehensive review on 
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the progress made in the past years on concrete material models can be found in Lykidis 2007. The 

3D material model for concrete implemented in this work was based on the Kotsovos and Pavlovic 

(1995) model after a modification of its numerical implementation in order to improve its 

numerical robustness. In the following, the Kotsovos and Pavlovic model will be briefly presented 

as well as the proposed modifications. 

 
3.1 Concrete constitutive model 
 

The experimental data on concrete behavior used for the development of constitutive laws are 

obtained from tests on specimens such as cylinders, prisms and cubes. Such specimens are 

subjected to various load combinations, usually applied through rigid steel plates (compressive test 

or triaxial test). The obtained results are expressed in the form of stress-strain curves, which 

consist of a strain hardening branch followed by a strain softening one. After extensive 

experimental work (Kotsovos 1983, van Mier 1986, van Mier et al. 1997), it was found that only 

strain hardening may describe material behavior under a definable state of stress. It was concluded 

that the strain softening branch basically reflects the interaction between specimens and loading 

platens (Fig. 16), with the development of uncontrolled frictional stresses on the faces between the 

specimen and the loading device.  

The generalized stress-strain relationships, corresponding to the ascending branch of concrete 

materials, can be expressed by decomposing each state of stress into a hydrostatic (ζ0) and a 

deviatoric component (η0) which represent the normal and shear octahedral stresses. The 

hydrostatic and deviatoric stresses derive from the corresponding hydrostatic and deviatoric strains 

(ε0, γ0) from the following relationships 

0 0
0 0 0 0,       

3 2

id
h d

S SK G

  
   


   

            
        

 (28) 

where ζid (ζ0,η0,fc) is an equivalent internal hydrostatic stress that accounts for the coupling 

between η0 and ε0d, KS(ζ0,η0) and GS(ζ0,η0) are secant bulk and shear moduli, respectively, obtained 

by ignoring the coupling stress ζid. The expressions for ζid, KS and GS, can be found in Kotsovos 

and Pavlovic (1995). 

Since ζid is a pure hydrostatic correction, the expressions in Eqs. (28) are equivalent to the 

following relations which are written in the global coordinate system 

 0
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ij id ij S
ij id ij
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G E

  
   


  

                
        

 (29) 

where ES(ζ0,η0,fc) and νS(ζ0,η0,fc) are secant Young’s modulus and Poisson’s ratio derived from KS 

and GS, using the standard expressions of linear elasticity 
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 (30) 
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Fig. 16 Stress-strain curves for different types of boundary conditions of the experimental setup 

(van Mier et al. 1997) 

 
 

  
(a) (b) 

Fig. 17 Schematic representation of the ultimate-strength surface. (a) General view in stress 

space; (b) Typical cross-section of the strength envelope coinciding with a deviatoric plane 

 

 

The nonlinear deformation component of concrete corresponding to η0 is considerably larger 

than that for ζ0 (Kotsovos1984) and if max η0 corresponds to the maximum deviatoric stress at each 

point on the stress-strain curve, then the elastic unloading/reloading occurs whenever the 

deviatoric stress η0 becomes less than max η0.  

 

3.2 Failure criteria 
 
The octahedral stresses are used to describe the failure of the concrete, which may be 

represented in the three-dimensional principal stress space by an open and convex failure surface. 

The projection of the failure surface on the deviatoric plane, which is normal to ζ0, results in a 

curve that represents the geometric locus of the ultimate deviatoric stress η0u (Kotsovos and 

Pavlovic 1995). This ultimate stress may be calculated from ζ0 and ζ, where ζ is the rotational 

angle that the deviatoric stress vector forms with one of the projected stress principal axes on the 

deviatoric plane 
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This expression describes a smooth convex curve with tangents perpendicular to the directions 

of η0e and η0c at ζ = 0
ο
 and ζ = 60

ο
, respectively (Fig. 17). Therefore, a full description of the 

strength surface can be established when the variants of ζ0, η0e, and η0c are determined. A 

mathematical description of the two strength envelopes may be obtained as previously, by fitting 

curves to the experimental data.  

 

 

3.3 A modified concrete material model 
 
3D concrete material models combined with the smeared crack approach, introduce numerical 

instabilities to the NR iterative procedure particularly when the RC reinforcement begins to yield. 

In some cases non-convergence or divergence of the nonlinear solution was observed when 

cracking develops locally, thus the structure appears to fail prematurely without entering the 

failure zone. This is the result of an instability introduced through the constitutive matrix C (Eqs. 

33-34) where eventually several diagonal terms of the elemental stiffness matrix take zero or near 

to zero values. Furthermore, when the opening of cracks occurs, abrupt unbalanced forces are 

developed which induce instability in the solution algorithm especially when a large number of 

cracks open simultaneously.  

In the numerical studies performed by Kotsovos and Pavlovic 1995 they used 20- and 27-node 

hexahedral elements with a 3x3x3 integration rule. They encountered serious convergence 

problems which led them to introduce a restriction on the maximum number of cracks (2 or 3) that 

were allowed to open at each NR iteration, in an effort to overcome convergence problems. This 

artificial control of crack opening impaired the robustness of the numerical formulation as 

different values for the restriction parameter led to different numerical results and in several cases 

to an overestimation of the structural strength. The effect of this restriction is illustrated in Fig. 18 

where the load-deflection curve is shown for a simply supported beam without stirrups (Bresel and 

Scordelis 1963). The resulting curves exhibit different inelastic branches and ultimate load 

capacities underlying the weakness of this restriction.  

Spiliopoulos and Lykidis 2006, managed to overcome this problem by allowing all cracks to 

occur at any Gauss point when the corresponding deviatoric stress strength is reached. This 

treatment required the implementation of 27-noded elements with a corresponding 3 × 3 × 3 

integration rule which led to an increased computational effort. Contrary to the previous 

implementations, an 8-noded hexahedral element with a 2 × 2 × 2 integration rule, combined with 

a modified Kotsovos and Pavlovic material model and a unified treatment for the crack opening 

mechanism is used in this work. This modeling approach proves to be both stable and 

computationally efficient.  

The Kotsovos and Pavlovic material model, assumes a nonlinear behavior for the moduli KS 

and GS for very low values of η0u < < max η. The updating of the hexahedral stiffness matrices, at 

the early stages of loading, demands extra computational effort with no measured effect on the 

structural behavior. Thus, in the Kotsovos and Pavlovic material model formulation, it is necessary  
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Fig. 18 Influence of the allowable number of cracks per NR iteration with the material models 

proposed in Kotsovos and Pavlovic 1995 and Lykidis 2007 combined with Hexa8 and Hexa27, 

respectively 

 

 

to update the material constitutive matrix at each hexahedral Gauss point according to the change 

of KS and GS moduli. Having to solve an ill-posed numerical problem when cracking occurs, the 

uncracked hexahedral elements induce additional numerical instability, as a result of the 

unbalanced forces produced due to the update of the material constitutive matrix. This increases 

the computational cost due to the requirement for a continuous stiffness update.  

Taking into consideration these numerical difficulties, which were also confirmed through the 

work performed by Papanikolopoulos 2003, a modification to the numerical handling of the 

Kotsovos and Pavlovic material model is proposed. Following a parametric investigation it was 

concluded that if the ultimate deviatoric stress η0u at any Gauss point is less than 50% of the 

corresponding ultimate strength (Eq. 31), then the elastic constitutive matrix C can be retained in 

the formulation of the stiffness matrix. It is only when the deviatoric stress η0u exceeds 50% of the 

corresponding ultimate strength, that the nonlinear material law is activated and the constitutive 

matrix is computed by updating the KT and GT moduli. Fig. 19 illustrates the flow chart of the 

proposed numerical handling of the material model. This assumption can be justified from Fig. 16 

which illustrates different stress-strain curves that resulted from typical compressive tests of 

cylindrical concrete specimens (van Mier 1997). One can easily notice that for all experiments, the 

slope of these curves is almost constant until compression reaches the vicinity of the failure load. 

The above assumption is also going to be confirmed in the section of numerical examples.  

 

3.4 Smeared crack modeling 
 
Smeared crack models take into consideration crack openings by modifying the calculation of 

stiffness matrices and stresses at corresponding integration points. This approach proceeds with the 

simulation of individual cracks without the need for remeshing, as it is required for the case of the 

discrete-crack approach where a physical gap in the FE mesh is introduced at the location of the 
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crack.  

The smeared crack model implemented in this work is based on the work of Rashid 1968 as 

described by Gonzalez-Vidosa et al.1991. In the framework of an incremental iterative procedure 

the increments of stresses at each Gauss point are found from the increments of strains through the 

constitutive matrix C. 

  σ C ε

                        
        

 (32) 

A crack occurs when the ultimate deviatoric stress η0u at a Gauss point has been exceeded 

(usually in tension or in combination of tension and compression). Then a plane is formed (crack’s 

plane) which is perpendicular to the direction of the maximum tensile stress that exists before 

cracking. This tensile stress is set to zero inducing unbalanced forces at the element nodes. The 

incremental stress-strain relation of Eq. (32) is transformed to the corresponding Cartesian axes (x΄, 

y΄, z΄) of the crack before properly adjusted to take into consideration zero stress along the 

perpendicular axis to the plane of crack (axis z΄) and a modified shear rigidity G along the plane of 

crack 
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(33)

   

where μ is the Lamé constant. A schematic representation of the planes of cracks and the 

corresponding axis is depicted in Fig. 20. 

Following this crack formulation, if a tensile state of stress is reached in a different direction at 

a subsequent load level, then a second crack opens with its corresponding plane being 

perpendicular to the direction of the new maximum principal tensile stress. Hence, in combination 

with the previous state of stress, non-zero stress can only be developed along the intersection of 

the two planes (Fig. 20). Consequently, the incremental stress – strain relations along these 

Cartesian axes (x΄΄, y΄΄, z΄΄) are given by 
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(34)
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Fig. 19 Flow chart of the adopted concrete material model 

 
 

 

 

Fig. 20 Local axes for the case of two cracks at a specific Gauss point 
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In the event that a third tensile stress occurs in a different direction at the same Gauss point, 

then a zero stiffness contribution is assumed for this specific Gauss point. 

Parameter β plays an important role in most cases, when using the smeared crack approach, as a 

result of its contribution to the stability of the nonlinear iterative procedure when cracks open. If 

this parameter is set to zero with the creation of a crack, then zero diagonal terms may appear in 

the global stiffness matrix, particularly when the RC structure is sparsely reinforced. The physical 

meaning of this parameter is related to the remaining stiffness due to aggregate interlocking along 

the cracks surface. An acceptable value for this variable is β = 0.1 which was extracted from 

experimental data (Kotsovos and Pavlovic 1995, Gonzalez-Vidosa 1988). This implies that 10% of 

the initial shear strength is remaining after the opening of the crack as a result of the aggregate 

interlocking along the crack’s plane. 

 
 

4. Numerical experiments 

 

4.1 RC beams with and without stirrups 
 
With these two numerical experiments, we will try to illustrate the importance of taking under 

consideration the stiffness of reinforcement by treating the rebars as beam elements instead of rod 

elements. The computational efficiency of the numerical treatment of the proposed formulation 

will also be demonstrated through the following numerical tests.  

 
4.1.1 RC beam without stirrups under central point load 
The first numerical experiment consists of a simply supported beam with no stirrups (Bresler 

and Scordelis 1963). Its geometrical features are depicted in Fig. 21. The experimental failure load 

was reported to be equal to 334kN with a corresponding central deflection of 6.6 mm. Fig. 22 

shows the first FE model which consists of 132 hexahedral elements for concrete and 88 NBCFB 

elements for the embedded reinforcement. Furthermore, two additional denser meshes were 

created, containing 264 and 528 hexahedral concrete elements (Fig. 23) in order to investigate the 

mesh sensitivity of the proposed method. 

The four longitudinal bars have a diameter of 28.9 mm which represents a large reinforcement 

ratio (1.52%) corresponding to the beam sectional dimensions (309.9 mm width and 556.3 mm 

height). The results obtained for different simulations are shown in Fig. 24. 

Curves 8 and 9 in Fig. 24 were obtained using 27-noded and 8-noded hexahedral elements, 

respectively, rod elements for the embedded reinforcement and the Kotsovos and Pavlovic 

concrete material model. As can be seen, both formulations managed to predict the ultimate load 

exhibiting a markedly softening behavior compared to the experimental one. On the other hand, 

the curves obtained by the ATENA commercial software (Curves 2-4), follow closely the 

experimental curve but appear to underestimate considerably the ultimate load of the beam. These 

differences cannot be attributed to the different concrete material model used in ATENA, which is 

based on the cubic compressive strength instead of the cylindrical, since the bearing capacity is 

well under estimated corresponding to the experimental results. Curves 5, 6 and 7 were obtained 

with the present formulation showing a very good agreement with the experimental results. In all 

tests performed perfect-bond of the rebars is assumed. The predicted failure loads and the 

corresponding mid-span deflections are shown in Table 1. The predicted values illustrate the 
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numerical accuracy of the proposed method and its robustness with respect to different meshes. 

The failure of the beam was initiated due to cracking of the beam compressive zone, as can be seen 

in Fig. 25, where the deformed shape and crack pattern of the beam prior to failure are illustrated. 

A breakdown of the required computational effort for the 132 Hexa8 elements model is shown 

in Table 2, where it can be seen that the required CPU time for solving this nonlinear problem with 

30 load increments was 7 seconds. 

The required computational effort of ATENA software was approximately 9 minutes for the 

nonlinear solution when using 132 Hexa8 elements, 24 minutes for the case of 264 Hexa8 

elements and 50 minutes for the case of 528 Hexa8 elements (Table 1). It has to be mentioned that 

ATENA performs several graphical representation procedures during execution, which are 

incorporated into the nonlinear CPU solution time.  
 

 
 

 

 
Fig. 210 RC beam without stirrups under central point load. (a) Beam characteristics, 

b) experimentally observed crack pattern at ultimate load (Bresler and Scordelis 1963) 

 
 

 

 

Fig. 22 Beam without stirrups under central loading. FE mesh 
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Fig. 24 RC beam without stirrups under central point load. Predicted and experimental load-

midspan deflection curves for different FE models 

 
 

 

 
Fig. 25 RC beam without stirrups with 132 Hexa8 elements under central point load. Crack 

pattern and deformed shape prior to failure 

 

 

Table 3 shows the required number of NR iterations during the solution procedure for the beam 

without stirrups for the case of 132 Hexa8 concrete elements. It can be seen that most of the load 

steps when using the proposed modeling method, require less than 6-8NR iterations. However, in 

some load steps, like the 10
th
 load step, an increased number of internal iterations is required due 

to the large number of crack openings. In Fig. 26 the crack patterns at load steps 9 and 10 are  
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Fig. 26 RC beam without stirrups with 132 Hexa8 elements under central point load. Crack 

pattern at the 9
th

 and 10
th

 load increments 

 
 

 

 
 

Fig. 27 RC beam without stirrups with 264 Hexa8 elements under central point load. Load-

deflection curves for different load increments 

 

Table 1 RC beam without stirrups under central point load. Predicted failure load, mid-span deflections and 

CPU solution time for different meshes 

Model 
Failure 

Load (kN) 

Deflection 

(mm) 

Load 

Increments 

CPU time (sec) 

Proposed method – 132 Hexa8 elements 338 6.7 30 7 

Proposed method – 264 Hexa8 elements 348 7.0 30 18 

Proposed method – 528 Hexa8 elements 348 7.2 30 55 

ATENA – 132 Hexa8 elements 240 >8 24 540 

ATENA – 264 Hexa8 elements 230 >8 23 1440 

ATENA – 528 Hexa8 elements 230 >8 23 3000 
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Table 2 RC beam without stirrups with 132 Hexa8 elements under central point load. CPU time for different 

tasks of the nonlinear analysis 

Task CPU Time (sec) 

Embedded Rebar Element Mesh Generation 0.02 

Newton-Raphson Non Linear Solution 7.00 

Writing Output Data 12.00 

Other 0.08 

Total Time 20.0 

 

Table 3 RC beam without stirrups with 132 Hexa8 elements under central point load. NR iterations per load 

step 

 Newton-Raphson Iterations per load step 

ATENA 1 1 1 1 8 12 23 21 18 8 17 14 8 14 9 17 40 12 15 40           

Proposed Method 1 1 1 4 6 3 8 3 1 14 1 2 11 15 2 6 5 4 3 2 6 2 2 4 3 6 4 3 2 18 

 

Table 4. RC Beam without stirrups with 264 Hexa8 elements under central point load. CPU time until failure 

for different load increments 

Load Increments CPU Time (sec) 

50 25 

20 17 

10 11 

 

 

depicted illustrating the additional cracks that were created in a single load step which explains the 

increased number of iterations at this step. 

In order to illustrate the computational efficiency of the proposed modeling method, different 

loading increments are applied for the case of 264 Hexa8 element discretization and the 

corresponding load-deflection curves are depicted in Fig. 27. It can be seen that the variation of the 

predicted curves is insignificant and it can therefore be concluded that the accuracy of the solution 

procedure is not sensitive to the size of load increment, which is a crucial numerical property when 

dealing with large scale problems. The corresponding required CPU time until failure for different 

load increments is given in Table 4. 

 

4.1.2 RC beam with stirrups under central point load 
The second numerical test refers to the same beam specimen with stirrups and compression 

reinforcement, as shown in Fig. 28. Local stiffening is applied in the experimental set-up in the 

region of the central point load and at the support regions. The collapse of this beam member 

occurred when the central point load reached 467kN with a corresponding mid-span deflection of 

13.8 mm (Bresler and Scordelis 1963). The failure of the beam was brittle without yielding of the 
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tension bars. Diagonal cracking began at the same load level as for the beam without stirrups 

(267kN), but did not lead to failure due to the presence of stirrups and compression reinforcement. 

Fig. 29 shows the FE model that was used for this numerical experiment which consists of 102 

hexahedral elements for concrete and 354 NBCFB elements for the embedded reinforcement. 

As can be seen from Fig. 30, the predicted failure load of the proposed modeling is equal to 

448kN with a corresponding midspan deflection of 13.5 mm for the case where the external load is 

divided into 50 load steps (Curve 4). Similar failure loads were also obtained for 100 and 20 load 

step increments (Curves 3, 4 and 5). Curve 7 shows that ATENA with rod elements for the 

reinforcement failed prematurely due to extensive cracking. 

Fig. 31 shows the crack pattern for several load levels up to failure. Cracking in the beam’s 

compressive zone starts for a total applied load of 300kN, but does not lead to failure of the beam 

due to stirrups confinement and the compressive contribution of the upper reinforcement. The 

numerical solution terminates when failure of the compressive bars is manifested which is in good 

agreement with the experimental mode of failure. 

 
 

 

 

 
Fig. 28 RC beam with stirrups under central point load. (a) Beam characteristics and 

(b) experimentally observed crack pattern at ultimate load (Bresler and Scordelis 1963) 

 
 

 

 

Fig. 29 RC beam with stirrups under central loading. FE model 
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Fig. 30 RC beam with stirrups under central loading. Load-deflection curves for different FE 

models and load increments 

 
 

 

 
Fig. 31 RC beam with stirrups under central point load. Crack patterns and corresponding 

deformed shapes at different load levels 

 

Table 5 RC beam with stirrups under central point load. CPU time for different tasks of the nonlinear 

analysis 

Task CPU Time (sec) 

Embedded rebar element mesh generation 0.03 

Nonlinear incremental-iterative solution 17.00 

Writing output data 25.00 

Other 0.43 

Total Time 42.46 
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Fig. 32 RC beam with stirrups under central point load. Required NR iterations per load step 

 

 

The required NR iterations for this numerical experiment are depicted in the graph of Fig. 32 

for 48 load steps. The maximum required number of NR iterations occurs at load step 31 where the 

initiation of the compressive zone cracking takes place and crack opening is extensive due to the 

excessive stress redistribution. 

The required computational time for the nonlinear solution procedure is depicted in Table 5 

which refers to 48 incremental load steps. It can be seen that the average CPU time per load 

increment is 0.354 seconds compared to 0.177 seconds for the corresponding problem without 

stirrups. This is attributed to the fourfold increase of the number of rebar beam elements used for 

this discretization. The corresponding computational time when analyzing this model with ATENA 

software for 25 steps was 15 minutes. 

 
4.2 RC shear wall 

 

Lefas (1988) and Lefas and Kotsovos (1990) conducted experimental studies on RC shear walls 

with different geometric characteristics and reinforcement arrangements. The geometric details of 

the shear wall denoted as Type I are given in Fig. 33. The walls were monolithically connected at 

their ends to two beams. The lower beam was utilized to clamp down the specimens to the 

laboratory test floor. 

The reinforcement used in these RC shear walls consisted of two different diameters and 

yielding stresses (Table 6). Both of them were high tensile strength rebars of 8 mm and 6.25 mm in 

diameter. In addition to the longitudinal reinforcement, horizontal stirrups were placed at the edges 

of the walls (concealed columns) providing confinement. Mild rebars of 4mm diameter were used 

for this purpose.  

The shear wall specimens were clamped to the floor by means of two transverse long steel box 

girders 10 mm thick and 4 holding-down post tensioned bolts. As it can be seen from Fig. 34, the 

vertical constant load was applied through a two point loading. 

The specimens were designed based on the 1983 edition of the ACI code. All specimens have the 

same reinforcement but were loaded with a different load combination. Three different vertical 
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loads were used: 0, 0.1𝐴𝑓𝑐  and 0.2Afc where A and fc are the shear wall sectional area and 

cylindrical concrete compressive strength, respectively. Table 7 and Fig. 35 contain information 

associated with the reinforcement detailing and the level of constant vertical load applied for the 

three specimens denoted as SW14, SW15 and SW16, the level of maximum horizontal load 

attained during the experimental testing, as well as the different concrete compressive strength and 

loading history. The same FE mesh, shown in Fig. 36, is used for modeling the three specimens. 

The FE mesh consists of 96 hexahedral elements and 949 embedded rebar elements. The predicted 

numerical curves by the proposed modeling are compared with the corresponding experimental 

curves in Fig. 37 where a satisfactory correlation can be observed. It is worth mentioning here that 

the sudden increase of displacements observed in Fig. 37a is attributed to the abrupt loss of 

stiffness as a result of crack opening associated with the smeared crack approach.  

 

 
 

 

 

Fig. 33 Shear wall specimen (Lefas 1988) 

 
 

 

 
 
 

Fig. 34 RC shear wall. Schematic representation of the test rig. (a) Elevation; (b) plan view (Lefas 1988) 
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              (a) (b) 

Fig. 35 Shear wall. Reinforcement details (Lefas 1988) 

 
 

 

 

(a) (b) 

Fig. 36 Shear wall. 2D and 3D views of the FE mesh. (a) Hexa8 elements; (b) Reinforcement rebars 

 

 

The crack patterns at the failure load are depicted in Figs. 38 and 39. The largest cracks appear 

to be the flexural cracks that are located on the base of the three specimens where the RC shear 

walls are connected to the lower beam. Fig. 39 shows the three characteristic crack patterns that 

were predicted with the proposed method and were also measured by Lefas 1988 for the case of 

SW14. The corresponding experimental values for the three numerical cases are given in Table 8 

where the good agreement between experimental and analytical data can be verified. The initiation 

of inclined cracking for SW14 was reported to occur for a corresponding load of 100kN which is 

close to the numerically obtained value (87kN). The CPU time required for the solution of the 

three numerical models are given in Table 9. The variation of the computational effort is attributed 

to the different NR iterations required at each load increment. For the case of specimen SW15 a 

larger number of NR iterations per load increment was required due to an increased rate of crack 

openings which explains the difference in the CPU time. 
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(a) (b) 

 

(c) 

Fig. 37 Shear wall. Experimental and predicted curves for the three specimens: (a) SW14; (b) 

SW15 and (c) SW16 

 
 

 

 
 

Fig. 38 Shear wall. Predicted and experimentally observed crack pattern for different load levels 

of specimen SW14 
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Fig. 39 Shear wall. Predicted crack pattern of specimens SW15 and SW16 at ultimate loads 

 

Table 6 Material properties of the reinforcement used for the RC shear walls 

Steel Bar Type 
Yield strength 

fsy (MPa) 

Ultimate strength 

fsu (MPa) 

Modulus of elasticity 

Es (GPa) 

8 mm - high tensile bar 470 565 159 

6.25 mm - high tensile bar 520 610 150 

4 mm - mild steel bar 420 490 - 

 

Table 7 Shear wall. Reinforcement percentage, load data and concretestrength for three specimens (Lefas 

1988) 

Specimen Reinforcement Percentage Vertical Load 

Ultimate 

Horizontal 

Load 

Concrete’s 

Cylinder 

Strength  

 
Phor 

(%) 

Pver 

(%) 

Pfl 

(%) 

PS 

(%) 

Fv 

(kN) 

𝐹𝑣
𝑏𝑙𝑓𝑐

 
FH 

(kN) 

fc 

(MPa) 

SW14 1.1 2.4 3.1 1.2 0 0 265 34.0 

SW15 1.1 2.4 3.1 1.2 185 0.10 320 30.5 

SW16 1.1 2.4 3.1 1.2 460 0.20 355 43.6 

 

Table 8 Shear wall. Predicted initiation of cracking and ultimate horizontal loading 

Specimen 

Initiation of Cracking – 

Predicted Data 

Initiation of Cracking – 

Experimental Data 

Ultimate 

Horizontal 

Load - 

Predicted 

Ultimate 

Horizontal 

Load - 

Experimental 

FH (kN) δ (mm) FH (kN) δ (mm) FU (kN) FU (kN) 

SW14 35 0.34 25 0.25 275.5 265 

SW15 45 0.27 59 0.22 304.5 320 

SW16 80 0.40 80 0.31 336 355 
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Table 9 Shear wall. CPU time for the nonlinear solution procedure 

a/a Specimen Load Increments CPU Time (sec) 

1 SW14 86 50 

2 SW15 87 60 

3 SW16 88 35 

 

 
4.3 RC Shear panel beam 
 
The shear panel beam W-2 tested by Červenka 1970 has been frequently used by many researchers 

(Lykidis 2007, Ile and Reynouard 2000, Kwak and Kim 2004, Darwin and Pecknold 1976, Kwak and 

Kim 2001) in order to verify their numerical models. The panel beam consists of two orthogonally 

reinforced panels, 762 mm wide, 762 mm high and 76.2 mm thick, separated by three ribs (Fig. 40). 

The concrete’s compressive strength was fc = 26.8 MPa and the reinforcement steel material properties 

were Es = 190 GPa and fy = 353 MPa. The experimental findings showed that the ultimate load capacity 

of this panel beam is governed by yielding of the reinforcing steel following initial tensile cracking of 

concrete. Ultimately, the panel beam failed by local concrete crushing and splitting in the compressive 

zone of the panel.  

The finite element discretization and the corresponding reinforcement percentage are shown in Fig. 

41 and Table 10, respectively. Two FE discretizations are considered for the modeling of concrete with 

100 and 328 solid elements as shown in Figs. 41a and 41b. In both FE models the reinforcement 

geometry remains the same (Figs. 41c and 41d). 

The experimental and predicted curves are shown in Fig. 42, where good agreement between the 

results is observed. It can be seen that the proposed numerical model manages to predict the ultimate 

failure load (118kN) with an acceptable accuracy while both elastic and inelastic predicted branches 

appear to be in good correlation with the experimental curve. When the external applied load reaches 

approximately 70% (80kN) of the failure load, the prediction of the RC member stiffness is 

overestimated. This is attributed to the stiffness introduced through the use of the β parameter when 

excessive cracking occurs (Fig. 43b).  

Fig. 43 shows the crack patterns for both FE meshes for different load levels. It can be seen that the 

predicted failure mode is governed by flexural cracking which occurred at the load level of 40 kN and 

35 kN for the sparse and fine FE models, respectively. The initiation of cracking occurred at a slightly 

lower load level for the case of the model with the fine FE mesh. For both cases the crack patterns were 

flexure dominated and the failure mechanism was initiated when the longitudinal reinforcement located 

at the basis of the specimen yielded, following the failure of the shear panel compressive zone. The 

computational performance of the proposed model is depicted in Table 11.  
 

 

Table 10 RC Shear Panel Beam. Reinforcement percentage 

Region Direction 
Reinforcement Percentage 

Panel Ribs 

A x 0.92% 0.23% 

A y 0.92% 0.47% 

B x 1.83% 0.47% 

B y 0.92% 0.47% 
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Table 11. RC Shear Panel Beam. CPU time for the nonlinear solution procedure 

a/a Num. of Hexa8 Elements Load Increments CPU Time (sec) 

1 100  20 10 

2 100 50 15 

3 328 20 40 

4 328 50 60 

 
 

 

 

 

Fig. 40 RC Shear Panel Beam. Geometry and reinforcement details (Červenka 1970) 

 
 

 

 

Fig. 41 RC Shear Panel Beam. FE mesh with (a) 100 and (b) 328 concrete hexahedral elements; 

(c) 2D and (d) 3D views of the FE mesh for the reinforcement grid 
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Fig. 42 RC Shear Panel Beam. Experimental and predicted curves 

 

 
 

 

(a) (b) 

Fig. 43 RC Shear Panel Beam. Crack patterns for various load levels. (a) 100 and (b) 328 

hexahedral concrete elements 
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5. Limitations of the proposed modeling method 
 

The proposed modeling method uses the Kotsovos and Pavlovic material model which is 

presented in detail in Kotsovos and Pavlovic 1995. It is well known that this material model is not 

based on a thermodynamic framework in order to dissipate energy with a proper loading-reloading 

behavior (Bažant and Zdenek 1983). Nevertheless, its simplicity proved to be sufficient in 

predicting the nonlinear behavior of RC structural members (Kotsovos and Pavlovic 1995, 

Spiliopoulos and Lykidis 2006, Lykidis 2007, Cotsovos 2009) and promising, as illustrated in this 

research work, for the nonlinear analysis of full-scale RC structures. On the other hand, as Jiràsek 

and Rolshoven 2003 stated, in nonlocal constitutive theories the local state of the material at a 

given point may not be sufficient to evaluate the stress at that point. This is physically justified by 

the fact that no real material is an ideal continuous medium, and on a sufficiently small scale the 

effects of heterogeneity and discontinuity at the microstructure level become non negligible, 

especially for the case of highly heterogeneous composite materials, like concrete. Moreover, 

convergence difficulties and failure of capturing experimental results when using relatively sparse 

meshes make this type of models prohibitive for the analysis of full-scale RC structures. This 

confirms that each numerical model has its advantages and disadvantages, thus their incorporation 

in FE algorithms requires special handling. For an overview and discussion of various non-local 

plasticity formats (see Jiràsek and Rolshoven 2003). 

A second limitation of the proposed modeling method is the lack of taking into account the 

stiffening effect and the bond-slip phenomenon. The reason for this omission is that tension 

stiffening effect is not usually considered with detailed 3D modeling (see all relative references of 

Cervera et al. 1987, Kotsovos and Pavlovic 1995, Ozbolt and Li 2001, Girard and Bastien 2002, 

Hartl and Handel 2002, Mirzabozorg and Ghaemian 2005, Spiliopoulos and Lykidis 2006, Sato 

and Naganuma 2007, Červenka and Papanikolaou 2008, Papanikolaou and Kappos 2009, 

Červenka et al. 2008) and since the inclusion of a bond-slip model has an opposite effect to the 

tension stiffening, it was decided not to consider these phenomena at this stage. In addition to that, 

regarding the accuracy of the proposed modeling method, the bond-slip phenomenon, plays an 

important role for cases where the anchorage length of the reinforcement is insufficient. When 

slippage occurs, near and after the yielding of the reinforcement (Viwathenatepa et al. 1979), it 

affects the elongation of the cracks’ widths and the internal strain redistribution at the local regions 

where slippage takes place. It does not however affect the crack distribution, since crack formation 

takes place when reinforcement is still located in the elastic range. Nevertheless, at local level the 

internal redistribution of stress and strains is significantly affected near the ultimate state of the 

structure. 

As it was illustrated above, modeling of cracking with the smeared crack approach has the 

disadvantage the inaccurate modeling of the physical gap of the crack and the corresponding 

proper stress redistribution when cracking occurs. This is attributed to the fact that the same FE 

mesh is used throughout the analysis procedure thus the redistribution of the released internal 

forces is not performed with a physically correct manner. The outcome of this numerical feature is 

depicted in Fig. 43a and 43b where the predicted crack patterns differ in terms of their density thus 

the corresponding crack widths cannot be compared. Due to the nature of the smeared crack 

approach, cracks appear throughout the shear panel (Fig. 43b), failing to capture the uncracked 

areas in between the main flexural cracks as observed in the real experiment setup. A detailed 

discussion on the disadvantages of the smeared crack approach can be found in Bažant and Zdenek 
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1983 and Bažant and Oh 1983. It is important to note that the smeared crack method appears to be 

for the moment the only feasible approach Oliver 1989 and Markou 2011 in modeling RC full-

scale structures.  

Finally, the use of parameter β after a crack opening introduces an additional stiffness in the FE 

model, especially in cases of flexural dominated RC structural members. Early work presented by 

Cedolin and Dei 1977 concluded that the shear retention factor has to be computed through an 

objective manner thus they proposed its connection with the crack’s width. In this research work it 

was concluded that the crack width is not the main factor that should be considered for the 

activation of the shear retention stiffness. It is obvious that when a RC structural member is 

dominated by flexural cracks, the shear stiffness along the crack’s planes should not be activated 

since no shear deformations are formed. Therefore, a formulation based on the stress-strain field is 

more appropriate for assessing whether this parameter will be activated or not and for computing 

its corresponding value.  

It is important to note that the Kotsovos and Pavlovic material model was incorporated recently 

in ADINA (Bathe 1995), where a brief description of why phenomenological models are more 

preferable, especially when dealing with relatively large-scale models. As it is mentioned in there 

Tech Brief uploaded in there official website:  

“There is probably no single concrete material model now available that can be universally 

applied, efficiently in practice, to model any concrete material and under any loading conditions 

(namely static, slow dynamic and fast dynamic conditions). The microstructure of concrete 

materials is too complex. Hence, until such model is available and finite element programs can use  

the model efficiently in practical large-scale analyses, it is appropriate to offer a number of 

concrete models in a computing environment.” 

 
 
6. Conclusions 
 

A detailed finite element modeling of reinforced concrete structures is proposed with the 

following characteristics: 

(i) A mesh generation technique for the embedded reinforcement is implemented which can 

effectively allocate and generate embedded reinforcement elements inside hexahedral elements 

with an arbitrary positioning of the reinforcement. The objective was the reduction of the 

computational effort regarding the generation of the embedded reinforcement given a specific FE 

discretization for concrete. The computational efficiency of the proposed mesh generation method, 

when dealing with relatively large-scale problems with arbitrary reinforcement geometry, was 

shown through numerical experiments. 

(ii) An improved numerical handling of a 3D material concrete model for monotonic loading 

combined with a smeared crack model was implemented. The material model was applied to an 8-

noded hexahedral element with no restriction on the number of crack openings inside the load 

increment. 

(iii) The modeling of the reinforcement was performed with the use of a 2-noded flexibility-

based beam element, formulated with natural modes and the fiber approach. It was shown that the 

results obtained with rod elements for modeling the reinforcement do not lead to accurate 

numerical simulations especially for heavily reinforced concrete members. 

(iv) The implemented NBCFB element increases the stability of the nonlinear solution 

procedure through its physical characteristics. The numerical robustness exhibited by the proposed 
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modeling methodology is attributed to the following reasons: The nonlinear procedure for the 

calculation of the internal forces of the NBCFB element, the stability induced by the consideration 

of shear and bending stiffness of the NBCFB elements, the modification of the concrete material 

model and the handling of the stress redistribution due to cracking. 

The proposed modeling method managed to predict with adequate precision a number of 

experimental test results reported in the literature, illustrating its ability to predict failure loads, 

failure mechanisms and crack patterns with a high computational efficiency, regardless of the level 

of the load step of the incremental iterative nonlinear procedure. This is an important component 

when dealing with large-scale structures where the sensitivity on the required number of load 

increments applied during the analysis plays a crucial role in the feasibility of detailed finite 

element simulation of real-scale RC structures. 

 
 
Acknowledgements 
 

The financial support of the John Argyris Foundation (JAF) and the Research Funding 

Department (ELE) of NTUA provided to the first author is gratefully acknowledged. The author 

would like to acknowledge G. Stavroulakis for his contribution by providing the software code 

which was used during the pre-processing of the FE models and M. Fragiadakis and K. 

Papanikolopoulos for their helpful suggestions during the preparation of this work. Furthermore, 

they would like to acknowledge I. Lefas and V. Georgianou for providing the pictures of the crack 

patterns of the shear wall. 

 
 
References 
 
Argyris, J., Tenek, L. and Olofsson, L. (1997), “TRIC: a simple but sophisticated 3-node triangular element 

based on 6 rigid-body and 12 straining modes for fast computational simulations of arbitrary isotropic and 

laminated composite shells”, Comput. Methods Appl. Mech. Eng., 145, 11-85. 

Argyris, J.H., Balmer, H., Doltsinis, J.S., Dunne, P.C., Haase, M., Kleiber, M., Malejannakis, G.A., Mlejnek, 

H.P., Muller, M. and Scharf, D.W. (1979), “Finite element method - the natural approach”, Comput. 

Methods Appl. Mech. Eng., 17(18), 1-106. 

Argyris, J.H., Tenek, L. and Mattsson, A. (1998), “BEC: A 2-node fast converging shear-deformable 

isotropic and composite beam element based on 6 rigid-body and 6 straining modes”, Comput. Methods 

Appl. Mech. Eng., 152, 281-336. 

Armero, F. and Oller, S. (2000), “A general framework for continuum damage models. I. Infinitesimal 

plastic damage models in stress space”, Int. J. Solids Struct., 37(48-50), 7409-7436. 

Balan, T.A., Spacone, E. and Kwon, M. (2001), “A 3D hypoplastic model for cyclic analysis of concrete 

structures”, Eng. Struct., 23(4), 333-342. 

Barzegar, F. and Maddipudi, S. (1994), “Generating reinforcement in FE modeling of concrete structures”, J. 

Struct. Eng., 120, 1656-1662. 

Bathe, K.J. (1995), Finite Element Procedures, Prentice Hall Inc., Upper Saddle River, New Jersey, USA.  

Bažant, Z.P. and Oh, B.H. (1983), “Crack band theory for fracture of concrete”, Mater. Construct., 

16(3),155-177. 

Bažant, Z.P. and Zdenek, P. (1983), “Comment on orthotropic models for concrete and Geomaterials”, J. 

Eng. Mech., 109(3), 849-865. 

Bertero, V.V., Aktan, A., Charney, F. and Sause, R. (1985), “Earthquake simulator tests and associated 

experimental analytical and correlation studies of one-fifth scale model”, Earthq. Effects on Reinforced 

484



 

 

 

 

 

 

Computationally efficient 3D finite element modeling of RC structures 

Concrete Structures, ACI, SP, Detroit, 375-424. 

Borja, R.I., Sama, K.M. and Sanz, P.F. (2003), “On the numerical integration of three-invariant elastoplastic 

constitutive models”, Comput. Methods Appl. Mech. Eng., 192, 1227-1258. 

Bresel, B. and Scordelis, A.C. (1963), Shear strength of reinforced concrete beams, ACI J., 60, 51-74. 

Cedolin, L. and Dei, P.S. (1977), “Finite element studies of shear-critical R/C beams”, ASCE, J. Eng. Mech. 

Div., 103(3), 395-410. 

Červenka, J. and Papanikolaou, V.K. (2008), “Three dimensional combined fracture-plastic material model 

for concrete”, Int. J. Plasticity, 24(12), 2192-2220. 

Červenka, V. (1970), Inelastic finite element analysis of reinforced concrete panels under plane loads, Ph.D., 

University of Colorado, University Microfilms, Inc., Michigan. 

Červenka, V., Jendele, L., Červenka, J. (2008), ATENA program documentation. Part 1: Theory, Červenka 

Consulting, Prague, Czech Republic. 

Cervera, M., Hinton, E. and Hassan, O. (1987), “Nonlinear Analysis of RC plate and shell structures using 

20-noded isoparametric brick elements”, Comput. Struct., 25, 845-869. 

Ciampi, V. and Nicoletti, M. (1986), “Parameter identification for cyclic constitutive models with stiffness 

and strength degradation”, Procceding of the 8th European Conference on Earthquake Engineering, 

Lisbon. 

Clough, R.W., Benuska, K.L. and Wilson, E.L. (1965), “Inelastic earthquake response of tall buildings”, 

Proceeding of the 3th World Conference on Earthquake Engineering, New Zealand, 11, New Zealand. 

Cotsovos,, D.M., Zeris, C.A. and Abas, A.A. (2009), “Finite Element Modeling of Structural Concrete”, 

ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake 

Engineering, COMPDYN 2009, Rhodes, Greece. 

Darwin, D. and Pecknold, D.A. (1976), “Analysis of RC shear panels under cyclic loading”, J. Struct. Div., 

ASCE, 102(2), 355-369. 

Desmorat, R., Gatuingt, F. and Ragueneau, F. (2007), “Nonlocal anisotropic damage model and related 

computational aspects for quasi-brittle materials”, Eng. Fracture Mech., 74(10), 1539-1560. 

Elwi, A.E. and Hrudey, T.M. (1989), “Finite element model for curved embedded reinforcement”, J. Eng. 

Mech., 115, 740-754. 

Fardis, M.N., Alibe, B. and Tasoulas, J.L. (1983), “Monotonic and cyclic constitutive law for concrete”, J. 

Eng. Mech., ASCE, 109, 516-536. 

Girard, C. and Bastien, J. (2002), “Finite element bond slip model for concrete columns under cyclic loads”, 

J. Struct. Eng., ASCE, 128, 1502-1510. 

Gonzalez-Vidosa, F., Kotsovos, M.D. and Pavlovic, M.N. (1988), “On the numerical instability of the 

smeared-crack approach in the nonlinear modeling of concrete structures”, Commun. Appl. Num. Meth. 

Engng, 4, 799-806. 

Gonzalez-Vidosa, F., Kotsovos, M.D. and Pavlovic, M.N. (1991), “A three-dimensional nonlinear finite-

element model for structural concrete; Part 1: main features and objectivity study and Part 2: generality 

study”, Proceedings of the Institution of Civil Engineers, Part 2, Research and Theory, 91, 517-544. 

Hartl, H. and Handel, C.H. (2002), “3D finite element modeling of reinforced concrete structures”, fib 2002, 

Osaka Congress, Japan. 

Ile, N. and Reynouard, J.M. (2000), “Nonlinear analysis of reinforced concrete shear wall under earthquake 

loading”, J. Earthq. Eng., 4(2), 183-213. 

Jason, L., Huerta, A., Pijaudier-Cabot, G. and Ghavamian, S. (2006), “An elastic plastic damage formulation 

for concrete: Application to elementary tests and comparison with an isotropic damage model”, Comput. 

Methods Appl. Mech. Eng., 195(52), 7077-7092. 

Jendele, L. and Červenka, J. (2009), “On the solution of multi-point constraints – Application to FE analysis 

of reinforced concrete structures”, Comput. Struct., 87, 970-980. 

Jiràsek, M. and Rolshoven, S. (2003), “Comparison of integral-type nonlocal plasticity models for strain-

softening materials”, Int. J. Eng. Sci., 41, 1553–1602. 

Kolleger, J. and Mehlhorn, G. (1987), “Material model for cracked reinforced concrete”, IABSE Colloquium 

on Computational Mechanics of Concrete Structures–Advances and Applications, Delft, 63-74. 

485



 

 

 

 

 

 

George Markou and Manolis Papadrakakis 

Kotsovos, M.D. (1979), “A mathematical description of the strength properties of concrete under generalized 

stress”, Mag. Concrete Res., 31(108), 151-158. 

Kotsovos, M.D. (1983), “Effect of Testing Techniques on the Post-Ultimate Behavior of Concrete in 

Compression”, Mater. Struct., RILEM, 16(91), 3-12. 

Kotsovos, M.D. (1984), “Concrete. A brittle fracturing material”, RILEM Mater. Struct., 17, 107-115. 

Kotsovos, M.D. and Pavlovic, M.N. (1995), Structural concrete. Finite Element Analysis for Limit State 

Design, Thomas Telford, London. 

Kwak, H.G. and Kim, D.Y. (2001), “Nonlinear analysis of RC shear walls considering tension-stiffening 

effect”, Comput. Struct., 79, 499-517. 

Kwak, H.G. and Kim, D.Y. (2001), “Nonlinear analysis of RC shear walls considering tension-stiffening 

effect”, Comput. Struct., 79, 499-517. 

Kwak, H.G. and Kim, D.Y. (2004), “Material nonlinear analysis of RC shear walls subject to cyclic 

loadings”, Eng. Struct., 26, 1423-1436. 

Kwak, H.G. and Kim, D.Y. (2006), “Cracking behavior of RC panels subject to biaxial tensile stresses”, 

Comput. Struct., 84, 305-317. 

Kwan, W.P. and Billington, S.L. (2001), “Simulation of structural concrete under cyclic load”, J. Struct. 

Eng., 127, 1391-1401. 

Lee, J. and Fenves, G.L. (2001), “A return-mapping algorithm for plastic-damage models: 3D and plane 

stress formulation”, Int. J. Numer. Methods Eng., 50(2), 487-506. 

Lefas, I. (1988), Behavior of reinforced concrete walls and its implication for ultimate limit state design, 

Ph.D., University of London. 

Lefas, I.D. and Kotsovos, M.D. (1990), “Strength and deformation characteristics of reinforced concrete 

walls under load reversals”, ACI Struct. J., 87(6), 716-726. 

Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), “A plastic-damage model for concrete”, Int. J. Solids 

Struct., 3, 299-326. 

Lykidis, G. (2007), Static and dynamic analysis of reinforced concrete structures with 3D finite elements and 

the smeared crack approach, Ph.D. Thesis, NTUA, Greece. 

Markou, G. (2010), ReConAn v1.00. Finite Element Analysis Software Manual, Institute of Structural 

Analysis and Seismic Research, Technical University of Athens, Greece. 

Markou, G. (2011), Detailed Three-Dimensional Nonlinear Hybrid Simulation for the Analysis of Large-

Scale Reinforced Concrete Structures, Ph.D. Thesis, National Technical University of Athens.  

Markou, G. and Papadrakakis, M. (2012), “An efficient generation method of embedded reinforcement in 

hexahedral elements for reinforced concrete simulations”, Adv. Eng. Soft. ADES, 45(1), 175-187. 

Mazars, J., Kotronis, P., Ragueneau, F. and Casaux, G. (2006), “Using multifiber beams to account for shear 

and torsion. Applications to concrete structural elements”, Comput. Mathod Appl. Mech., 195, 7264-7281. 

Mazars, J., Ragueneau, F., Casaux, G., Colombo, A. and Kotronis, P. (2004), “Numerical modeling for 

earthquake engineering: the case of lightly RC structural walls”, Int. J. Numer. Anal. Methods Geom., 28, 

857-874. 

Menegotto, M. and Pinto, P.E. (1973), “Method of analysis for cyclically loaded reinforced concrete plane 

frames Including changes in geometry and non-elastic behavior of elements under combined normal force 

and bending”, Proceedings, IABSE Symposium on Resistance and Ultimate Deformability of Structures 

Acted on by Well Defined Repeated Loads, Lisbon. 

Mergos, P.E. and Kappos, A.J. (2008), “A distributed shear and flexural flexibility model with shear–flexure 

interaction for R/C members subjected to seismic loading”, Earthq. Eng. Struct. Dyn., 37 1349-1370. 

Mirzabozorg, H. and Ghaemian, M. (2005), “Nonlinear behavior of mass concrete in 3d problems using a 

smeared crack approach”, Earthq. Eng. Struct. Dyn., 34, 247-269. 

Mitchell, W.F. (1997), “A Fortran 90 Interface for OpenGL”, NISTIR 5985. 

Navarro, G.J., Miguel, S.P., Fernandez, P.M.A. and Filippou, F.C. (2007), “A 3D numerical model for 

reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion 

loading”, Eng. Struct., 29, 3404-3419. 

Nechnech, W., Meftah, F. and Reynouard, J.M. (2002), “An elasto-plastic damage model for plain concrete 

486



 

 

 

 

 

 

Computationally efficient 3D finite element modeling of RC structures 

subjected to high temperatures”, Eng. Struct., 24(5) 597-611. 

Oliver, J., Linero, D.L., Huespe, A.E. and Manzoli, O.L. (2008), “Two-dimensional modeling of material 

failure in reinforced concrete by means of a continuum strong discontinuity approach”, Comput. Methods 

Appl. Mech. Eng., 197, 332-348. 

Oliver, J. (1989), “Consistent characteristic length for smeared cracking models”, Int. J. Numer. Methods 

Eng., 28(2), 461-474. 

Ozbolt, J. and Li, Y.J. (2001), “Three dimensional cyclic analysis of compressive diagonal shear failure”, 

Finite Element Anal. RC Struct., Eds. (Willam, K., Tanabe, T.), ACI, SP, 205(4) , 61-79. 

Papachristidis, A., Fragiadakis, M., and Papadrakakis, M. (2009), “A shear-deformable fiber beam-column 

element for seismic analysis of steel structures”, Computational Methods in Structural Dynamics and 

Earthquake Engineering (COMPDYN), Rhodes. 

Papachristidis, A., Fragiadakis, M., and Papadrakakis, M. (2010), “A 3D fibre beam-column element with 

shear modeling for the inelastic analysis of steel structures”, Comput. Mech., 45(6), 553-572. 

Papaioannou, I., Fragiadakis, M. and Papadrakakis, M. (2005), “Inelastic analysis of framed structures using 

the fiber approach”, Proceeding of the 5th International Congress on Computational Mechanics, GRACM 

05, Limassol, Cyprus, 1, 231-238. 

Papanikolaou, V.K. and Kappos, A.J. (2009), “Numerical study of confinement effectiveness in solid and 

hollow reinforced concrete bridge piers: Part 1: Methodology”, Eng. Struct., 87(21-22), 1427-1439. 

Papanikolaou, V.K. and Kappos, A.J. (2009), “Numerical study of confinement effectiveness in solid and 

hollow reinforced concrete bridge piers: Part 2: Analysis results and discussion”, Eng. Struct., 87(21-22), 

1427-1439. 

Papanikolopoulos, K. (2003), Investigation of the non-linear behavior of reinforced concrete members with 

finite elements, Postgraduate Thesis, National Technical University of Athens, Athens. 

Park, H. and Kim, J.Y. (2005), “Hybrid plasticity model for reinforced concrete in shear”, Eng. Struct., 27, 

35-48.  

Rashid, Y.M. (1968), “Ultimate strength analysis of prestressed concrete vessels”, Nucl. Eng. Des., 7, 334-

344. 

Saritas, A. and Filippou, F.C. (2009), “Numerical integration of a class of 3d plastic-damage concrete 

models and condensation of 3d stress-strain relations for use in beam finite elements”, Eng. Stuct., 31(10), 

2327-2336. 

Sato, Y. and Naganuma, K. (2007), “Discrete-like crack simulation by smeared crack-based FEM for 

reinforced concrete”, Earthq. Eng. Struct. Dyn., 36, 2137-2152. 

Siemens PLM Software (2009), World-class finite element analysis (FEA) solution for the Windows 

desktop, Siemens Product Lifecycle Management Software Inc. 

Simo, J.C. and Ju, J.W. (1987), “Strain-based and stress-based continuum damage models.1. formulation”, 

Int. J. Solids Struct., 23(7), 821-840. 

Spacone, E., Filippou, F.C. and Taucer, F.F. (1996), “Fibre beam-clumn model for nonlinear analysis of R/C 

frames Part I: formulation”, Earthq. Eng. Struct. Dyn., 25, 711-725. 

Spiliopoulos, K.V. and Lykidis, G. (2006), “An efficient three-dimensional solid finite element dynamic 

analysis of reinforced concrete structures”, Earthq. Eng. Struct. Dyn., 35, 137-157. 

Takizawa, H. (1976), “Notes on some basic problems in inelastic analysis or planar RC structures”, Trans. 

Arch. Inst. Japan, 240, Part I, 51-62, Part II, 65-77. 

Taucer, F.F., Spacone, E. and Filippou, F.C. (1991), A Fiber beam-column element for seismic response 

analysis of reinforced concrete structures, Report No. UCB/EERC-91/17, University of California, 

Berkeley. 

Van, Mier, J.G.M. (1986), “Multiaxial strain-softening of concrete”, Mater. Struct., RILEM, 19(111), 179-

200. 

Van Mier, J.G.M., Shah, S.P., Arnaud, M., Balayssac, J.P., Bassoul, A., Choi, S., Dasenbrock, D., Ferrara, G., 

French, C., Gobbi, M.E., Karihaloo, B.L., Konig, G., Kotsovos, M.D., Labnz, J., Lange-Kornbak, D., 

Markeset, G., Pavlovic, M.N., Simsch, G., Thienel, K.C., Turatsinze, A., Ulmer M., van Vliet, M.R.A. and 

Zissopoulos, D. (1997), “Test methods for the strain-softening of concrete), Strain-softening of concrete in 

487



 

 

 

 

 

 

George Markou and Manolis Papadrakakis 

uniaxial compression”, Mater. Struct., RILEM, 30(198), 195-209. 

Viwathenatepa, S., Popov, E.P. and Bertero, V.V. (1979), Effects of Generalized Loadings on Bond of 

Reinforcing Bars Embedded in Confined Concreteblocks, Report to National Science Foundation, 

University of California Berkeley, California. 

Zeris, C.A. and Mahin, S. (1988), “Analysis of reinforced concrete beam-columns under uniaxial 

excitation”, J. Struct. Eng., ASCE, 114(4), 804-820. 

 

 

CC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

488



 

 

 

 

 

 

Computationally efficient 3D finite element modeling of RC structures 

Appendix A. 

 

The algebraic algorithm for the computation of a line-plane intersection will be presented. A 

plane can be represented by the equation 

0Ax By Cz D                                 (A1) 

where (x, y, z) represent the coordinates of any point that lies on the plane. 

Assuming that point P1 and P2 with coordinates (x1, y1, z1) and (x2, y2, z2), are two points 

defining the line, then the equation of the line can be written as 

 1 2 1P P P P  
                              (A2) 

By substituting Eq. (A2) into Eq. (A1) results 

         1  2  1 1   2  1 1   2  1 0A x x x B y y y C z z z D           
    (A3) 

and by solving for λ 

     
1 1 1

1  2 1  2 1  2

A x B y C z D

A x x B y y C z z


     


    
                    (A4) 

There are two cases that we have to take under consideration regarding the value of λ. The first 

case is when this value is equal to zero which means that the normal of the plane is perpendicular 

to the line, therefore there is no intersection between them (Fig. Ab). If λ is not equal to zero then 

there is an intersection between the line and the plane which is computed by substituting the 

expression of λ into Eq. (A2) (Fig. A(a)). 

In addition to that, we have to check if the line is located on the plane. This can be easily 

performed by substituting the coordinates of the two points of the line into the equation of the 

plane (Eq. A(1). If both coordinates satisfy the equation of the plane it means that the line is 

located on the p)lane (Fig. A(c)). 

 

 

 
(a) (b) (c) 

 Fig. A Line-plane (a) intersection, (b) no intersection and (c) line is located on the plane 
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Appendix B. 

 

The Barzegar and Maddipudi 1994 procedure for computing the natural coordinates of a virtual 

embedded rebar element node inside hexahedral concrete elements is described in this Appendix. 

A point P1 with global coordinates (x, y, z)P1 on the initial rebar mesh (Fig. B), is contained in a 

given concrete element if its natural coordinates ξP1, εP1, δP1 satisfy the constraint 

1 1 1
, , 1P P P                                     (B1) 

associated with this particular hexahedral element. 

In the isoparametric formulation the global coordinates (x, y, z) of a generic point within a solid 

element are expressed as 

i

i

i

x

y

z

     
    

    
         

N 0 0 x

0 N 0 y

0 0 N z

                            (B2) 

where xi, yi, zi are the global coordinate vectors of the hexahedral nodes and N represents the row 

vector of the displacement-shape functions. 

Given that the natural coordinates (ξ, ε, δ)P1 are the roots of  

1P

x

y

z

     
    

     
         

N 0 0 x

0 N 0 y 0

0 0 N z

                          (B3) 

a NR iterative procedure is required in order to compute the solution of the above equation as 

follows 

1 1 1

1 1n n n

P P P

  

  

  

 
     

     
       

          

                            (B4) 

Since  

 
1

T

d dx

d dy

d dz









   
   

   
   
   

J                                (B5) 

where J is the Jacobian matrix, the incremental natural coordinates are computed from 
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 Fig. B Embedded reinforcement in hexahedral concrete element 

 

 
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1

1
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z
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






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N 0 0 x

J 0 N 0 y

0 0 N z

                 (B6) 

with    , , ;     , ,n n n n n n n n      J J N N . 

Barzegar and Maddipudi 1994 found that the preceding solution scheme has a high 

convergence ratio which was also confirmed in this study. If the converged values do not satisfy 

(Eq. B1), the procedure proceeds to the next hexahedral element so as to check if the geometric 

constraint is satisfied (Eq. 7).  
 

 

Appendix C. 

The incremental-iterative nonlinear procedure for load increment k and NR iteration i can be 

described as follows: 

 

1) Initialization.  

Initialize all required variables including k = 1, i = 1. 

2) Solve the global equation system and update the nodal displacement increments. 

       
1

1 1

. .
i i i i

k k k k k k

structure structure 


 

 
      
  

P = K ρ ρ K P
              (C1) 

If the NR iteration is greater than 1, then Δ𝑷Ε
𝑘  corresponds to the unbalanced load vector 

 𝑷𝑼
𝒌 

𝒊−𝟏
 from the previous iteration. A check is performed if an update of the stiffness matrix is 

required before proceeding to the displacement calculation. 

The calculated structural incremental displacements  𝛿𝛥𝝆𝑘 
𝑖

 are added to the total 

displacement increments  𝛥𝝆𝑘 
𝑖−1

 of iteration i-1 to obtain the new displacement increment 
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 𝛥𝝆𝑘 
𝑖
 for iteration i inside the k-th load step 

     
1i i i

k k k


    ρ ρ ρ                             (C2) 

 

3) Compute the elements deformation increments. 
By using the connection matrix αN and the direction cosine matrix T04 the change in the element 

deformation increments which remain constant during loop j, is computed from the displacement 

increments. 

   04
(6 12) (12 12)(6 1) (12 1)

. .
i i

k k

N
x xx x

   q a T ρ                            (C3) 

 

4) Start the element state determination. 
Set j = 1. 

 

5) Compute the change in the element force increment. 

For j = 1 the incremental force vector   𝛿𝛥𝑸𝑘 
𝑖
 

1

 at load step k and iteration i is obtained 

from the element displacement increments  𝛿𝛥𝒒𝑘 
𝑖
 for the current NR iteration i using the 

element natural stiffness matrix 

      
1

1

(6 6) (6 1)
(6 1)

.
i i i

k k k

N

x x
x

 


  Q K q                             (C4) 

For j > 1   𝛿𝛥𝑸𝑘 
𝑖
 
𝑗

 is obtained from the residual element deformation   𝒔𝑘 
𝑖
 
𝑗−1

 at the 

end of the previous element iteration j-1 and the corresponding element natural stiffness matrix. 

        
1 1

(6 1) (6 6) (6 1)

.
j j j

i i i
k k k

N

x x x


 

 Q K s                           (C5) 

where  

    
1

1

0(6 1)

Lj
i

k T j

x

d 


 s b r                             (C6) 

6) Update the element force increments and element resisting forces 

The incremental force vector inside k-th load step, i-th iteration and j-th loop is updated as 

        
1

(6 1) (6 1) (6 1)

j j j
i i i

k k k

x x x




    Q Q Q                        (C7) 
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and the current element resisting forces are calculated by adding the element force increments to 

the resisting force vector Q
k-1

 of the previous load step k-1 

     1

(6 1)
(6 1) (6 1)

j j
i i

k k k

x
x x

  Q Q Q                            (C8) 

 

7) Compute the section force increments. 
The elements section force increments are computed by using the interpolation functions b(ξ) 

defined at each Gauss-Lobato integration point as follows 

        
(3 6)

(3 1)
(6 1)

.
j j

i i
k k

x
x

x

     D b Q

                        (C9) 

           
1

(3 1) (3 1) (3 1)

j j j
i i i

k k k

x x x

   


    D D D

                 (C10) 

and the total section forces by 

         1

(3 1)
(3 1) (3 1)

j j
i i

k k k

x
x x

    D D D

  

                    (C11) 

 

8) Compute the change in section deformation increments. 

The change in the section deformation increments   𝛿𝛥𝒅𝑘(𝜉) 
𝑖
 
𝑗

 is computed from 

                    
1 1 1 1

(3 6)
(3 1) (3 1) (3 3) (6 6) (6 1)

.
j j j j j

i i i i i
k k k k k

N

x
x x x x x
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   

  d r f b Κ s       (C12) 

           
1

(3 1) (3 1) (3 1)

j j j
i i i

k k k

x x x

   


    d d d

                   (C13) 

 

9) Compute the fiber deformation increments. 
The fiber deformation increments are computed using the section compatibility matrix l(x) and 

the deformation increments as follows 

         
(1 3)

(1 1) (3 1)

.
j j

i i
k k

x
x x

x     e l d

                       (C14) 

then 
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           
1

(1 1) (1 1) (1 1)

j j j
i i i

k k k

x x x

   


    e e e

                (C15) 

and the fiber deformations are updated by 

           1

(1 1)
(1 1) (1 1)

j j
i i

k k k

x
x x

    e e e                         (C16) 

 

10) Compute fiber stresses and update the tangent modulus of the fibers. 
From the current fiber deformations of Eq. (C16), the fiber material model will provide the 

fiber normal stresses and the updated Young modulus of each fiber.  

 

11) Compute the section tangent stiffness and flexibility matrices. 
With the help of Eq. (17) the calculation of the current section tangent (or elastic) stiffness 

matrix   𝑘𝑘 𝜉  
𝑖
 
𝑗

 is performed following the estimation of the Young modulus for each fiber 

from step 10. Then the section flexibility matrix is obtained from 

         1

(1 1)
(1 1) (1 1)

j j
i i

k k k

x
x x

    e e e                        (C17) 

 

12) Compute the section resisting forces. 

The section internal resisting forces are derived explicitly from the fiber stresses according to 

Eq. (23). 

 

13) Compute the sections unbalanced forces. 

The difference between external applied loads and resisting forces results in the section 

unbalanced forces. 

           
(3 1) (3 1) (3 1)

j j j
i i i

k k k

U R

x x x

   D D D                       (C18) 

 

14) Compute the residual section deformations. 

           
(3 1) (3 3) (3 1)

.
j j j

i i i
k k k

U

x x x

  r f D                      (C19) 

 

 

15) Compute the element flexibility matrices. 
The element flexibility matrix is computed by numerical integration on the beam section 
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following the Gauss-Lobato integration formula 

          
. .sec

sec sec sec sec

(6 3) (3 6)sec 1
(6 6) (3 3)

. . .
tot numj j

i i
k T k

i i i i

x xi
x x

w   


 
 
 
 

F b f b

              (C20) 

where tot.num.sec is the total number of Gauss-Lobato integration points (total number of control 

sections), ξisec is the natural coordinate of the section along the beam length and wisec is the 

corresponding weight factor.  

Finally, the element stiffness matrix is obtained by inverting the flexibility matrix   
(5 5)

j
i

k

x

F  

     
1

(5 5)
(5 5)

j j
i i

k k

x
x



 
  
 

K F
                             (C21) 

while the main diagonal stiffness coefficient   (6,6)
j

i
kK  which corresponds to the torsional 

stiffness, is given by 

  (6,6)
j

i
k PGJ

L
K

                              (C22) 

 

16) Check for element convergence. 
The convergence criterion that was implemented in this work was an energy-based criterion 

given by 

       

     
1

. .

. .

k

k

T jj jii i
k k

iT
k k

error

   
     
 

  
 

s K s

q K q

                       (C23) 

where s
k
 is the residual element deformation and the tolerance was set to 10

-16 
(Taucer 1991). 

        
. .sec

sec sec sec

(6 3)sec 1
(6 1) (3 1)

. .
tot numj j

i i
k T k

i i i

xi
x x

weight  


 
 
 
 

s b r

              (C24) 

If the convergence criterion is satisfied then proceed to the next step, otherwise return to step 5 

and increase j by 1. 

 

17) Compute the resisting forces of each element and the internal forces of the structure.  
When the equilibrium conditions are satisfied for all NBCFB elements, the i-th NR iteration is 
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completed regarding the calculation of the internal forces at structural level. The internal forces of 

the structure  𝑷𝑅
𝑘  

𝑖
 are calculated by assembling all element internal forces 𝑸𝑒𝑙𝑒

𝑘  
𝑖
 (Eq. C8) 

according to the expression 

   04
(12 12) (12 6)(12 1) (6 1)

. . ,
i i

k T T k

ele n ele
x xx x

P = T a Q

                        (C25a) 

then 

   
.

1

num ele
i i

k k

R iele

iele

 P P                             (C25b) 

 

18) Update structure’s stiffness matrix. 
The structural stiffness matrix is updated by assembling the element stiffness matrices 

   04 04
(12 12) (12 6) (6 12) (12 12)(12 12) (6 6)

. . . . ,
i i

k T T k

ele n N n
x x x xx x

K = T a K a T                     (C26a) 

then 

   
.

1

num ele
i i

k k

S ele

iele

 K K                             (C27b) 

 

19) Compute the unbalanced forces of the structure. 

   
i i

k k k

U R P P P                              (C28) 

where 
k

P  is the total applied load at load increment k 

1k k k

E E

 P P P                                (C29) 

 

20) Check for global convergence. 
If the convergence criterion is satisfied at the structural level, then k=k+1 and proceed to the 

next load increment, otherwise set i = i +1 and return to step 2 for the i+1 NR iteration. In this 

work, an energy based convergence criterion was used with tolerance 10
-4

. 

It is obvious that, the use of NBCFB elements for the simulation of the reinforcement is 

penalized with an increased computational effort compared to the much simpler rod element. The 

computational effort depends on the number of fibers and Gauss-Lobato integration points used for 

the calculation of the stiffness matrix. Following a numerical parametric investigation it was 

concluded that 2 to 3 Gauss-Lobato integration points along the axis of the element combined with 

4 fibers per section (Fig. 15), are adequate for ensuring both numerical accuracy and 
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computational efficiency. It is important to note that, the combination of the natural mode 

formulation (Argyris et al. 1998) with the force-based approach provides an elegant framework for 

the calculation of the stiffness matrix with substantial savings in the required CPU time 

(Papaioannou et al. 2005, Papachristidis et al. 2009, 2010). 

 
 

Appendix D. 

 

In order to estimate the translational modes π as functions of the displacements and rotations at 

vertices 1, 2 and 3 of a triangle (Fig. 3), it is assumed that the linear displacement field with 

respect to the local elemental coordinates can be described as 

1 2 1 2,    υ ,   wo o ou p p x p y q q x q y r                       (D1) 

where 𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖  are the displacements referred to the local coordinate system. If the origin of the 

local coordinate system is placed at the element’s barycenter, Eqs. 1 may be written in the form 

1 2 3 1 2 3 1 2 33 ,    υ υ υ 3 ,    3o o ou u u p q w w w r                    (D2) 

The rigid body drilling rotation ρ06 is given by 

 06 1 2

1 1

2 2

u
q p

x y




  
    

  
                        (D3) 

If we write Eqs. D1 for every vertex, the quantity in Eq. (D3) becomes 

 06 1 1 2 1 3 3

1

2
a ax u y x u y x u y            


              (D4) 

where  

3 2 1 3 2 1 3 2 1 3 2 1,    ,    ,    ,    ,    x x x x x x x x x y y y y y y y y y                
 (D5) 

and xi, yi (i = 1, 3 master triangle nodes) are the local Cartesian nodal coordinates of the triangle 

(Fig. 3) while Ω is the area of the triangle. Then the relation between the rigid body rotations π04, 

π05 and the Cartesian coordinates of the triangle vertices need to be defined. For this purpose the 

rotation ζ1 of the triangle along the side 23, as depicted in Fig. 3, is given by 

11
1

2

a

a

w lw

h
  


                               (D6) 

and its two components, which project to the local Cartesian axes, are given by 

1 1 1 1 1 1 1 1cos ,    sin
2 2

a a a a
x x y y

a a

x x y y
a w a w

l l
          

 
         (D7) 
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Similarly 

2 2 3 3 2 2 3 3,    ,    ,    
2 2 2 2

x x y y

x x y y
w w w w

   
      

   
          (D8) 

Therefore, the rigid-body rotations π04, π05 are simply 

04 1 2 3 05 1 2 3,    x x x y y y                              (D9) 

04 1 2 3 05 1 2 3,    
2 2 2 2 2 2

a a
x x y yx y

w w w w w w
   

      
     

         (D10) 

The above equations can be expressed in matrix form 

 

     

 

04

05 1 2 3
3 3 3 3 3 3

06

3 1 9 1

j j j

x x x

x x







   
    

    
    

   

x

R R R y

z

                       (D11) 

     
1 2 3

3 3 3 3 3 3

0 0 0 00 0
2 22

0 0 , 0 0 , 0 0
2 2 2

0 0 0
2 2 2 2 2 2

a

j j ja

x x x

a a

x xx

y yy

x y x y x y

 

 

   

    
           
    

            
    

                      

R R R
     (D12) 

and j = 1, 2 corresponds to the embeddedrebar beam nodes and Ω is the area of the corresponding 

master triangle. x, y, z are the translational displacement vectors of the master triangle. 

These local rotation matrices are transformed to the 𝑹𝑚
𝑗

 in the global coordinate system using 

the standard cosine transformation matrix in 3D.  

       3 3 3 3 3 3 3 3

j T j

m o m o
x x x x

R T R T                                (D13) 

Then for each master triangle the computation of the transformation matrix T (12x24) of Eq. 

(2), which is used to connect the hexahedral nodal displacements with the corresponding 

embedded beam nodal displacements (Eq. (1)), is completed. 
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