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Abstract.  This paper aims to contribute to the three-dimensional generalization of numerical prediction of 
crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of 
crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a 
relatively simple way through the sequential construction of straight line segments oriented according to the 
direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of 
the discontinuity path is more complex because it requires the creation of plane surfaces within each 
element, which must be continuous between the elements. In the method proposed by Chaves (2003) the 
crack is determined by solving a problem analogous to the heat conduction problem, established from local 
failure orientations, based on the stress state of the mechanical problem. To minimize the computational 
effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is 
restricted to the domain formed by some elements near the crack surface that develops along the loading 
process. The proposed methodology is validated by performing three-dimensional analyses of basic 
problems of experimental fractures and comparing their results with those reported in the literature. 
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1. Introduction 
 

Progress has been made in the search for methodologies that are able to describe the path of 

discontinuities in quasi-brittle materials without the need to adapt the finite element grid as the 

crack advances. The existing techniques include Enriched Finite Element Methods, which can be 

divided into two groups (Oliver et al. 2006). One of these is Element Enrichment, which 

comprises finite elements with embedded discontinuities based on enrichment of the displacement 

field of each element to represent the effects of the discontinuity that passes through it, known as 

E-FEM and originally described by Ortiz et al. (1987). The second group is that of Nodal 

Enrichment, comprising generalized or extended finite elements (X-FEM), which is based on the 

enrichment of the interpolation functions associated with existing nodes and was first proposed by 

Melenk and Babuska (1996). 

For both types of enrichment to represent the effect of the crack inside the finite element, it is 

                                           

Corresponding author, Professor, E-mail: khkwan@hku.hk 

mailto:khkwan@hku.hk


 

 

 

 

 

 

O.L. Manzoli, G.K.S. Claro, E.A. Rodrigues and J.A. Lopes Jr. 

necessary to use algorithms that track its path. Jäger et al. (2008) classify these algorithms into 

fixed crack tracking, local crack tracking, non-local crack tracking, and global crack tracking 

schemes. 

The simplest of these algorithms is the fixed crack path tracking scheme, for which the crack 

path must be known a priori. In this case, the path is no longer an unknown component in the 

problem and the elements traversed by the potential crack surface, as well as its position inside 

each of these elements, are previously defined. Therefore, during the loading process, the elements 

of this set may fail, i.e., their discontinuity surface may be activated as the stresses approach the 

failure criterion. Since the potential failure surface defined a priori is continuous between finite 

elements, the final active surface will also be continuous. The analysis in this case will undergo 

interference only from the order in which the elements crossed by the potential failure surface are 

activated as a function of the load level, since the path remains unchanged. According to Jäger et 

al. (2008), from the computational standpoint, this algorithm is particularly robust and stable. 

The local crack tracking scheme can be interpreted as the generalization to three-dimensional 

fractures of the algorithm presented by Manzoli (1998). According to this technique, the crack 

essentially extends from points of discontinuity in elements adjacent to the element with the active 

crack and follows in the normal direction of the maximum principal stress. Since this concept 

could, eventually, yield irregular and discontinuous surfaces, Areias and Belytschko (2001) 

suggested adjusting the normal failure plane based on the intersection points of the crack of the 

neighboring element with the element containing the active failure.  

Another existing technique is the non-local crack tracking scheme, which calculates the mean 

direction of the failure plane along a neighborhood. Gasser and Holzapfel (2006) affirm that, on 

average, the discontinuous surface thus generated is regular. In other words, the vector normal to 

the crack plane, which is calculated from the direction of the maximum principal stress, is not only 

adapted to the points of the neighboring elements. Instead, the method also takes into account the 

information of all the crack points inside a sphere around the center of the analyzed element. 

Although this is a theoretically elegant methodology, it is very inconvenient to include it in 

existing finite element codes. 

Lastly, there is the global crack tracking scheme, which presents a specific finite element 

solution for a crack problem, characterized by an additional unknown scalar value, which defines 

one or multiple crack surfaces as isosurfaces. The purpose of this proposed algorithm by Oliver 

and Huespe (2004) is to find a scalar field 𝜃(𝒙, 𝑡) so that isovalue surfaces become potential 

discontinuity surfaces. Therefore, the vector field given by the vectors normal to isovalue 

surfaces, 𝜃,𝜵𝜃, should coincide with the vector fields normal to the potential failure surface, 

which are established by the failure criterion calculated from the stresses (or strains) of the 

mechanical problem.  

The global crack path tracking methodology involves high computational effort, since it 

requires solving an additional global system of equations besides the one pertaining to the 

mechanical problem. Nevertheless, the methodology is easy to include in existing finite element 

programs, and is more flexible and stable than the other crack path tracking strategies. 

In this work, the element enrichment method was adopted as a tool to predict the behavior of 

the crack inside the finite element. An extension for three-dimensional problems of the embedded 

discontinuity finite element proposed by Manzoli and Shing (2006) and Manzoli (2008) is used.  
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(a) (b) 

Fig. 1 (a) Three-dimensional element, (b) relative displacements due to the discontinuity, with 

one isolated node 

 
 
2. Finite elements with embedded discontinuities 
 

Let the four-node tetrahedral element of the three-dimensional domain 𝛺𝑒  containing a 

discontinuous surface, S , be such that it divides the element into two parts, isolating one or two 

nodes from the others. Let n = {nx ny nz}
T
 be the unitary vector normal to the surface, S , and m = 

{mx my mz}
T
 the unitary vector corresponding to the gradient of the sum of the shape functions of 

the isolated nodes (one or two, depending on the position of the crack in the element). Note that if 

there is only one isolated node, 𝒎 corresponds to a vector normal to the opposite side of the 

single node, as shown in Fig. 1(b). 

The discontinuity causes a relative displacement of the isolated node in relation to the others, as 

illustrated in Fig. 1 and expressed by 

𝒅1
𝑅 =  𝒖                                   (1a) 

𝒅2
𝑅 = 𝟎                                   (1b) 

𝒅3
𝑅 = 𝟎                                   (1c) 

𝒅4
𝑅 = 𝟎                                   (1d) 

where the vector 𝒅𝑖
𝑅  (𝑖 = 1,2,3 𝑎𝑛𝑑 4) represents the components of the displacements of each 

node produced by the discontinuity, and  𝒖  is the vector of the components of the relative node 

displacements on the discontinuous surface, as shown in Fig. 1. 

The node displacements produced by the discontinuity, 𝒅𝑖
𝑅 , are associated to the rigid body 

motion between the two portions of the element separated by the discontinuity. Hence, upon 

determining the strains, 𝜺 =   𝜀𝑥  𝜀𝑦  𝛾𝑥𝑦  𝜀𝑧   𝛾𝑦𝑧   𝛾𝑥𝑧  
𝑇

, from the node displacements of the 

element, 𝒅𝑖 , the component of the node displacements associated with the discontinuity, 𝒅𝑖
𝑅  must 

be subtracted, i.e. 

𝜺 =  𝑩𝒊 𝒅𝑖 − 𝒅𝑖
𝑅 4

𝑖=1                             (2) 
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𝜺 =  𝑩𝑖𝑑𝑖 −𝑩1 𝒖 
4
𝑖=1                             (3) 

𝜺 = 𝑩𝒅− 𝜺𝑅                                 (4) 

where the 𝑩 matrix groups together the conventional 𝑩𝑖  matrices (strain-displacement matrices) 

of the Finite Element Method (FEM), vector 𝒅 groups the vectors of node displacements of all 

the element nodes, and 𝒅𝑖 , and 𝜺𝑅 = 𝑩1 𝒖  correspond to the part of the strain associated with 

the rigid body displacement produced by the discontinuity 
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 𝑢 𝑥
 𝑢 𝑦
 𝑢 𝑧

          (5) 

where 𝑁1 is a conventional shape function of the FEM associated with the isolated node. 

In Eq. (5), 𝑙𝑒  is the “characteristic length” of the element, which is evaluated as the inverse of 

the norm of the gradient vector of the sum of the shape functions of the isolated nodes (one or two 

isolated nodes, depending on the crack position in the interior of the element). Note that in the case 

illustrated here of only one isolated node, 𝑙𝑒   corresponds to the distance between the single node 

and the opposite side. Therefore, Eq. (5) considers that 

 
𝑚𝑥

𝑙𝑒
,
𝑚𝑦

𝑙𝑒
,
𝑚𝑧

𝑙𝑒
 =  

𝜕𝑁1

𝜕𝑥
,
𝜕𝑁1

𝜕𝑦
,
𝜕𝑁1

𝜕𝑧
                        (6) 

Considering a linear elastic behavior in the continuous part of the element, the stresses 

𝝈 =  𝜎𝑥 𝜎𝑦 𝛾𝑥𝑦 𝜎𝑧 𝛾𝑦𝑧 𝛾𝑥𝑧    can be obtained by 

𝝈 = 𝑬𝜺                                   (7) 

𝝈 = 𝑬 𝑩𝒅− 𝜺𝑅                                (8) 

where E is the linear elastic constitutive matrix. As can be seen in Eq. (8), the ε
R
 strains play the 

role of inelastic strains that are compatible with the relative displacement of the single node 

originating from the discontinuity.  

Given that the stresses in the element are constant, the vector of internal forces of the element 

can be expressed by 

𝒇𝑖𝑛𝑡 =  𝑩𝑇𝝈 𝑑 𝛺𝑒                              (9) 

𝒇𝑖𝑛𝑡 = 𝑩𝑇𝝈 𝑉𝑒                                (10) 

where 𝑉𝑒   is the volume of the finite element. 

The formulation of the finite element with embedded discontinuity is completed by introducing 

the discrete interface constitutive law, 𝒕  𝑢  , which establishes the relationship between the 
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components of the discontinuity and the surface forces, together with the condition of continuity 

between the surface forces of the continuous part and the interface 

𝒕  𝒖  − 𝑵𝑇𝝈 = 𝟎                            (11) 

From Eqs. (5) and (8), Eqs. (10) and (11) can be rewritten as 

𝒇𝑖𝑛𝑡 = 𝑩𝑇𝑬 𝑩𝒅 −
𝑴

𝑙𝑒
 𝒖   𝑉𝑒                         (12) 

𝒕  𝒖  − 𝑵𝑇𝑬 𝑩𝒅−
𝑴

𝑙𝑒
 𝒖  = 𝟎                       (13) 

where 

𝑵𝑇 =  
𝑛𝑥
0
0

0
𝑛𝑦
0

𝑛𝑦
𝑛𝑥
0

0
0
𝑛𝑧

0
𝑛𝑧
𝑛𝑦

𝑛𝑧
0
𝑛𝑥
                        (14) 

𝑴𝑇 = 𝑙𝑒𝑩1
𝑇 =  

𝑚𝑥

0
0

0
𝑚𝑦

0

𝑚𝑦

𝑚𝑥

0

0
0
𝑚𝑧

0
𝑚𝑧

𝑚𝑦

𝑚𝑧

0
𝑚𝑥

                       (15) 

In an incremental and iterative procedure, Eq. (13) is used to calculate the displacement jumps 

in the element,  𝒖 , for a given nodal displacement vector, 𝑑. Eq. (12) is then used to calculate the 

internal forces of the element. 

Note that this formulation requires the use of an algorithm that can indicate which nodes will be 

isolated by the discontinuity, and also the direction of the discontinuity surface, i.e., the position of 

the discontinuity surface inside the element. One of the existing techniques for this purpose is the 

global crack path tracking algorithm, which is the basis of this work. 

The discrete constitutive model assumed in this paper is based on the damage theory and can be 

described by the following set of equations 

𝒕 =  1 − 𝑑 𝒕 ; 𝒕 = 𝑪  𝒖   (constitutive relation)                   (16) 

𝑓 𝑡 𝑛 , 𝑟 = 𝑡 𝑛 − 𝑟 ≤ 0  (damage criterion)                     (17) 

𝑟 = 𝑚𝑎𝑥𝑠∈[0,𝑡][𝑓𝑡 , 𝑡𝑛(𝑠)]  (strain-like internal variable evolution)              (18) 

𝑑 = 1 − 𝑓𝑡
𝑟
𝑒
𝐴(1−𝑟 𝑓𝑡 )

;𝐴 = 𝑘
𝑓𝑡

2

𝐸𝐺𝑓
  (damage evolution)                 (19) 

where d is the damage variable, 𝒕  is the elastic effective traction vector, 𝑡 𝑛  is the traction 

component normal to the crack surface, r is the strain-like internal variable that assumes the 

maximum value between  𝑡 𝑛   and the tensile strength, 𝑓𝑡 , during the analysis (see equation 

(18)), 𝐺𝑓  is the fracture energy and C is the elastic constitutive matrix, which, according to the 

local system of coordinates (n,s,t) shown in Fig. 2, is given by 

𝑪 = 1

𝑘
 
𝐸 0 0
0 𝐺 0
0 0 𝐺

                               (20) 
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Fig. 2 Finite element with discontinuity surface S1 normal to n (Blanco 2007) 

 

 

where E is the Young’s modulus, G is the shear modulus and k is a small parameter used to 

penalize the relative displacement during the elastic regime. It has been assumed k = 0.1 mm for 

the examples presented in this paper. 
 
 
3. Global crack-tracking algorithm 
 

This section describes the global algorithm (Chaves 2003, Oliver and Huespe 2004), as well as 

the formulation involved in the algorithm corresponding to the solution of an analogous heat 

conduction problem and corresponding finite element approximation. 

 

3.1 Steps to solve the global crack-tracking algorithm 
 

The algorithm requires information about the vector field that determines the normal direction 

of crack propagation in the entire domain under analysis. This can be found from the stress or 

strain fields obtained from the solution of the mechanical problem.  

The algorithm solves a problem analogous to a heat conduction problem, identifying a scalar 

value that describes the path of the surface crack. Therefore, before beginning the analysis, it is 

necessary to prescribe scalar values in at least two different nodes of the finite element mesh.  

Furthermore, at the beginning of each loading step, the status of the failure surface within the 

finite element must be updated, indicating whether or not there is active failure, i.e., if the failure 

criterion was reached or not. When the stress state of the element reaches the failure criterion (the 

failure becomes active), the orientation of the corresponding failure plane is not changed in the rest 

of the analysis. This means that the scalar value of the nodes of the element that reaches the failure 

criterion will remain fixed until the end of the analysis. 

Oliver and Huespe (2004) present the failure surface construction process in steps, which can 

be described as follows 

 

Draw the isosurfaces 
For each scalar value found by solving the equivalent thermal problem based on the field vector 

of normal propagation directions, one has isovalue surfaces.  

Identify the active failure surface and its corresponding value 
At least one of the isosurfaces found will be the potential failure surface. The active failure 
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surface is given based on the failure criterion and the scalar value of reference. The reference value 

is determined by averaging the nodal values of the first element to reach the failure criterion. The 

active crack surface in the first element that met the failure criterion passes through the centroid of 

the element and will be called the root element.   

 

Determine the position of the crack in the elements neighboring the root element 
The position of the discontinuity is determined based on the scalar value of the surface built in 

the root element (reference value). To determine the location of the discontinuity inside elements, a 

linear interpolation of the scalar value of each node of the element is performed.  Thus, one 

determines the points belonging to the edges of the element that present the reference value.  

 

Fix the direction of crack propagation 
Once the element has met the failure criterion, the scalar values of the nodes in this element 

will remain fixed until the end of the numerical analysis. 

The process of constructing the discontinuity inside the finite elements takes place 

successively, as described in steps three and four, until the end of the analysis. 

 

3.2 Formulation of the equivalent heat conduction problem 
 

Let 𝒏(𝑥, 𝑡) =  

𝑛𝑥
𝑛𝑦
𝑛𝑧
  be a vector normal to the discontinuity surface. For each point 𝑥 of 

domain Ω, it is possible to define two vectors 𝒔 and 𝒕 orthogonal to 𝒏 and to each other, i.e. 

𝒔 ∙ 𝒏 = 𝒕 ∙ 𝒏 = 0                               (21) 

Starting from the 𝒔 and 𝒕 vectors, it is possible to build a tangent plane to the direction of 

crack propagation, as shown in Fig. 2. 

It is also possible to determine an anisotropic conductivity tensor from the 𝒔 and 𝒕 vectors 

𝑲 𝒔 𝒙 , 𝒕 𝒙  = 𝒔⊗ 𝒔 + 𝒕 ⊗ 𝒕                   (22a) 

𝑲 𝒔 𝑥 , 𝒕 𝑥  =   

𝑠1
2 + 𝑡1

2 𝑠1𝑠2 + 𝑡1𝑡2 𝑠1𝑠3 + 𝑡1𝑡3

𝑠2𝑠1 + 𝑡2𝑡1 𝑠2
2 + 𝑡2

2 𝑠2𝑠3 + 𝑡2𝑡3

𝑠3𝑠1 + 𝑡3𝑡1 𝑠3𝑠2 + 𝑡3𝑡2 𝑠3
2 + 𝑡3

2

              (22b) 

so that a flow vector can be defined as 

𝒒 𝑥, 𝑡 = − 𝑲 ∙ 𝜵𝜃                               (23) 

The family of surfaces given by the orthogonal vectors can be described by a scalar 

function 𝜃(𝑥), as follows 

𝑆𝑖 =   𝒙 ∈ 𝛺;  𝜃(𝑥) = 𝜃𝑖 , with 𝜃𝑖 ∈ 𝑅                      (24) 

At each point in the domain, these surfaces are tangent to vectors 𝒔 and 𝒕, and these vectors are 

normal to vector 𝒏. Thus, the vector field that points in the direction normal to the discontinuity 

surface should be equal to the gradient of 𝜃(𝑥), i.e. 𝛁𝜃 = 𝒏. Hence 
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Fig. 3 Problem of thermal boundary values (Blanco 2007) 

 

 

𝒔 ∙ 𝛁𝜃 = 𝛁𝜃 ∙ 𝒔 = 0 in Ω                         (25a) 

𝒕 ∙ 𝛁𝜃 = 𝛁𝜃 ∙ 𝒕 = 0 in Ω                        (25b) 

The solution to Eqs. (25a) and (25b) is also the solution to the heat conduction problem shown 

in Fig. 3, whose objective is to find 𝜃(𝑥) that satisfies the following conditions 

𝜵 ∙ 𝒒 = 0, in Ω                             (26) 

𝒒 = −𝑲 ∙ 𝜵𝜃, in Ω                            (27) 

𝒒 ∙ 𝝂 = 0, in ∂qΩ                            (28) 

𝜃 = 𝜃∗, in ∂θΩ                            (29) 

where 𝛎 is a vector normal to the boundary of the solid, and ∂Ω = ∂θΩ ∪ ∂qΩ and 𝜃∗ represents 

the prescribed values of 𝜃 at the boundary. 

 

3.3 Finite element approximation 
 
The heat conduction problem can be solved from its weak form, which is obtained by the 

weighted residual method. Thus, the weak form of Eq. (26), (27) and (28) can be rewritten as: 

 (𝛁𝑊)T ∙ 𝑲 ∙ 𝛁𝜃𝑑𝛺
𝛺

=  𝑊 ∙ 𝒒𝑇 ∙ 𝝂 𝑑𝛤
𝛤=𝛤𝜃+𝛤𝑞

               (30) 

where 𝑊 are weighting functions. 

From the boundary condition in Eq. (28), Eq. (30) is now given by  

 (𝛁𝑊)T ∙ 𝑲 ∙ 𝛁𝜃𝑑𝛺
𝛺

= 0                          (31) 
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Given a domain Ω discretized in 𝑛𝑒  finite elements and 𝑛𝑛  nodes for each finite element, 

function 𝜃(𝑥) can be approximated by shape functions for each finite element 

𝜃𝑒 𝑥 = 𝑵𝑒 ∙ 𝜃𝑒            𝜃|𝜕𝜃Ω = 𝜃∗                       (32) 

where 𝜽𝑒  represents the vector of the nodal values of 𝜃 for a finite element and 𝑵𝑒  are the 

element’s conventional shape functions. 

Applying the Galerkin Method and substituting Eq. (32) in Eq. (31), one has 

  (𝛁𝑵𝑒)T ∙ 𝑲 ∙ 𝛁𝑵𝑒 ∙ 𝜃𝑒𝑑𝛺
𝛺𝑒

= 0                      (33) 

where   is a standard assembly operator of finite elements (Hughes 2000). 

Eq. (33) can be written compactly as follows 

𝕂 ∙ 𝜽 = 𝟎                                 (34) 

where   𝜽  is the global vector of nodal scalar values and  𝕂  represents the global stiffness 

matrix composed of the elementary stiffness matrices, given by 

𝕂𝑒 =  (𝛁𝑵𝑒)T ∙ 𝑲 ∙ 𝛁𝑁𝑒
𝛺𝑒

 𝑑𝛺                         (35) 

such that 

𝕂 =  𝕂𝑒𝑛𝑒
𝑒=1                                   (36) 

and 

𝜽 =  𝜽𝑒
𝑛𝑛
1                                   (37) 

Finding the scalar value of all the nodes consists of solving the following linear system 

 
𝕂 ∙  𝜽 = 𝟎
𝜃|𝜕𝜃𝛺 = 𝜃∗

                                   (38) 

 
3.4 Delineation of potential crack surfaces 
 
As soon as the discontinuity is detected in a finite element (root element), the mean value of  

𝜃 in the element is determined by the arithmetic mean of the nodal values, as follows 

𝜃𝑖 =
1

𝑛
 𝜃𝑛1                                   (39) 

where n corresponds to the number of nodes of the element.  

The mean value, 𝜃𝑖 , of the root element will be used to determine the position of the 

discontinuity in the neighboring finite elements and will, thereafter, be called the reference value. 

The reference value corresponds to a potential failure surface, 𝑆𝑖 , which can be built integrally in 

the domain. 

Once the nodal scalar values and reference value have been found, the position of the  
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Fig. 4 Construction of potential failure surfaces based on the mean value of 𝜃𝑖  (Blanco 2007) 

 

 

Fig. 5 Linear interpolation for a quadrilateral 2D finite element (Blanco 2007) 

 

 

discontinuity surface, 𝑆𝑖 , in a given finite element can be found by means of the difference 

between the nodal value and the reference value (𝜃 − 𝜃𝑖), enabling the identification of the 

vertices for which negative and positive values were obtained, i.e., determine the edges that 

involve a change in signal, as illustrated in Fig. 4. 

Lastly, to identify the position of the discontinuity surface at the edges of the elements 

possessing nodes (vertices) that involved a change in signal, a linear interpolation is performed as 

illustrated in Fig. 5. 

 

 

4. Local-global tracking algorithm 
 

This work proposes an algorithm to identify the crack path based on the global crack tracking 

algorithm proposed by Oliver and Huespe (2004), introducing a modification that can reduce the 

computational effort involved. The basic concept consists of building the system of additional 

equations (corresponding to the crack path problem) only for the elements located in the region 

close to the failure surface instead of taking up the entire domain of the mechanical problem, as is 

the case of the global crack tracking algorithm.  
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4.1 Proposed crack tracking algorithm 
 
Like the global algorithm, one of the initial conditions of the proposed algorithm is that the 

vector field 𝑛 of directions normal to the discontinuity surface be known.  

Another required initial condition is the establishment of scalar values in two different nodes of 

the finite element mesh. In the proposed methodology, these values are imposed on two nodes of 

the first finite element that reaches the failure criterion (root element). The values of the two nodes 

are established as -1.0 and 1.0 to ensure a reference value of zero. 

At the beginning of each loading step, the status of the discontinuity surface inside the element 

is updated, indicating if the failure criterion was or was not reached. If the failure criterion in an 

element is reached, the position of the crack in this element is determined by linear interpolation. 

The proposed crack tracking algorithm can be described by the following steps: 

 
Topology of the problem 
This consists of storing the data of the finite element mesh so that the algorithm can more 

rapidly identify the elements neighboring the sides of the elements that reach the failure criterion. 

This is done for all elements only one time before the analysis, in a pre-process stage.  

 
Construction of the potential failure surface in the first element with active failure 
Because the values -1.0 and 1.0 were established for two of the four nodes of the first 

tetrahedral finite element to reach active failure, the algorithm finds the scalar value only of the 

other two nodes. It then finds the failure surface that corresponds to the null scalar value, which is 

the reference value for the next steps. As soon as the failure criterion in this element is reached, the 

nodal scalar values of this element will be fixed until the end of the analysis, and their values will 

become input data for the next loading step. 

 
Identification of the crack path in the neighboring elements  
In the loading step following the consolidation of the failure surface in the first finite element 

(root element), the proposed algorithm identifies the elements that have a vertex or edge coincident 

with the root element, which then become part of the domain of analysis, thus becoming candidate 

elements for failure. The identification of these neighboring elements is easily and rapidly done by 

means of the information about the mesh topology generated in the step 1. These elements and the 

involved nodes are then locally numbered and the local connectivity information is updated 

accordingly in order to assemble the stiffness matrix of the local problem.       

The scalar nodal value of all these elements is then found and the nodes that are isolated by the 

discontinuity surface are identified. Like in the preceding step, upon meeting the failure criterion, 

the scalar value of the nodes of the new crack element is fixed for all the subsequent loading steps, 

and their neighboring elements are included in the domain of analysis.  

 
Construction of the failure surface of the solid 
Step three is repeated until the end of the analysis.  

It should be noted that in each loading step, the mechanical problem indicates for the equivalent 

heat conduction problem whether any element has met the failure criterion. The equivalent heat 

conduction problem, in turn, indicates which nodes are isolated by the discontinuity, so that the 

element is treated by the mechanical problem as a finite element with embedded discontinuity. 
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Fig. 6 Geometry (in mm) and boundary conditions (Gálvez et al. 1998) 

 

 

Fig. 7 Original finite element grid, with the first candidate element to crack 

 

 

Fig. 8 Result of the first loading steps, which triggered the onset of the crack surface 

 

 

5. Numerical analysis 
 

The material used in the simulations was concrete, whose properties are presented together with 

the geometry of each analyzed case. Non-structured mesh of tetrahedral finite element (with four 

nodes) was used. A limit over the maximum principal stress was adopted as the failure criterion 

and a tensile damage model was used as a cohesive constitutive model in the discontinuity 

interface. 

 

5.1 Notched beam subjected to four-point loading 
 

To validate the proposed algorithm, the first analysis corresponds to the test performed by 

Gálvez, Elices et al. (1998). This analysis involves a 50-mm-thick notched beam subjected to four-

point bending loads, whose geometry and boundary conditions are illustrated in Fig. 6 while its 
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experimental parameters are: GF = 69 N/m, ft = 3.0 MPa, E = 38 GPa and ν = 0.2, where GF is the 

fracture energy, ft is the tensile strength, E is the Young’s modulus and 𝜈  is the Poisson’s ratio. 

Fig. 7 shows the finite element mesh used in the analysis, composed of 4534 elements and 1262 

nodes. The red element is the first element to fail. The beam thickness used here was half of its 

measure (25 mm), due to the symmetry of the problem.   

The first element reaches the failure criterion (the failure was activated) after the first loading 

steps. The corresponding crack surface inside the element is illustrated in Fig. 8. For the 

subsequent loading steps the crack propagation path is consolidated, i.e., the scalar values of the 

nodes of the cracked element are fixed until the end of the simulation. 

In the loading steps following the consolidation of the crack in the root element, only its 

neighboring elements are part of the analysis, i.e., the candidate elements for failure. As soon as 

one of the candidate elements reaches the failure criterion, its direction of propagation is also fixed 

and the new domain of analysis is updated, being composed of the finite elements neighboring the 

second element that met the failure criterion. 

The crack surface is thus built along successive loading steps. Fig. 9 reinforces the fact that the 

discontinuity built in the analysis really crosses the finite elements, without adaptation of the finite 

element mesh. 

Once the position of the crack is defined, the embedded discontinuity formulation is able to 

describe the effect of the crack inside the elements. Fig. 10 illustrates the deformed configuration 

in an advanced stage of loading. 

Since the algorithm does not analyze the entire domain of the model, after all the loading steps, 

the region involved in the solution of the problem is restricted solely to the green and blue region 

depicted in Fig. 11. The blue elements represent elements with active cracks while the green 

elements represent the neighbor elements defining domain of the tracking analysis. In this case the 

benefits of the proposed scheme are evident. At the beginning of the analysis the domain of the 

tracking problem is composed by the root and its neighboring elements (14 elements) and at the 

end of the analysis the domain is composed only by 712 elements (245 nodes). The global tracking 

algorithm would use the complete mesh composed by 4534 elements and 1262 nodes during the 

entire analysis, involving 1262 degrees of freedom (one per node) instead of a maximum of 245 

involved in the proposed scheme.  

 

 

 

Fig. 9 Crack surface crossing the elements 
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Fig. 10 Deformed mesh after cracking 

 

 

 

Fig. 11 Domain of the analysis for the proposed algorithm 

 

 

Fig. 12 Crack surface formed at the end of the analysis 
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Fig. 13 Structural response of the notched beam subjected to four-point bending loads 

 

 

In this case, the total CPU analysis time was 94.91 seconds (PC Intel® Core™ i5 CPU 

M460@2.53GHz). The topology process (step 1) took 2.79 seconds (2.9% of the total time) and 

the local-global tracking scheme was performed 572 times, consuming 6.26 seconds, of which 

4.83 seconds were spent to solve the linear systems of equations. Therefore, the total process time 

spent by the proposed algorithm to generate the mesh topology (step 1), to identify the elements of 

the crack path and its neighboring elements, to locally renumber the involved elements, nodes and 

connectivities, to assemble the local stiffness matrices K and to construct the crack surfaces for all 

iterations was less then 1.43 seconds, corresponding to 1.5% of the total analysis time. This shows 

that the time consumed for the tasks inherent to the local-global scheme is very short (less than 

4.4% of the total time). This short additional time spent by the local-global scheme (the global 

scheme does not need to perform most of these tasks) is largely compensated by the reduced 

number of degrees of freedom involved. 

Fig. 12 shows the failure surface at the end of the simulation. In this Fig. 12, note the 

irregularity when the discontinuity is close to the limit of the upper boundary of the material. This 

irregularity is due to the very complex stress state of this region, without predominance of the 

normal tensile component. 

Fig. 13 shows the comparison between the structural responses obtained experimentally and 

numerically with the proposed formulation.  

 

5.2 Rectangular block subjected to tensile loading 
 
The second analysis presented here is based on the one presented by Jäger, Steinmann and 

Kuhl (2008). This analysis involved a rectangular block subjected to tensile loading, with a cross 

section of 1 mm
2
 and height of 2 mm. The block is fixed at the bottom and subjected to a load 
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distributed over its upper right side (see Fig. 14). The crack starts on the side adjacent to the 

application of the load, leading to a curved rupture surface.  

Fig. 14 presents the mesh of elements used in the numerical analysis, composed of 1025 

elements. It should be noted that symmetry was also used in this analysis, simulating half the 

thickness of the rectangular block. The element indicated as the first one to fail is indicated in red. 

The assumed parameters of the material were: GF = 100 N/m, ft = 2 N/mm
2
, E = 1000 MPa and ν = 

0.2 

Fig. 15 shows the progressive construction of the discontinuity surface in the successive 

loading steps. The first image represents the loading step in which the first element met the failure 

criterion, while the last image illustrates the final step of the crack’s path, leading to the failure of 

the block. The failure mechanism is similar to the one obtained.by Jäger et al.(2008).  

 

 
 

 
Fig. 14 S Rectangular block subjected to tensile loading. (a) Geometry (in mm) and boundary 

conditions Jäger et al. (2008), (b) finite element mesh 

 

 

Fig. 15 Progression of the construction of the discontinuity surface on the rectangular block 
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Fig. 16 Deformed mesh at the end of analysis 

 
 

 
 

 

Fig. 17 Evolution of the region of analysis during loading of the rectangular block 

 

 

Fig. 16 illustrates the deformed mesh in the last stage of the numerical analysis. The failure 

mechanism obtained by Jäger et al. (2008) is similar to the one obtained with the proposed 

methodology.  

The sequence of images in Fig. 17 represents the region affected by the algorithm during the 

construction of the crack path, where the green color represents the algorithm’s analytical limit and 

277



 

 

 

 

 

 

O.L. Manzoli, G.K.S. Claro, E.A. Rodrigues and J.A. Lopes Jr. 

the blue color represents the region composed of the elements that reached active failure. Fig. 18 

shows the structural response.  

 
5.3 Brazilian test 
 
The Brazilian fracture test, also analyzed by Chaves (2003), consists of a cylinder compressed 

along its entire length, keeping the rotation axis parallel to the supports that transmit the 

compressive load. Fig. 13 shows a concrete cylinder with length B = 300 mm and diameter D =150 

mm, subjected to a diametral compression P. The properties of the material are: GF = 115 N/m, ft = 

3.2 MPa, E = 32.4 GPa and ν = 0.2. 

In this case the entire cylinder was simulated using a coarse mesh of 747 finite elements. The 

failure surface is illustrated in Fig. 20 

Fig. 21 illustrates the deformed mesh after the formation of the crack. 

In this case, the domain of the analysis of the proposed algorithm represent almost the entire 

domain of the cylinder, as illustrated in Fig. 22, where the gray elements are the ones not included 

in the analysis.  

Fig. 23 shows the evolution of the applied force vs crack opening at the center of the frontal 

face of the cylinder. 
 

 

 

Fig. 18 Force vs displacement curve of the rectangular block 

 

 

Fig. 19 Geometry (in mm) and boundary conditions proposed by Chaves (2003) 
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Fig. 20 Crack surface formed after the loading process of the Brazilian test, shown from 

different perspectives 

 

 

Fig. 21 Deformed mesh at the end of the analysis 

 

 

Fig. 22 Region analyzed by the proposed algorithm in the Brazilian fracture test 
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Fig. 23 Force vs crack opening curve of the Brazilian Test 

 

 
Fig. 24 Geometry (in mm) and boundary conditions of the notched concrete beam tested by 

Petersson (1981) 

 

 

Fig. 25 Finite element grid used in the analysis of the notched beam subjected to three-point loading 

 

 

5.4 Notched beam subjected to three-point loading 
 

The last analysis corresponds to an experimental test, presented by Petersson (1981), of a 50-

mm-thick notched concrete beam subjected to three-point loading, whose dimensions and 

geometry are illustrated in Fig. 24. 

The properties of the concrete are: GF = 124 N/m, ft = 3.33 MPa, E = 30.0GPa, ν = 0.2. 

In this case, half the thickness of the beam was simulated, using symmetry. The finite element 

grid used in the numerical analysis is shown in Fig. 25 and is composed of 2262 elements. 

In order to demonstrate that the proposed crack tracking algorithm is able to describe the path 

of the discontinuity in a given vector field of directions normal to the failure surface, a vector field 

n oriented horizontally, i.e. containing only the component 𝑛1, was used in the simulation. 
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Fig. 26 Crack surface described by the proposed algorithm 

 

 

Fig. 27 Strain of the tensioned beam, shown from different angles 

 

 

Fig. 28 Force vs displacement curve of the tensioned beam 
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As expected, the resulting discontinuity surface is perpendicular to the direction of crack 

propagation, as shown in Fig. 26. 

The surface discontinuity found generated strain in the material, as illustrated in Fig. 27. In this 

case, this strain acts like a contact surface (adherence) between the parts displaced due to the 

presence of the crack. 

The curve resulting from the analysis was compared with the curve obtained experimentally. In 

Fig. 28, the gray lines represent the upper and lower limits of the experimental curves, while the 

black curve represents the simulated result obtained by the proposed algorithm. 

 

 

6. Conclusions 
 
This paper proposed a crack path tracking algorithm based on the global crack tracking 

algorithm proposed by Oliver and Huespe (2004), which can minimize the processing time of 

numerical analyses. An evaluation of the results indicated that, in all the analyses, the proposed 

algorithm was able to track the crack path using a reduced domain of finite elements in each step 

of the solution. In contrast, the global algorithm would use all the elements of the mesh in each 

step of the solution of the numerical analysis.  

In the analysis of the notched beam subjected to four-point loading using the proposed 

algorithm, the final portion of the surface discontinuity presented an irregularity.  This was 

attributed to the fact that the crack surface was established by a criterion based on the maximum 

principal tensile stress, which may not be well defined in initially compressed regions, as is the 

case of the region in question. The irregularity at the potential failure surface led to a difference in 

structural response, which became evident when the force vs. displacement curve found by the 

proposed algorithm was compared with the experimental curves. 

In the analysis of the notched beam subjected to three-point loading, an oriented vector field n 

was used in order to highlight the fact that the proposed algorithm is able to describe the path of 

the discontinuity, regardless of whether or not this vector field of normal directions of crack 

propagation corresponds to a stress field.  
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