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Abstract.  This work presents an approach to model concrete shrinkage. The goal is to permit the concrete 
industry’s experts to develop independent prediction models based on a reduced number of experimental 
data. The proposed approach combines fuzzy logic and genetic algorithm to optimize the fuzzy decision-
making, thereby reducing data collection time. Such an approach was implemented for an experimental data 
set related to self-compacting concrete. The obtained prediction model was compared against published 
experimental data (not used in model development) and well-known shrinkage prediction models. The 
predicted results were verified by statistical analysis, which confirmed the reliability of the developed 
model. Although the range of application of the developed model is limited, the genetic-fuzzy approach 
introduced in this work proved suitable for adjusting the prediction model once additional training data are 
provided. This can be highly inviting for the concrete industry’s experts, since they would be able to fine-
tune their models depending on the boundary conditions of their production processes. 
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1. Introduction 
 

Concrete shrinkage is defined as decrease in concrete volume with time. This volume decrease 

does not depend on external stress and it is not completely reversible. Though shrinkage 

corresponds to a volumetric change, it is usually expressed in linear strain rather than volumetric 

units since real volumetric shrinkage is approximately three times the linear shrinkage (Brooks 

2003). The occurrence of shrinkage in concrete is associated with a series of factors such as 

chemical reaction, gradient in temperature, and movement and loss of water. Each one of these 

leads to a different type of shrinkage, e.g., autogenous, plastic, drying and thermal shrinkage, 

among others. For a comprehensive review refer to Brooks (2003) and Mehta and Monteiro 

(2004). Although different types of shrinkage are known, there is no sharp boundary between 

them. This is because they occur simultaneously, especially those on fresh state. Therefore, 

dividing the total shrinkage, which corresponds to the sum of all types of shrinkage, in its specific 

parts is, in practice, a complex task, if not an impossible mission. 

The occurrence of shrinkage in concrete leads to development of internal tension stresses,  
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(a) (b) 

Fig. 1 Foundation block of a residential building in Prague, Czech Republic: (a) overall view 

of the construction side and (b) detail of ~0.8 mm crack width caused by concrete shrinkage 

 

 

which can result in concrete cracking if the concrete mass has any restrains to deform and the 

developed stresses surpass the concrete tensile strength. In particular, restrains in concrete derive 

from the presence of reinforcements, connection members, formwork, and aggregates, to mention 

a few. Cracks in concrete create pathways for the easier access of aggressive agents, e.g., chloride 

ions, sulfates, and CO2, that can cause corrosion in the steel reinforcement and chemical attack in 

the concrete, thereby contributing to the reduction in concrete’s structure durability. An example 

of the effect of shrinkage on concrete is depicted in Fig. 1. 

Furthermore, excessive shrinkage strain may reduce bounding tension, which results in loss of 

prestress in prestressed concrete, and increase deflection in asymmetrically reinforced concrete 

structures (Mehta and Monteiro 2004); therefore a reliable prediction of concrete shrinkage strain 

is an important factor in the entire designing process. Predicting shrinkage, especially during the 

period of construction, allows early counter-measures to be taken, e.g., premature loading or 

prestressing to compensate for the negative shrinkage effect. Consequently, accurate shrinkage 

prediction helps reduce maintenance costs and ensures that the designed structure will meet service 

life and durability requirements. 

Apart from external factors such as ambient temperature and humidity, concrete shrinkage is 

caused by the hydration reaction in the cement paste. Thus, for a constant volume of concrete and 

environmental conditions, the higher the cement paste volume, the higher the shrinkage strain 

(Rozière et al. 2007). Because self-compacting concrete mixtures (SCC), i.e., concrete that can 

flow under its own weight and self-consolidate without any mechanical vibration (Skarendahl 

2005), requires a high volume of cement paste in its composition to achieve excellent 

deformability and formwork filling capacity, this type of concrete is likely prone to higher 

shrinkage strain when compared to conventional concrete. Therefore measuring shrinkage strain is 

important when working with SCC. 

Regardless the concrete type, the experimental measurement of shrinkage strain is not only a 

laborious and time consuming work, but also expensive. These characteristics, added to short 

deadlines, tight budgets, and the industry’s trends of accelerating both designing and construction 

processes, sometimes make shrinkage experimental measurements unfeasible for all projects under 

development. For this reason, construction designers tend to use concrete shrinkage prediction 
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models. 

Shrinkage prediction models aim to determine concrete shrinkage strain in a faster and less 

expensive way when compared to experimental measurements. These models are based on several 

parameters, which depend on the approach that was considered when the model was developed. 

Commonly, prediction models are based either on analytical or empirical approach. Regardless the 

considered approach, developing a robust and reliable prediction model is not an easy task, 

because shrinkage is a complex phenomenon that is hard to be modeled due to the simultaneity of 

different types of shrinkage and interrelationship of factors affecting it. Furthermore, the fact that 

no common agreement has been found about the mechanism of shrinkage (Illston and 

Domone 2010) adds considerable difficulty and uncertainties to model shrinkage from a micro-

mechanical perspective. According to Bažant and Baweja (2000), the abovementioned complexity 

of concrete shrinkage phenomenon explains why improvements in shrinkage prediction models are 

only gradual and slow with no sudden or significant breakthrough. 

Although analytical and micro-mechanical based approaches have been presented in several 

researches, e.g., Benboudjema et al. (2005), Ling and Meyer (2008), and Pichler et al. (2007), 

experimental-based models remain as the most frequently used ones. The main reason for that is 

likely due to the simplicity of these models, which turns to be user-friendly. When using 

prediction models, it is important to keep in mind that complex models do not necessarily lead to 

better prediction than simple ones (McDonald and Roper 1993).  

Among several existing shrinkage prediction models, highlights are given to ACI209, CEB FIP 

1990, CEB MC 90-99, B3, GL2000, and EN 1992-1-1:2004. The details of these are described as 

follows: 

ACI 209 

The American Concrete Institute (ACI) model, namely ACI209, was developed by Branson and 

Christiason (1971). It consists in an empirical model that is based on experimental approach. The 

model has been updated through years by the ACI Committee 209, and its latest version dates back 

to 2008 (ACI 2008). The ACI209 model is limited to normal-weight, light-weight, and sand-light-

weight concrete mixtures produced with cement content varying from 279 to 446 kg/m
3
, relative 

humidity above 40.0%, and either steam or moist curing. 

CEB FIP 1990 

The Comité Euro-International Du Béton (CEB) recommends the CEB FIP 1990 prediction 

model for concrete shrinkage. CEB FIP 1990, namely CEB FIP, is an empirical model developed 

in 1990. Although an updated version of CEB FIP model was released in 1999 (CEB 1999), this 

model was considered in the present work because its equations are the basis for the shrinkage 

prediction model that is recommended by European Code (EN 2004). CEB FIP model is 

applicable for normal-weight concrete mixtures with average strength at 28 days ranging from 

20.0 to 90.0 MPa, mean ambient temperature varying from 5.0 to 30.0 °C, and ambient relative 

humidity > 40.0%. Although curing type and time are not considered in the list of input 

parameters, the curing is limited to moist curing type for period of time no longer than 14 days 

(CEB 1993). 

CEB MC90-99 

The CEB MC90-99 model, namely CEB MC, is an updated version of previously described 

model (CEB FIP). Even with similar limitations regarding curing type and ambient relative 

humidity, CEB MC differs from CEB FIP because it covers a wider range of average compressive 

strength at 28 days (15.0 to 120.0 MPa), and a relatively narrower range of ambient temperature, 

(10.0 to 30.0°C) (CEB 1999). 
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Table 1 Physical properties and chemical compositions of raw materials 

Concrete 

type 
Input data N 

fmodel [%] 

ACI209 CEB FIP CEB MC EN 1992 B3 GL2000 

CC 

Imamoto and Arai (2008) 14 34.8 46.2 38.4 65.2 38.2 33.5 

Ballim (2000) 10 39.2 28.1 47.0 40.2 27.6 31.5 

White and Newtson (2006) 8 24.1 27.6 36.1 65.1 23.5 45.1 

fall-CC [%] 33.3 35.1 40.8 58.0 30.4 37.2 

SCC 

Guneyisi et al. (2010) 8 30.7 43.7 19.7 51.0 21.3 27.2 

Bouzoubaa and Lachemi (2001) 8 51.0 36.7 28.3 72.3 37.1 30.0 

Leemann et al. (2011) 3 32.1 49.1 27.3 63.1 22.3 44.8 

fall-SCC [%] 39.0 43.5 25.4 62.7 27.9 34.9 

HSC 

Ray et al. (2012) 6 38.9 51.3 33.1 64.9 37.9 28.9 

Bai et al. (2005) 3 35.5 26.9 40.9 29.9 60.4 53.3 

Guneyisi et al. (2008) 6 38.3 51.9 34.4 64.7 36.2 34.6 

fall-HSC [%] 37.6 44.9 36.3 55.7 46.2 40.3 

fall [%] 36.7 41.4 34.8 58.9 35.7 37.5 

 

 

EN1992-1-1:2004 

The EN 1992-1-1:2004 model, here referred as EN1992, was designed based on CEB FIP and 

CEB MC prediction models. Although based on CEB models, the Eurocode indicates that the 

range of applicability for ambient temperature varies from -40.0 to 40.0°C (EN 2004). Apart from 

that, all limitations match those from CEB FIP and CEB MC models. 

B3  

This model was developed by Bažant (1995). The latest version of B3 model dates back to 

2000 (Bažant and Baweja 2000). The use of the model is restricted to Portland cement concrete 

cured for at least one day. In particular, moist, sealed, and steam curing types are taken into 

account. The w/c and a/c (aggregate to cement) ratios are limited to a range that varies from 0.35 

to 0.85, and 2.5 to 13.5, respectively. A limit to cement content and average strength at 28 days is 

also presented. In this case, these values range from 160 to 720 kg/m
3
 and 17.0 to 70.0 MPa, 

correspondingly. 

GL2000 

The prediction model GL2000 is a modified version of the Atlanta 97 model that was first 

developed by Gardner and Zhao (1993). GL2000 is an experimental-based model that has been 

influenced by the CEB FIP model. The latest version of GL2000 was released in 2004. According 

to Gardner (2004), GL2000 model is applicable for concrete mixtures with average strength at 

28 days lower than 82.0 MPa. Further, the model is suitable for concrete produced with any type 

of chemical or mineral admixtures and any kind of casting temperature. 

The equations and detailed limitations of each of the discussed models are presented in the 

Eurocode (EN 2004) and the guide published by the ACI Committee 209 (ACI 2008). 

Although constantly used, shrinkage prediction models may lead to different outputs even 

when the same input data is considered. Moreover, the total shrinkage strain obtained from the 

prediction models does not always match experimentally measured strains. To justify such 

statement, the experimental results from conventional concrete (CC) mixtures that were published  
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Fig. 2 Comparison of measured and predicted shrinkage strain for different concrete types 

 

 

by different researchers were compared to the previously discussed prediction models. Besides 

CC, results from SCC and high-strength concrete (HSC) were also investigated. The interest in 

these types of concrete is because the application of theirs has dramatically increased in the 

concrete industry in the past few years, e.g., in the production of precast concrete. Three different 

papers were analyzed for each concrete type. In total, experimental results from sixty six different 
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mixtures were assessed. The error from each model was computed through the mean squared error 

(MSE) equation that is described as follows 
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where Pij is the predicted value of the shrinkage strain for the i-th data point in data set j, Mij is the 

measured value of the shrinkage strain for the i-th data point in data set j, N and n are the number 

of data sets and data points, respectively, considered in the analysis, dj is the percent difference 

between predicted and measured data point i, fj is the MSE for data set j, and fall is the overall 

MSE.  

The results from the preliminary analysis are summarized in Table 1. 

The results from Table 1 shows that CEB MC presented the lowest MSE, while EN1992 had 

the highest error. Nonetheless, an all-purpose classification can lead to misleading interpretation of 

the model since the same model, e.g., CEB MC (fall-CC=40.8% and fall-SCC=25.4%), sometimes 

exhibits different MSE when different types of concrete are investigated. For this reason, an 

independent analysis for each type of concrete is likely to improve the classification and identify 

the model that best fits each type of concrete. 

The results for each type of concrete, see Table 1, indicates that B3, closely followed by 

ACI209 and CEB FIP, had the lower coefficient of variation for CC mixtures, while EN1992 

presented the higher value. For SCC mixtures, CEB MC and B3 models had the best performance, 

whereas EN1992 had the higher coefficient of variation. Finally, for HSC mixtures, CEB MC, 

followed by ACI209 and GL2000, presented the best result, while EN1992 had the worst one. The 

measured and predicted strains (scatter plot) for different concrete types are presented in Fig. 2. 

The graphs from Fig. 2 show that EN1992 tends to underestimate shrinkage strain values 

regardless the type of concrete that is analyzed. The other models, conversely, only present local 

trends for different types of concrete. The divergence of measured and predicted results, as well as 

of prediction models themselves, is likely connected to the unavoidable difference between 

properties of the materials used in each experimental study, thereby indicating that the reliability 

of the prediction models is open to discussion. 

Instead of relying on the presented prediction models, which may not necessarily fit to certain 

applications, it would be interesting if the experts from concrete industry were able to develop 

their own prediction models based on a reduced number of experimental data. To improve the 

reliability of the predicted results, such experimental data would be closely related to the boundary 

conditions of an independent productions process, e.g., production of precast structural members. 

In that light, the present work aims to develop an independent experimental-based modeling 

approach that focus on predicting concrete shrinkage. One of the tools that come in hand to 

develop experimental-based prediction models consists in using soft-computing techniques such as 

fuzzy logic and genetic algorithm (Idorn 2005). The main goal of the proposed methodology is to 

permit users to predict material’s behavior based on a reduced number of experimental data, 

114



 

 

 

 

 

 

Genetic-fuzzy approach to model concrete shrinkage 

decreasing in this way costs associated with the performance of these tests. In order to provide an 

insight of the proposed approach, a simplified shrinkage prediction model for SCC was developed. 

The results from the developed model were compared against to published data that were not used 

in model development and to the prediction models that were discussed in the introduction of this 

work. 

 

 

2. Soft computing 
 

2.1 Fuzzy logic 
 
The concept of fuzzy logic was first introduced by Zadeh (1965). It corresponds to a natural 

way of thinking where verbally expressed rules are applied to deal with imprecision and 

uncertainties commonly present in engineering applications. The use of linguistic expressions 

allows for dealing with partial truth-values, i.e., the truth-value ranges from completely true to 

completely false according to a degree of truth (or degree of membership). This characteristic 

makes fuzzy logic reasoning a very robust and flexible tool that can be used in control (e.g., 

Pourzeynali et al. 2007) and material modeling (e.g., Štemberk and Rainová 2011).  

Within the applications of fuzzy logic, an emphasis is are put on Mamdani and Assilian (1975) 

publication, which was the first to demonstrate that fuzzy logic could be used in a profitable 

manner in controlling systems. After that, several applications followed, e.g., in commercial 

systems (Graham 1991) and improvement of car performance (Boverie et al. 1993). The 

application of fuzzy logic has also presented successful results in concrete industry and 

technology, e.g., control of cement kiln (Holmblad and Ostergaards 1982), diagnosis of concrete 

bridge deterioration (Zhao and Chen 2001), and prediction of bond strength of concrete 

(Tanyildizi 2009), and to control SCC and Ready-mixed concrete production (da Silva and 

Štemberk 2013 a,b), to mention a few. 

Fuzzy logic is represented by fuzzy expressions. These can be translated as mapping functions 

from [0,1]
n
 → [0,1], where n relates to the number of relations from the fuzzy sets. Fuzzy 

expressions are represented by if-then rules, e.g., “if x is a, then y is b”. The rules are composed by 

an antecedent, i.e., the if part “x is a”, and a consequent, i.e., the then part “y is b”. In fuzzy logic, 

the antecedent and the consequent are usually linguistic variables. 

The if-then rules can be declared by the relation Rn, which is generally expressed as 

)y(B
~

)x(A
~

:R
n

                                 (4) 

where A
~

 represents the input fuzzy set, defined on X, whereas B
~

 is the output fuzzy set, 

defined on Y, and the index n corresponds to the number of rules of the system. The interpretation 

of each rule involves three basic steps: fuzzification, inference engine, and defuzzification. 

First, the fuzzification process of maps the input data to compute the degree of membership 

μ(x) of an input x in each of the n-th rules of the system. Next, the inference engine deduces an 

output for a corresponding input by operating the n rules from the rule base of the system. The 

output from the inference engine depends on the type of operator that is used to deal with the input 

variables. Among several methods, emphases are put on Mamdani, Larsen, Tsukamoto, and 

Sugeno methods since they are usually applied in fuzzy systems (Chak et al. 1997, Lee 2004). 

Finally, the defuzzification converts a fuzzy value into a crisp value that will correspond to final  
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 (a) (b) 

Fig. 3 Comparison of the final shape of shrinkage strain curve predicted by the classical fuzzy logic 

approach with (a) three fuzzy sets (f3-sets = 25.0%) and (b) eleven fuzzy sets (f11-sets = 12.2%) 

 

 

the output of the system. In general, the defuzzification methods can be classified in two types: 

composite moments and composite maximum. The former is connected to the first moment of 

inertia of the sets, whereas the latter is related to the maximum value from the output fuzzy sets 

(Nguyen et al. 2002). 

Notice that selecting the most suitable inference engine and defuzzification technique is a 

context-dependent problem. Although strategies for selection are not properly defined, some 

criteria can be considered for guidance, e.g., continuity and computational simplicity. Additional 

criteria are discussed in Hellendoorn and Thomas (1993). 

The combination of the described steps provides a decision-making framework of representing 

human expert rules to infer human decision. The key factors to achieve an acceptable performance 

in a fuzzy system are connected to the number of fuzzy sets and the size of the system’s rule base. 

Commonly, there are m
k
 fuzzy rules, where m and k are the number of fuzzy sets and input 

variables, respectively. 

In the classical fuzzy logic approach, the number of fuzzy rules can be reduced based on by the 

user’s experience. Furthermore, the shape of the fuzzy sets is usually set as linear to simplify 

calculations. Examples of the classical approach in the designing of different material models can 

be found in Pokorná and Štemberk (2010) and Štemberk and Rainová (2011). Nevertheless, when 

this approach is implemented to model the behavior of non-linear materials, the final result is a 

rather roughly shaped piecewise curve. As a result, the predicted curve has discontinuous first 

derivative and cannot be readily used in finite element software. 

Despite the drawbacks, the classical approach is feasible for material modeling; however, 

additional more linear fuzzy sets are required to obtain smoothed curves. The situation is 

illustrated in Fig. 3, where two models composed of three and eleven linear fuzzy sets, 

respectively, were developed to predict the results from the logarithmic function y = log(x) for the 

interval x[0,100]. In both cases, the representative points of each fuzzy set were excluded from 

the calculations of the MSE. 

The results shown in Fig. 3 indicate that using the classical approach demands the collection of  
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Fig. 4 Flowchart of the methodology for optimization of fuzzy sets by genetic algorithm 

 

 

a large number of data points to obtain reliable results. In particular, the more complicated the 

shape of the curve to be modeled, the larger the amount of data to be collected. To improve the 

modeling process and thus reduce the user’s workload, a modified approach is proposed in this 

work. The approach combines fuzzy logic and genetic algorithm for optimizing the shape of the 

membership functions. 
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2.2 Genetic algorithm 
 

Genetic algorithms (GA) are stochastic adaptive methods that can be used for searching and 

optimization problems. They have been applied successfully for numerical optimization in 

engineering applications, e.g., Pezeshk et al. (2000) and Rokonuzzaman and Sakai (2010). 

Compared to traditional optimization methods, such as calculus-based and enumerative strategies, 

GAs are robust, global, and may be applied generally without recourse to domain specific 

heuristics. 

Although performance is affected by these heuristics, GAs operate on a population of potential 

solutions, applying the principle of survival of the fittest to produce successively better 

approximations to a solution (Coley 1999, Han and Kim 2002). More specifically, individuals in a 

population compete for resources and mates. The most successful individuals in each competition 

will produce more offspring than those that performed poorly. Genes from fittest individuals 

propagate throughout the population so that two good parents will sometimes produce offspring 

that are better than either parent. Consequently, each successive generation will become more 

suited to their environment. 

To sum up, it can be said that GAs aim to use selective breeding of the solutions to produce 

offspring better than the parents by combining information from the chromosomes (Mitchell 

1998). The basic form of a GA involves the following three operators to achieve evolution: 

selection, or reproduction, crossover, and mutation (Coley 1999). 

 

 

3. Genetic-fuzzy approach to model concrete shrinkage 
 

The proposed approach is composed of the following parts: (i) membership function 

optimization tool and (ii) fuzzy modeling. The first part aims to optimize the fuzzy sets that will be 

used in the experimental-based model. The second part combines the optimized fuzzy sets to build 

the prediction model. 

The framework of the proposed approach is illustrated in Fig. 4, and the details regarding each 

part of the approach are described in the following sections. 

 

3.1 Membership function optimization tool 
 

The membership function optimization tool combines the principles of fuzzy logic and Gas 

genetic algorithms to the optimize the fuzzy decision-making by minimizing the number of fuzzy 

sets and thereby fuzzy rules. This is achieved through optimization of the shape of the membership 

functions that compose the fuzzy subsets. Bearing in mind this idea, the following approach is 

proposed. 

The adjustments are performed through the definition of the exponent value EL and ER of the 

general membership function illustrated in Fig. 5.  

The general equation of the membership function to be optimized (Fig. 5) can be written as 
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Fig. 5 General membership function to be optimized 

 

 

Prior to starting the optimization process, the user has to determine the number of 

representative intervals (Nint) of the curve to be modeled. Each representative interval comprises an 

initial point (xa , ya) and a final point (xb , yb). The more complex the shape of the curve, the higher 

the number of intervals needed to achieve optimal results. After that, the user specifies the size of 

the population (Spop) to be used in the genetic part of the algorithm. 

From this point on the optimization process is automatic. Based on Nint, the encoding of each 

individual from the population is defined. It comprises a string of nenc = 2 × Nint numbers, which 

corresponds to the exponent values (EL and ER) from the membership function to be optimized, see 

Eq. (5). Further, a random population is generated and the fitness function f(xi) is evaluated, where 

the index i represents the number of the population. The fitness function corresponds to the MSE 

between the predicted values and training data of the system, see Eqs. (1) and (2). Subsequently, 

three genetic operators (selection, crossover, and mutation) are applied to generate a new 

population. The selection operator (tournament selection) chooses the chromosomes for 

reproduction. To create a new individual to be included in the population, the selected 

chromosomes are crossed over by one-point crossover scheme with a probability Cprob = 90.0%. 

Further, mutation by disturbance is performed with a probability Mprob = 10.0%. After a new 

population is generated, the fitness function re-evaluates all individuals from the new population. 

The obtained results, i.e., f(xi+1), are then compared with those from previous populations and the 

best overall solution is stored. In case none of base individuals from the new population shows 

better fitness than the stored solution, the individual with the worst solution from the new 

population is replaced with the best overall solution. 

The automatic process of generating a new population and evaluating the best fit is repeated 

until convergence occurs. In particular, convergence is considered as achieved when more than 

200 consecutive iterations do not lead to any improvements in the fitness function result. The final 

result consists of a group of optimized fuzzy sets that will compose the fuzzy decision-making. 

 

3.2 Fuzzy modeling 
 

The size of the rule base of the system depends on the number of input parameters selected for 

the prediction model and the number of optimized fuzzy sets. The general form of the rule base is 

presented as follows 
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where n is the number of curves in the database, k is the number of input parameters, 
k

I
~  and 

n
O
~  

are the group of optimized fuzzy sets for the k-th input and n-th output of the system, respectively, 

and On is the crisp output of the n-th rule of the fuzzy system. 

The decision-making of the system is based on the standard Sugeno inference engine. 

Nonetheless, the output from each fuzzy rule is composed of the group of optimized fuzzy sets, 

which represent the curves from the database of the system, rather than pre-defined equations that 

are considered in the Sugeno method (Lee 2004). After the degree of membership (μR,n) of each 

rule is computed, the output of the system (Omodel) is calculated using the following relation 
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4. Application of the proposed approach 
 

The analysis shown in this section aims to present the practicality of the genetic-fuzzy 

approach, point out its advantages and drawbacks, and verify its reliability in designing 

experimental-based prediction models. Notice, however, that the development of an all-purpose 

shrinkage prediction model is not within the scope of this work; therefore only one input 

parameter was taken into account in the framework of the model. 

The developed model focuses on predicting SCC shrinkage up to a period of 90 days. Such 

period corresponds to a construction time during which countermeasures can be taken. Because it 

is relevant for SCC mixtures, the volume of cement paste (Vcp) was chosen as input parameter of 

the prediction model. The developed model could, for example, be used in the production process 

of precast concrete during which curing is controlled and changes in the mixture composition are 

permitted but changes in material types are not. 

The initial prediction model was based on the experimental data of shrinkage strain curves of 

SCC mixtures produced with different Vcp. Depending on the selected input parameters, training 

data, and Eqs. (6) and (7), the rule base and the output of the proposed shrinkage prediction model 

can be generally written as 
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where Vcp is the cement paste volume in l/m
3
, 

n,cp
V
~  and 

n,sh

~  are the optimized group of fuzzy sets 
for cement paste volume and shrinkage strain, respectively, μR,n is the firing strength assigned to 
each 

n,sh

~  fuzzy set, and 
n,sh

  is the crisp output, namely shrinkage strain, from each rule Rn. 
The obtained model was compared to other published data and to the prediction models that 

were discussed in Section 1. After an initial analysis, a third dataset was included in the database 
to investigate the ability of the proposed approach to adjust the prediction model when additional 

training data is used. 
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Fig. 6 Shrinkage strain of SCC produced with different Vcp 

 

 

Fig. 7 v
     
 cp Fuzzy sets 

 
Table 2 Representative intervals of the experimental data used to develop the model 

Vcp [l/m
3
] Interval ta [days] εsh,a [μstrain] tb [days] εsh,b [μstrain] 

230
 

I 0 0 15 175 

II 15 175 70 305 

III 70 305 90 325 

328
 

I 0 0 20 315 

II 20 315 70 500 

III 70 500 90 530 

 

 

4.1 Training data 
 

The system illustrated in Fig. 4 was implemented for the experimental data presented in 

Leemann et al. (2011), where further details concerning the materials properties and curing 

conditions can be verified. The experimental results that are presented in Fig. 6 were considered as  

training data to develop the prediction model. 

The number of representative intervals for the curves from Fig. 6 was defined as three 

(Nint = 3), each of these is composed of the values that are presented in Table 2. The population 

size was set at Spop = 10. 
 

4.2 Results and discussion 
 

Once the input data has been defined, the proposed approach was implemented and 

convergence was achieved after approximately 500 iterations. The exponent values EL and ER of  
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(a) (b) 

Fig. 8 Optimized fuzzy sets (
n,sh

~ ) for the concrete mixture with (a) Vcp = 230 l/m
3
 and (b) Vcp = 378 l/m

3
 

 

Table 3 EL and ER values of the optimized fuzzy sets 

Fuzzy set μ(x) x1 [μstrain] x2 [μstrain] x3 [μstrain] EL [-] ER [-] 

cp
V
~

 
1,cp

V
~

 - 230 378 - 1.000 

2,cp
V
~

 230 378 - 1.000 - 

1,sh

~  

11,sh

~  - 0 175 - 1.573 

12,sh

~  0 175 305 0.842 1.436 

13,sh

~  175 305 325 0.498 0.726 

14,sh

~  305 325 - 1.144 - 

2,sh

~  

21,sh

~  - 0 315 - 1.621 

22,sh

~  0 315 500 0.393 1.519 

23,sh

~  315 500 530 0.636 1.512 

24,sh

~  500 530 - 0.762 - 

 
 

the group of optimized fuzzy sets and their limits (x1, x2, and x3, see Eq. (5)) are listed in Table 3. 

Because only two sets of data were used in the optimization process, the fuzzy sets connected 

to Vcp had to be set as linear (Fig. 7). The shape of the optimized membership functions of the 

shrinkage strain curves (
n,sh

~ ) from the database is depicted in Fig. 8. 

The obtained fuzzy logic prediction model is composed of the linear fuzzy sets that are shown 

in Fig. 7, the optimized fuzzy sets presented in Fig. 8, the rule base from Eq. (8), and the output 

equation (Eq. (9)). This model is suitable for predicting the total shrinkage strain up to 
90 days of SCC mixtures with Vcp ranging from 230 to 378 l/m

3
 and testing conditions defined in 

Leemann et al. (2011). The obtained prediction model will be regarded as FL model from this 

point on. 

The decision-making from the FL model is composed of two rules, i.e., n=2 in Eq. (8), which 

comprises the group of optimized fuzzy sets that are illustrated in Figs. 6 and 7. The reduced 

number of fuzzy sets confirms the computational effectiveness of the FL model when compared to 

a model hypothetically obtained by the classical fuzzy logic approach that was discussed in 

Section 3. The final configuration of the obtained model is presented in Fig. 9. 
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Fig. 9 Final configuration of the obtained prediction model 

 

 
 

(a) (b) 

Fig. 10 Predicted shrinkage strain curves for (a) SCC 2 and (b) SCC 3 

 

 

In order to verify the quality of the FL model in predicting shrinkage strain, the experimental 

data published in Loser and Leemann (2009) was used for comparison. These data comprise 

shrinkage strain curves from five different SCC mixtures with composition and testing conditions 

similar to the experimental data that was used to develop the FL model. The volume of cement 

paste of each SCC, which is used as input in the FL model, is listed in Table 4. The experimental 

and predicted shrinkage strains were compared and the obtained MSE values are shown in Table 5. 

As a complementary analysis, the shrinkage strain measurements of each SCC mixture from 
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Loser and Leemann (2009) were also compared to the values obtained from the prediction models 

discussed in Section 1. The input data that was used for these models are listed in Table 4. The 

obtained results are summarized in Table 5 together with those from the FL model. 

The comparison between the shrinkage strain curves that presented extreme MSE values for the 

FL model, i.e., SCC 2 and SCC 3, is illustrated in Fig. 10. 

 
 

 

Fig. 11 Scatter plot of the prediction models 

 

Table 4 Input data used to predict shrinkage strain (Loser and Leemann 2009) 

Input Parameters SCC 1 SCC 2 SCC 3 SCC 4 SCC 5 

Cement paste volume, Vcp [l/m
3
] 

(I)
 329 349 316 342 332 

Curing time, tc [days] 1 

Curing type Moist curing 

Relative Humidity, RH [%] 70.0% 

Cement type CEM I 42.5 

Water content, w [kg/m
3
] 178.0 179.0 181.0 199.0 166.0 

Design compressive strength, fc’ [MPa] 53.3 63.1 51.0 49.4 66.0 

Compressive strength at 28 days, fcm28 [MPa] 61.3 71.1 59.0 57.4 74.0 

Elastic Modulus at 28 days, Ecm28 [MPa] 35.7 38.2 35.4 35.5 40.6 

Specimen size [mm] 120 × 120 × 360 

Member shape Infinite prism 

(I) 
Vcp was used as input parameter in the FL model 

 

Table 5 MSE values for different shrinkage prediction models 

fmodel [%] SCC 1 SCC 2 SCC 3 SCC 4 SCC 5 fall [%] 

ACI209 34.2 45.9 30.3 35.6 46.3 39.0 

CEB FIP 52.3 58.1 50.0 46.7 60.3 53.7 

CEB MC 22.3 19.0 22.1 19.7 18.1 20.3 

EN1992 56.8 51.1 57.1 55.9 49.7 54.2 

B3 31.3 27.4 29.0 17.2 32.9 28.1 

GL2000 25.3 26.8 23.2 19.5 27.6 24.7 

FL Model 6.9 19.1 4.4 16.2 14.1 13.4 
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Fig. 12 Optimized fuzzy sets for v
     
 cp,n 

 
Table 6 EL and ER of the optimized group of fuzzy sets for FL2 model 

Fuzzy set μ(x) x1 [μstrain] x2 [μstrain] x3 [μstrain] EL [-] ER [-] 

cp
V
~

 
1,cp

V
~

 - 230 378 - 0.251 

2,cp
V
~

 230 378 - 2.099 - 

1,sh

~  

11,sh

~  - 0 175 - 1.573 

12,sh

~  0 175 305 0.842 1.436 

13,sh

~  175 305 325 0.498 0.726 

14,sh

~  305 325 - 1.144 - 

2,sh

~  

21,sh

~  - 0 315 - 1.621 

22,sh

~  0 315 500 0.393 1.519 

23,sh

~  315 500 530 0.636 1.512 

24,sh

~  500 530 - 0.762 - 

 

Table 7 Individual and overall MSE for different fuzzy logic-based models 

fmodel [%] SCC 1 SCC 2 SCC 3 SCC 4 SCC 5 fall [%] 

FL 6.9 19.1 4.4 16.2 14.1 13.4 

FL2 8.9 3.8 11.2 - 
(II)

 3.9 7.6 

(II)
 SCC 4 was excluded from the analysis because it was used as training data to develop the FL2 Model. 

 

 

The scatter plot of measured versus predicted values for all models that were considered in the 

analysis is presented in Fig. 11. 

From Table 5, it can be noticed that, except for SCC 2 at which CEB MC had the lowest 

results, the FL model presented the lower MSE in all cases and thus the lower overall MSE error. 

The FL model was followed by CEB MC, GL2000, B3, ACI209, CEB FIP, and EN1992 models. 

Except for the fact that GL2000 presented lower MSE than B3, the classification of the models 

shown in Table 5 is similar to the one that was presented in the preliminary analysis (Table 1). 
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Although the MSE presented by FL model was lower than all the considered models, its value 
is still considered high, around 14.0%. This is likely because only two experimental data sets were 
used to develop the model, which led to linear membership functions for 

n,cp
V
~ . 

If an intermediary data set were included as training data, the linear shape of the fuzzy set 
depicted in Fig. 7 would be optimized. As a consequence, the MSE of FL model would be lower 
than the current value of 13.4%. To verify that, one of the experimental curves from Loser et al. 
(2009), particularly SCC 4, was included as training data and the optimization process was 
performed again. The optimized fuzzy sets related to Vcp are illustrated in Fig. 12. The 
corresponding exponent values of all fuzzy sets are listed in Table 6. The combination of these sets 

leads to a modified prediction model, namely FL2 model. Notice that, once the experimental data 
from SCC 4 was used as training data to optimize the shape of the fuzzy set connected to the input 
variable Vcp , the optimized fuzzy sets for shrinkage strain (i.e., 

n,sh

~ ) that were shown in Fig. 8 
remained unchanged. 

Once again, experimental and predicted strains FL2 model were compared and the MSE values 

were computed. The obtained results are shown in Table 7 together with the MSE from FL model. 

From Table 7, it can be noticed that the overall MSE for FL2 model was considerably reduced 

when compared with the first version of the model. This confirms the assumption that the 

inclusion of additional training data would lead to a prediction model with lower overall error. 

Nonetheless, the same is not verified for the individual MSE values (fmodel). In particular, when 

compared with FL model, FL2 yielded to an increase of 2.0% and 6.8% in the MSE of SCC 1 and 

3, respectively; whereas SCC 2 and 5 had a decrease of 15.3% and 10.2%, respectively. Such 

variation indicates that the genetic-fuzzy approach likely tends to even the individual MSE values 

so as to reduce the overall error of the prediction model. Notice, however, that although the 

individual MSEs from the FL2 model were sometimes higher than the FL model, they were still 

lower than those from the other predictions models (Table 6). Although the range of application of 

the developed prediction model is limited, the FL models were able to predict the shrinkage 

behavior of SCC with a reasonably low error. This allows for excluding the need of additional 

experimental analyses, thus contributing to reduce costs. 

It is important to observe that, because few experimental data have been used for developing 

the model, the obtained model has restrictions in its range of applications. However, the further 

inclusion of a larger amount of experimental data, supported by the user’s expertise, will lead to a 

more robust prediction model. This model could consider, for instance, include long-term 

shrinkage experimental measurements, e.g., up to 365 days, to build a model for different 

applications from the one presented in this work. 
Furthermore, additional input parameters that are relevant on concrete shrinkage, such as 

relative humidity, curing time, compressive strength, among others, could be included in the 

prediction model depending on the user’s needs. The possibility of enlarging or even changing the 

training data of the system arises as an advantage of the materials model obtained from the 

proposed approach against prediction models that are based on equations and its constants. 

Finally, the lower MSE values from FL and FL2 models against the prediction models that 

were considered in the analysis confirm their quality in simulating the materials behavior. Also, 

the results indicate the success in combining fuzzy logic and GA to develop optimized material 

models. 
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5. Conclusions 
 

The approach presented in this work is based on the combination of fuzzy logic and genetic 

algorithm. The aim is to optimize the decision-making of the fuzzy system by reducing the number 

of rules and fuzzy sets in the expert system. The performance of the system was verified through 

the definition of an experimental-based shrinkage prediction model. The obtained conclusions are 

presented as follows. 

The genetic-fuzzy approach allowed for including relevant experimental data in the modeling 

process and for combining these data through optimized decision-making rules. The application of 

the proposed approach provided quantitative results (i.e., shrinkage prediction model) that can be 

readily applicable in existing finite element codes. The group of optimized fuzzy sets led to a 

proper prediction of shrinkage curves with a reduced number of rules, therefore making the entire 

modeling process more effective. 

The comparison between experimental measurements and predicted values from the FL model 

yielded to an overall MSE of 13.4%. This indicates that the model properly represents the 

material's behavior, and it can be used to predict SCC shrinkage as long as the limits of the model 

are respected. As a result, the number of experimental tests can be considerably reduced when a 

new material model is required, leading thus to cost reduction. 

A complementary analysis indicates that the obtained model will tend to reach a higher 

robustness and lower error once a larger number of experimental data points are included. In 

particular, the MSE of the FL model was reduced to ~8.0% after including an additional curve as 

training data. This proves the flexibility of the proposed genetic-fuzzy approach in adjusting the 

model according to the training data. Such flexibility is considered as a great advantage against 

other prediction models that were discussed in this work. 
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