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Abstract.  Corrosion of RC bridge decks eventually leads to delamination, severe cracking and 

spalling of the concrete cover. This is a prevalent deterioration mechanism and demands for the most 

costly repair interventions during the service life of bridges worldwide. On the other hand, decisions for 

repairs are usually made whenever the extent of a limit crack width, reported in routine visual 

inspections, exceeds an acceptable threshold level. In this paper, while random fields are applied to 

account for spatial variation of governing parameters of the corrosion process, an analytical model is 

used to simulate the corrosion induced crack width. However when dealing with random fields, the 

Monte Carlo simulation is apparently an inefficient and time consuming method, hence the utility of 

neural networks as a surrogate in simulation is investigated and found very promising. The proposed 

method can be regarded as an invaluable tool in decision making concerning maintenance of bridges. 
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1. Introduction 
 

Deterioration of RC bridge decks due to frequently applied deicing salts is the main challenge 

of bridge owners worldwide. Existing Bridge Management Systems (BMSs) are based on 

condition rating data collected during routine visual inspections. In these systems, Markov chain 

models are incorporated in the core deterioration models of the system to predict the future bridge 

condition. Obviously there is a high degree of uncertainty in deterioration mechanisms and also 

inconsistency exists in inspectors’ judgments. This was the motivation for the most researchers in 

the past decade to apply reliability methods for evaluation of deterioration of RC bridges. In the 

proposed reliability based maintenance management systems mechanistic deterioration models are 

utilized in a probabilistic framework to account for temporal variations of strength and loads 

(Frangopol et al. 1997). Nowadays in spite of considerable research concerning reliability analysis 
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of bridges limited reported research exist in literature considering spatial variability of corrosion. 

In fact, in concrete structures, due to the spatial variability of workmanship, the material and 

dimensional properties of elements are not homogeneous. Furthermore, the environmental factors, 

e.g., surface chloride concentration, vary over the surface of the bridge components resulting in 

spatially variable corrosion damage symptoms. So prediction of the extent of damage, important 

from practical point of view in maintenance planning, needs more sophisticated reliability analysis, 

i.e., a random field instead of a random variable as the whole component parameter indicator, e.g., 

concrete compressive strength of the deck. 

There are limited reported studies considering the effects of spatial variation of corrosion 

instructural reliability models (Li et al. 2004, Vu and Stewart 2005, Karimi et al. 2005, Sudret 

2008). These research revealed the utility of considering spatial variability of corrosion parameters 

in prediction of the extent and likelihood of corrosion induced damage in RC structures. However, 

in most of these reliability analyses the propagation phase of the corrosion was not studied and 

primarily focused on the corrosion initiation phase or empirical models were incorporated for the 

propagation phase, e.g., prediction of crack width increase with time. 

In the propagation phase, after initiation of surface cracks, their width will increase with time to 

a limit that spalling of concrete is prone. There are some models in the literature for corrosion-

induced crack initiation phase (Liu and Weyers 1997, El Maaddawy and Soudki 2007), however 

the analytical model developed by Li et al. (2006) has the advantage of modeling crack width 

increase with time which is apparently more appropriate in defining serviceability limit states. This 

model is used in this study.  

Furthermore, it can be noted that serviceability limit states, e.g., cracking, delamination, 

spalling, etc., in contrast to strength limit states, occur earlier in the service life of a bridge and 

demand more for repair and maintenance interventions. So the extent of cracked, spalled or 

delaminated area (length) seems an appropriate indicator of bridge condition and reliability. 

In this paper, a two-dimensional temporal-spatial variable reliability analysis is conducted to 

predict the likelihood and extent of crack sofa hypothetical RC bridge deck exposed to deicing 

salts. In this regard spatial variability of corrosion model parameters is modeled using random 

fields, discretized with the midpoint method. These parameters include concrete material 

properties, concrete cover depth and surface chloride concentration. The number of discretized 

elements depends on how large the deck area is and which precision in discretization is desirable. 

However, the crude Monte Carlo simulation for prediction of crack width of a large number of 

discretized correlated elements during the whole life cycle is very time consuming and intractable. 

More difficulty arises especially in using the Li et al. (2006) analytical model for prediction of 

crack width which needs solving some nonlinear simultaneous equations in every iteration of 

Monte Carlo simulation for every discredited element in every time step. For tackling this problem 

the utility of neural networks are sought as surrogates for crude Monte Carlo in calculation of 

crack initiation time and crack width increase with time during service life of the bridge. Training 

of neural networks is based on hypercube sampling of concrete compressive strength and cover 

depth as the governing independent random fields. It was found that using well trained neural 

networks is very promising in attaining higher efficiency and precision of predicted crack width 

and extent of damage. 

In the following sections of this paper, first analytical models pertaining to corrosion 

mechanism of reinforcement in concrete including initiation and propagation phases are presented. 

A brief introduction to random fields is the subject of the next section. After that, some notation 

regarding application and precision of feed forward neural networks is investigated. Furthermore 
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Latin Hypercube Sampling technique which is used for uniform selection of training samples of 

the neural networks is presented. And finally the proposed method is thoroughly explained, 

illustrated on a hypothetical bridge deck and the precision and efficiency of the results are 

discussed in conclusion section. 

 
 
2. Corrosion mechanism 
 

2.1 General 
 

De-icing salts used in bridge decks cause ingress of chlorides through the concrete cover. The 
free chlorides in saturated concrete deactivate the natural protective oxide layer which is formed 
around the reinforcements by the strong alkalinity of pore solution. Once the protective layer has 
dissolved, if chloride concentration exceeds a threshold value and enough oxygen and moisture are 
present, corrosion is initiated. In the propagation phase, since the corrosion products have a 
volume of three to six times greater than the original steel, tensile stresses within the concrete 
increase which in turn result in cracking and spalling at the surface concrete. 

 
2.2 Initiation phase 

 
Numerous studies have found that the penetration of chlorides through concrete can be best 

represented by a diffusion process if the concrete is assumed to be relatively moist. In this case, 

the penetration of chlorides is given empirically by Fick’s second law of diffusion if the diffusion 

is considered as one-dimensional in a semi-infinite solid; as expressed by Eq. (1) 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2                                 (1) 

In Eq. (1), C is the chloride concentration and D is the chloride diffusion coefficient of 

concrete. Crank’s solution to Fick’s second law of diffusion is represented as Eq. (2) (ACI 365 1R-

00) 

𝐶 𝑥, 𝑡 = 𝐶0 + (𝐶𝑠𝑎 − 𝐶0)  1 − 𝑒𝑟𝑓  
𝑥

2 𝐷𝑎 𝑡
                      (2) 

In general, the chloride concentration profiles obtained under different climates are used in 

mathematical models for obtaining parameters of Eq. (2). A plot of chloride concentration vs. 

penetration depth can often be closely described by Crank’s solution to Fick’s second law of 

diffusion. The curve-fitting results in these parameters: apparent diffusion coefficient, Da, apparent 

surface chloride concentration, Csa and the original chloride concentration, C0 then C(x,t) express 

the chloride content in depth of x at time t. These parameters are called apparent because obtained 

through curve fitting to the chloride concentration profiles of cored samples in which other 

penetration mechanisms have some effects. The corrosion of reinforcements is initiated when the 

chloride content, in steel bars embedment depth, Xc, exceeds a threshold value, Ccr, which 

depassivates the steel embedded in the concrete provided that sufficient moisture and oxygen are 

present. In general, the uncertainty of governing parameters can be handled with random variables. 

There are lots of parameters, e.g. the wind direction, the sunlight effects, humidity of the micro-

environment and etc., which affect the diffusion of the aggressive ions in the concrete, even in the  
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Table 1 Statistical description of variables 

Variable 
Scale of fluctuation 

θx = θx (m) 
Mean μ C.O.V Distribution Reference 

Concrete Cover(Xc ), 

mm 
3.5 50 0.2 Normal 

Stewart & 

Mallard 

(2008) 

Concrete Compressive 

Strength (𝑓𝑐
′  ), MPa 

3.5 35 0.2 Lognormal 

Stewart & 

Mallard 

(2008) 

Surface Chloride 

Concentration (Csa), 

kg/m
3
 

3.5 3.5 0.6 Lognormal 

Stewart & 

Mallard 

(2008) 

Critical Chloride 

Concentration (Ccr), 

kg/m
3
 

- 0.9 0.19 
Uniform  

(0.6-1.2) 
Dupart (2007) 

Reinforcement Size (D), 

mm 
- 12 - - 

Li et al. 

(2006) 

Porous Media around 

Reinforcement (d0),  

µm 

- 12.5 - - 
Li et al. 

(2006) 

αrust - 0.57 - - 
Li et al. 

(2006) 

Density of corrosion 

products (ρrust), kg/m
3
 

- 3600 - - 
Li et al. 

(2006) 

ρst (kg/m
3
) - 7850 - - 

Li et al. 

(2006) 

Poisson coefficient (ν) - 0.18 - - Li i (2006) 

 

 

Fig. 1 Schematic representation of cracking process (Li et al. 2006) 

 

 

opposite sides of a single concrete element. So without sufficient experimental data excreted from 

the existing structure under study, derivation of accurate statistical distributions for the 

aforementioned parameters, as random variables, will be cumbersome. However Dupart’s (2007) 

concluding of various measurements in the literature for various environmental and workmanship 

classifications, made some general propositions. Based on such propositions (Dupart 2007, 

Stewart and Mullard 2008) the descriptive parameters of random fields and random variables are 

as shown in Table 1. 

Considerable research has been undertaken on the corrosion-induced cracking process, with 

perhaps more numerical and experimental investigations than analytical studies (Chen and 
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Mahadevan 2008, Vu et al. 2005). For reliability calculations, a closed form mathematical model 

has a paramount advantage. In this regard, some models for the prediction of time to crack 

initiation of corroding reinforced concrete (RC) structures have been developed (Liu and Weyers 

1997, El Maaddawy and Soudki 2007), but little has been developed on crack width growth with 

time. Some empirical models based on mathematical regression of experimental results exist in the 

literature. For example Vu et al. (2007) developed an empirical model for prediction of time of 

crack width increase up to 1 mm. This model is based on accelerated corrosion tests in the 

laboratory. However the applicability of such empirical models should be examined in other real 

situations. 

In this paper, the analytical model developed by Li et al. (2006) is used for simulation of 

corrosion-induced crack width variation with time. The merit of this model is that it is directly 

related to the factors that affect the corrosion such as concrete geometry and property and 

corrosion rate. 

In this model, as shown schematically in Fig. 1, concrete with embedded reinforcing steel bars 

is modeled as a thick-wall cylinder, where d0 is the thickness of the annular layer of concrete pores 

(that is, a pore band) at the interface between the steel bars and concrete, D is the diameter of steel 

bar, and Xc is the concrete cover. 

The inner and outer radii of the thick-wall cylinder are a = (D + 2d0)/2 and b = Xc + (D + 

2d0)/2. When the steel bar corrodes in concrete, its products fill the pore band completely and a 

ring of corrosion products forms, the thickness of which, ds(t) (Fig. 1), can be determined from Eq.  

(3) as below (Liu et al. 1997) 

𝑑𝑠 𝑡 =
𝑊𝑟𝑢𝑠𝑡 (𝑡)

𝜋(𝐷+2𝑑0)
 

1

𝜌𝑟𝑢𝑠𝑡
−

𝛼𝑟𝑢𝑠𝑡

𝜌𝑠𝑡
                          (3) 

Where αrust is a coefficient related to the type of corrosion products, ρrust is the density of corrosion 

products, ρst is the density of steel, and Wrust (t) is the mass of corrosion products. Wrust (t) increases 

with time and can be determined from Eq. (5) (Liu et al. 1997) 

𝑊𝑟𝑢𝑠𝑡 (𝑡) =  2  0.105 1 𝛼𝑟𝑢𝑠𝑡  
𝑡

0
𝜋𝐷 × 𝑖𝑐𝑜𝑟𝑟  𝑡 𝑑𝑡 

1
2 
               (4) 

Where icorr (t) is the corrosion current density (in μA/cm
2
). In general, the formation of rust 

products on the steel surface will reduce the diffusion of the iron ions away from the steel surface 

resulting in reduced corrosion rates with time. For example Vu and Stewart (2005) suggested the 

following time dependent equation proposed for icorr (t) 

𝑖𝑐𝑜𝑟𝑟  𝑡 = 𝑖𝑐𝑜𝑟𝑟  1 × 0.85 𝑡 − 𝑇𝑖 
−0.3                      (5) 

Where Ti is the time to corrosion initiation and icorr (1) is the corrosion current density in the first 

year after corrosion initiation which is based on concrete quality and can be calculated using Eq. 

(6) as below 

𝑖𝑐𝑜𝑟𝑟  1 =
27(1−𝑤/𝑐)−1.64

𝑋𝑐
                               (6) 

Where 𝑤/𝑐 represents water to cement content ratio in the concrete. 

According to Li et al. (2006) the growth of the ring of corrosion products exerts an outward 

pressure on the concrete at the interface between the rust products and concrete. Under this 
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expansive pressure, the concrete cylinder undergoes three phases in the cracking process: 1) not 

cracked; 2) partially cracked; and 3) completely cracked. In phase 1 (no cracking), the concrete 

can be considered as elastically isotropic so that the theory of elasticity can be used to determine 

the stress and strain distribution in the cylinder. For a partially cracked concrete cylinder, cracks 

are considered to be smeared and the concrete to be a quasi-brittle material, so that the stress and 

strain distribution in the cylinder can be determined based on fracture mechanics. When the crack 

penetrates to the concrete surface, the concrete cylinder completely fractures. Knowing the 

distribution of stress and strain, the crack width at the surface of the concrete cylinder can be 

determined as below 

𝑤𝑐 =
4𝜋𝑑𝑠

 1−𝜈𝑐 (𝑎 𝑏)  𝛼
+ 1+𝜈𝑐 (𝑏 𝑎)  𝛼

−
2𝜋𝑏𝑓𝑡

𝐸𝑒𝑓
                    (7) 

Where νc is Poisson’s ratio of concrete and α (< 1) is the tangential stiffness reduction factor. 

According to Li et al. (2006) it is assumed that the residual tangential stiffness is constant along 

the cracked surface, that is, on the interval [a, r0], and represented by αEef, where Eef is the 

effective elastic modulus of concrete which can be calculated as per Eq. (10) where 𝜑𝑐𝑟  and 𝐸𝑐  

represent creep coefficient and elastic modulus of the concrete (Liu et al. 1997) 

𝐸𝑒𝑓 =
𝐸𝑐

1+𝜑𝑐𝑟
                                 (8) 

In Eq. (7), the key variables are the thickness of corrosion products ds, which is directly related 

to the corrosion rate (icorr), and the stiffness reduction factor α, which is related to stress conditions 

and concrete property and geometry. Eq. (7) which is used in this paper has been verified by both 

numerical and experimental results (Li et al. 2006). In using this equation, one needs to calculate 

time dependent variables α and ds. The former is determined solving simultaneous equations 

derived in Li et al. (2006) which are not repeated here for briefness purposes, while the later is 

calculated according to Eq. (3). 

 

2.3 Effect of concrete quality 
 

Various mechanical properties of concrete are usually correlated to compressive strength of 

concrete, a parameter which can be easily measured in practice. Referring to ACI 318-05, the 

concrete tensile strength (𝑓𝑡) and modulus of electricity (𝐸𝑐) is related to compressive strength as 

𝑓𝑡 = 0.53 𝑓𝑐
′ (MPa                              (9) 

𝐸𝑐 = 4600 𝑓𝑐
′ (MPa)                            (10) 

The other important influencing parameter in studying corrosion in RC structures is the 

chloride diffusion coefficient. Several models have been developed to consider the influence of 

mix proportions on the chloride diffusion coefficient (Bamforth and Price 1996, Papadakis et al. 

1996). The model developed by Papadakis et al. (1996) which appears to be the best fit to 

available literature is used in this study 

       𝐷 = 𝐷𝐻2𝑂0.15
1+𝜌𝑐

𝑤

𝑐

1+𝜌𝑐
𝑤

𝑐
+

𝜌𝑐
𝜌𝑎

𝑎

𝑐

 
𝜌𝑐

𝑤

𝑐
−0.85

1+𝜌𝑐
𝑤

𝑐

 
3

                                                 (11) 
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In this model a/c is the aggregate-to-cement ratio, ρc and ρa are the mass densities of cement 

and aggregates respectively and DH2O is the chloride diffusion coefficient in an infinite solution (= 

1.6 × 10
-5

 cm
2
/s for NaCl). The water-cement ratio is estimated from Bolomey's formula for 

Ordinary Portland Cement (OPC) concretes as below 

𝑤/𝑐 =
27

𝑓𝑐
′+13.5

                                (12) 

Where 𝑓𝑐
′ is the concrete compressive strength of a standard test cylinder in MPa. 

 
 
3. Random fields 
 

3.1 General 
 
Effective parameters of the corrosion process exhibit a spatial variation in RC elements. For 

example, Poupard et al. (2006), studying an RC beam in marine exposure environment concluded 

that parameters like apparent diffusion coefficient and surface chloride concentration may have a 

high degree of spatial variation even in one element. Spatial variability of physical properties 

includes systematic spatial variation, e.g. variation of the mean value and standard deviation which 

is easily handled considering corresponding random variables, and random spatial variation. 

Random spatial variability of continuous media can be represented by the use of random fields 

(Chryssanthopoulos and Sterritt 2002). In the case of a large surface, a 2D random field can be 

used (Li et al. 2004, Stewart et al. 2006), while in the case of beam elements a 1D random field 

will be more appropriate (Engelund and Sorensen1998,Karimi et al. 2005, Sudert et al. 2007).  

A simple model for a random field is a homogenous isotropic Gaussian field, where the random 

variables have a Gaussian distribution that does not change with direction or location, therefore the 

interdependency between two random variables defined at two points depends only on the distance 

between them.  

The correlation function ρ(τ) determines the correlation coefficient between two elements 

separated by distance (τ) and is representative of the spatial correlation between the elements. As 

the distance between correlated elements becomes smaller, the correlation coefficient approaches 

unity as defined by the correlation function, and likewise, as the distance increases the correlation 

coefficient reduces. The Gaussian (or squared exponential) correlation function used herein is 

defined as (Stewart and Mullard 2008) 

𝜌 𝜏 = 𝑒𝑥𝑝  −  
 𝜏𝑥  

2

𝑑𝑥
2  −  

 𝜏𝑦  
2

𝑑𝑦
2                             (13) 

Where dx = θx / √π; and dy = θy / √π. 

θx and θy are the scales of fluctuation for a two dimensional random field in x and y directions, 

respectively (VanMarcke 1984); and τx = xi – xj and τy = yi – yj are the distances between the 

centroid of element i and element j in the x and y directions, respectively.   

The parameters of the Gaussian random field are the mean value µ , the standard deviation σ 

and the correlation length dx and dy.   

Various methods of discretization of random fields have been proposed (Sudert and Der 

Kiureghian 2000). In the midpoint method, the random field needs to be discretised into N 
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elements of identical size and shape. The random field within each element is represented by a 

single random variable defined as the value of the random field at the centroid of the element and 

this value is assumed to be constant within the element. Following the discretisation, the 

covariance function can be replaced by an n ×  n covariance matrix C, for which the (i, j)
th
 element 

is given by Eq. (13) 

C i,j=ρi,j×σ
2
                                 (14) 

If the distribution type is non-Gaussian, first a transformation into the Gaussian space is 

performed using the Nataf model (Nataf 1962). In this paper, regression formulas developed by Li 

and Der Kiureghian (1993) will be used for the mapping of the correlation coefficients to Gaussian 

space. 

The matrix C is a symmetric completely positive matrix and the values on the diagonal refer to 

the autocorrelation and are equal to the variance of the Gaussian variable. The eigenvalue problem 

of the covariance matrix is C 

jjjC                                   (15) 

A discretised random field, given by a vector p of length n, can be represented by the 

Karhunen-Loeve (KL) expansion in the form 

j

nr

j

jjxHxH 





1

)()(                         (16) 

Where )(xH denotes the mean, 
j  are uncorrelated standard normal (zero mean and unit 

variance) random variables. The mean )(xH  
and the eigensolutions j

 
and j are 

deterministic. The randomness of the field is only included in 
j . There are n eigensolutions, but 

in general it is sufficient to consider only the r < n eigenfunctions with the largest eigenvalues, 

which give a good approximation of the random field. 

  
 

4. Neural networks  
 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by 

the way biological nervous systems, such as the brain, process information. The key element of 

this paradigm is the novel structure of the information processing system. It is composed of a large 

number of highly interconnected processing elements (neurones) working in union to solve 

specific problems. 

During the last decade approximations based on the concept of artificial neural networks are 

being introduced into reliability analysis. The primary motivation of using neural networks lies in 

their capability of good approximation of the results of time consuming repeated analyses of the 

Monte Carlo method. Papadrakakis et al. (1996) examined the utility of neural networks in 

reliability analysis of elastic-plastic structures and found this method very attractive. Hurtado and 

Alvarez (2001) compared performance of various types of neural networks in structural reliability 

analyses. Cheng et al. (2008) proposed ANN-based response surface approximation in highly 

nonlinear implicit performance functions utilizing the uniform design method for selection of a 
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training set of random variables. Hurtado (2002) demonstrated the applicability of Neural 

Networks for analyzing uncertainty in one dimensional stochastic finite element problems. Most 

and Bucher (2007) used a 2-D random field for representation of fluctuating material properties 

and then employed neural networks for approximating the response of a complicated model of 

coupled meshless and finite element analysis. 

There exist a variety of alternatives to design a neural network. The focus of this study is set on 

feed forward neural networks which are already applied successfully in many fields of 

engineering. This was the first and arguably simplest type of artificial neural network devised. In 

this network, the information moves in only one direction, forward, from the input nodes, through 

the hidden nodes and to the output nodes. There are no cycles or loops in the network. 

In the mathematical theory of neural networks, the universal approximation theorem states, that 

the standard multilayerfeed-forward network with a single hidden layer, which contains finite 

number of hidden neurons, is a universal approximator among continuous functions (Hornik  

1991) 

A commercially available software package, MATLAB Neural Network toolbox, is employed 

to facilitate the analysis. Hence, three layer ANNs are used here. In this work, two ANNs are 

employed to calculate: 1) crack initiation time; and 2) crack width increase with time during the 

service life of a hypothetical bridge deck. In this study the output layer of each ANN consists of a 

single neuron representing crack initiation age for the first ANN and time-dependent crack width 

for the other one. The input layer for the first ANN has two neurons representing the concrete 

compressive strength (𝑓𝑐
′) and cover depth (Xc), as governing independent random variables of 

corrosion propagation. The input layer of the other ANN has one extra neuron, age as the other 

influencing input, to compute the crack width at that age. 

A very important point for a sufficient network approximation is the design of the network 

architecture. Depending on the number of available training samples the number of neurons in the 

hidden layers has to be chosen in that way, whereas the so-called over-fitting is avoided. This 

phenomenon occurs, if the number of hidden nodes is too large for the number of training samples. 

Then the network can converge easier and fits well for the training data but it cannot generalize 

well for other data. Obviously if too few hidden units employed, high training error and high 

generalization error will occur due to underfitting. It is recommended to try many networks with 

different numbers of hidden units, estimate the generalization error for each one, and choose the 

network with the minimum estimated generalization error. 

Finally based on trial and error 100 hidden neurons are used for both networks. Therefore the 

first ANN, computing the crack initiation time, is composed of 2 input, 100 hidden and 1 output 

neurons and the other ANN is composed of 3 input, 100 hidden and 1 output neurons.  

Basically, learning is a process by which the free parameters (i.e., synaptic weights and bias 

levels) of a neural network are adapted through a continuing process of stimulation by the 

environment in which the network is embedded. In this study whilst in the hidden layer neurons 

use the sigmoid transfer function, a linear function is employed for the neurons of the output 

layers. The Levenberg-Marquardt algorithm is used to adjust the weights and biases of the network 

in order to minimize the mean squared error between the resultant values solving the equations of 

the analytical model and that predicted using the ANN models. The minimization of the mean 

squared error proceeds until it converges to within a preset tolerance for all test points.  

The selection of training datasets is an important issue in the context of establishment of the 

ANN model. The main aim in the selection of training datasets is to make the selected training 

data as uniformly as possible to cover the entire design space. Therefore, Latin hypercube 
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sampling is adopted herein to select the training datasets for establishing an ANN model. 

 

 

5. Latin hypercube sampling 
 

Latin hypercube sampling was first proposed by McKay et al. (1979). However, various 

improvements have been developed for increasing the efficiency and precision of this method 

(Olsson et al. 2003). In this method, the desired accuracy of the estimated distribution function 

determines the number of realizations required. Let N denote the required number of realizations 

and K the number of random variables. The sampling space is then K- dimensional. An N×K 

matrix P, in which each of the K columns is a random permutation of 1, N, and an N × K matrix R 

of independent random numbers from the uniform (0, 1) distribution are established. These 

matrices form the basic sampling plan, represented by the matrix S as 

                 𝑆 =
1

𝑁
(𝑃 − 𝑅)                              (17) 

Each element of S, sij, is then mapped according to its target marginal distribution as 

𝑥 𝑖𝑗 = 𝐹−1
𝑥𝑗

 𝑠𝑖𝑗                                                                  (18) 

where 𝐹−1
𝑥𝑗

 represents the inverse of the target cumulative distribution function for variable j.  

Then samples are spread over the entire sampling space as the generation of the LHS plan requires 

one image from each row and each column. If N realizations from the entire sampling space had 

been chosen completely at random, as in crude Monte Carlo sampling, there is a risk that they 

would form a cluster and some parts of the sampling space would not be investigated.  

 
 
6. Description of method 
 

The main purpose of this paper is to present a method for prediction of extent and likelihood of 

corrosion-induced severe cracking using ANNs. In this regard first the adapted computational 

procedure is briefly introduced and then application of the method and the results are investigated 

 
6.1 Computational procedure 

 
Step 1-Use midpoint method for descretization of independent random fields; e.g. concrete 

cover (Xc), concrete compressive strength (𝑓𝑐
′) and surface chloride concentration (Cs); into 𝑁𝑇  

correlated random variables and construct associated covariance matrix C for every random field. 

Step 2-Use regression formulas developed by Li and Der Kiureghian (1993) for the mapping of 

the correlation coefficients to Gaussian space. 

Step 3-Use the Karhunen-Loeve transformation in order to simulate vector random fields 

Step 4-Simulate 𝑁𝑠𝑖𝑚 realization of uncorrelated standard normal random variables (
j ) using 

Latin hypercube sampling. This means simulation of 𝑁𝑠𝑖𝑚  realizations of random fields. 

Step 5-Simulate 𝑁𝑠𝑖𝑚 realization of other random variables, e.g., critical chloride concentration. 

Step 6-Calculate corrosion initiation time, Tint for every descretized element in every realization of 

simulation using Eq. (2). 
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Step 7-Calculate crack initiation time and crack width of every decartelized element during a 

prescribed lifetime of deck in every realization of simulation using Eq. (7) and solving 

simultaneous equations of Li et al. (2006). 

Step 8-Train ANNs with the simulated values of previous step as target values. 

Step 9-Trained ANNs can work as a surrogate to time-consuming Monte Carlo method for 

calculation of the extent and likelihood of severely cracked area of deck. 

 
6.2 Hypothetical bridge deck specification 
 
A spatial time-dependent reliability analysis is developed for a hypothetical RC bridge deck 

with 12 m length and 10 m width exposed to de-icing salts. The analysis considers corrosion 

initiation and then propagation of corrosion-induced cover cracking in the top surface of the deck 

until a crack width of 0.3 mm is reached, which is the prescribed limit crack width in Duracrete 

(2000) and ACI-318-05. A 2D homogenous Gaussian random field is applied to consider the 

spatial variability of concrete compressive strength. This means that related properties of concrete, 

e.g. chloride diffusion coefficient, concrete tensile strength and concrete effective modulus of 

elasticity, water-cement ratio and corrosion density rate are the dependent random fields as per 

equations presented in Sections 1.2 and 1.3 of this paper. Furthermore, concrete cover depth and  

surface chloride concentration are represented by independent random fields to account for spatial 

variations of these parameters. 

According to Stewart and Mullard (2008) the scale of fluctuation of these random fields is 

approximately 3.5 m (dx = dy = 2.0 m). In Table 1 full statistical description of random fields, 

random variables and deterministic variables are illustrated. The 2D random field is discretized 

into square elements of size Δ = 0.5 m, resulting in 𝑁𝑇 = 480 elements. For every realization of 

Monte Carlo simulation the proportion of deck area with crack widths exceeding limit crack width 

at the time of t is calculated as follows 

𝑋 𝑡 =
𝑛𝑓  𝑡>𝑇𝑖𝑛𝑡  𝑗  +𝑇sc (𝑗 ) 

𝑁𝑇
                 (19) 

In Eq. (19) corrosion initiation time of element j is denoted by Tint  𝑗 , this element’s crack width 

(𝑤𝑐) reaches to 0.3 mm in Tsc(𝑗) years after corrosion initiation and nf  is the total number of  

 

 

 

Fig. 2 Feedforward neural network architecture (Most and Bucher 2007) 
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Fig. 3 Random realization of spatial variation ofcover depth of concrete deck 

 

 

Fig. 4 Random realization of spatial variation of crack width increase with time 

 

 

Fig. 5 Probability of the exceeding extent of cracked area from an acceptable threshold 
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elements for which the condition  𝑡 > 𝑇𝑖𝑛𝑡 𝑗 + Tsc(𝑗)  is true. Hence 𝑋 𝑡 , i.e., extent of 

damage, is a dependent random variable 

The developed code in MATLAB carries out Monte Carlo simulation in the space of 

independent standard normal variables of discretized random fields. Fig. 3 represents a random 

realization of spatial variability of concrete cover depth, concrete compressive strength and surface 

chloride concentration as independent random fields.  

The result of this Monte Carlo analysis is depicted in Fig. 4 where a random realization of the 

crack width increase in the elements of the bridge deck system is represented. It is obvious that in  

every cycle of Monte Carlo simulation another realization may occur. The proportion of the failed 

area to the whole deck area in every cycle of the Monte Carlo simulation results in a random 

variable 𝑋 𝑡 , which representsthe extent of damage. 

The most important result of time-dependent spatial reliability analysis is that the probability of 

exceeding the extent of failure from an acceptable threshold can be calculated. In Fig. 5 the results 

of such an analysis are represented for various acceptable limits of 𝑋 𝑡 . In risk-based 

maintenance management of bridges this can be a rational criterion in selecting optimum life cycle 

repair and maintenance strategies. For example, if 𝑋 𝑡 = 30% is the acceptable extent of failed 

area, while there will be negligible risk prior to the age of 20 years, it will increase dramatically 

and at the age of 30 years this probability will be about 95 percent.  

 
6.3 Neural networks 
 
The structure, input and outputs of developed neural networks are explained in Section 3. A 

total number of 1000 data sets are produced using Latin hypercube sampling method from which 

70% is used in random for training of ANNs and two batches of 15% for validation and testing of 

the performance of the networks respectively. 

Training set is used to adjust the weights on the neural network. Validation set is used to 

minimize overfitting. It is verified that if any increase in accuracy over the training data set 

actually yields an increase in accuracy over validation data set that has not been shown to the 

network before. If the accuracy over the training data set increases, but the accuracy over the 

validation data set stays the same or decreases, then overfitting occurs and training should be 

stopped. Testing set is used only for testing the final solution in order to confirm the actual 

predictive power of the network. 

In Fig. 6, the results of regression between predicted and target values of the first ANN are 

illustrated for example. As it is shown the R factors of the regression are more than 0.99 for three 

datasets of training, validation and testing which means very good training and generalization of 

trained ANN. After successful training ANN can be used as a surrogate to the Monte Carlo 

simulation. This is the same for the other ANN, calculating the crack width during service life.  

After training and testing of ANNs, for every discretized element of deck, these networks are used 

for simulation of the crack initiation time and crack width in every time step during the life cycle. 

The precision of the trained ANNs is very promising. Fig. 7 represents the close conformance of 

simulated crack width of the crude Monte Carlo method and trained ANN for one randomly 

selected discretized element. 

The precision of the method is reported once again in Fig. 8, comparing two methods, the 

pattern of cracked area of the deck in one of the realizations, i.e., one random data point of the 

simulation, is in very close conformance to that of Monte Carlo simulation during whole service 

life. These results show very good performance of ANNs, in terms of precision, as surrogates to  
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Fig. 6 Regression of ANN output and Latin hypercube simulation results as target values 

 

 

Fig. 7 Conformance of Monte Carlo simulated crack width with that of ANN 

 

 

the Monte Carlo simulation. 

But as the main motivation of this study, saving time in computation is of interest. In this 

sample analysis using well trained ANNs means decreasing the time of computation in the order of 

7 to 8 times. Using an Intel ®  Core 2 Due, 2.2 GHz CPU, the full analysis with the proposed 

method takes about 70 minutes while it is completed in about 550 minutes via crude Monte Carlo 

simulation with 10
6
 iterations. This is because of the time-consuming iterative solution of 

nonlinear simultaneous equations needed for crack width calculation according to the analytical 

model. It shall be noted that application of this method for bridges with large deck areas, and or 

considering strength limit states, which require more sophisticated structural analyses, the 

proposed method will be more attractive. 
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Fig. 8 Random realization of spatial variation of crack width at age 15, 30, 50 and 100 years of 

service life, (a) results of Monte Carlo simulation, (b) results of Neural Network simulation 

 

 
7. Conclusions 
 

In this paper, first the spatial time-dependent reliability analysis of the RC bridge decks subject 

to chloride ingress is studied. The spatial variability of concrete cover depth, compressive strength 

and surface chloride concentration was considered whilst other material and deterioration 

parameters were treated as dependent random fields or random variables. The results of the 

analysis are presented as the extent and likelihood of the corrosion damage during the life cycle of 

a hypothetical bridge deck. Since the Monte Carlo simulation is a time consuming and inefficient 

method working on random fields, the utility of neural networks as a surrogate is investigated. In 

summary, the following conclusion can be made 

Ⅰ.The proposed spatial-temporal variable analysis yields to the prediction of extent and 

likelihood of damage. This is an invaluable data in decision making about maintenance 

management of bridges. 

Ⅱ.The analytical model used for crack width calculation requires iteratively solving 

simultaneous equations in every time step. In the Monte Carlo simulation method, these equations 

shall be solved many times for every discretized element. Consequently, spatial time-dependent 

reliability analysis is very time consuming. The precision of simulated crack initiation time and 

crack width using trained ANNs is very rewarding and the results are in well conformance with 
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those of Monte Carlo simulation. 

Ⅲ.The merit of the proposed method is in its efficiency in terms of the required time for 

simulation. Based on the prescribed precision, the efficiency increases in the order of 8times 

compared to the crude Monte Carlo method. This method may be even more interesting dealing 

with strength limit states, e.g. flexural failure of a bridge deck, which require more sophisticated 

reliability analysis. 
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