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Abstract.  This paper improves genetic programming (GP) and weight genetic programming (WGP) and 
proposes soft-computing polynomials (SCP) for accurate prediction and visible polynomials. The proposed 
genetic programming system (GPS) comprises GP, WGP and SCP. To represent confined compressive 
strength and strain of circular concrete columns in meaningful representations, this paper conducts 
sensitivity analysis and applies pruning techniques. Analytical results demonstrate that all proposed models 
perform well in achieving good accuracy and visible formulas; notably, SCP can model problems in 
polynomial forms. Finally, concrete compressive strength and lateral steel ratio are identified as important to 
both confined compressive strength and strain of circular concrete columns. By using the suggested 
formulas, calculations are more accurate than those of analytical models. Moreover, a formula is applied for 
confined compressive strength based on current data and achieves accuracy comparable to that of neural 
networks. 
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1. Introduction 

 
Soft-computing approaches include neural networks (NNs), fuzzy logic, support vector 

machines, genetic algorithms (GAs) and genetic programming (GP). Each has unique benefits 

when applied to particular application categories. NNs are the most commonly used soft 

-computing approaches for inference tasks, from which many NN derivatives have been developed 

and applied (Hossain et al. 2006, Parichatprecha and Nimityongskul 2009, Tsai 2009, Bilgehan 

and Turgut 2010, Ozbay et al. 2010, Tsai 2010). However, NNs have been characterized as ―black 

box‖ models due to the extremely large number of nodes and connections within their structures. 

Since it was first proposed by Koza (1992), GP has garnered considerable attention due to its 

ability to model nonlinear relationships for input-output mappings. Baykasoglu et al. (2008) 

compared a promising set of GP approaches, including Multi Expression Programming (MEP), 

Gene Expression Programming (GEP) and Linear Genetic Programming (LGP) (Oltean and 

Dumitrescu 2002, Ferreira 2001, Bhattacharya et al. 2001). Notably, LGP was the most efficient 

algorithm for studied limestone strengths. Differences between these algorithms are rooted in the 
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methodology utilized to generate a GP individual. A chromosome representation, a tree topology 

and a linear string are used by MEP, GEP and LGP, respectively. Although, some formulas 

generated by MEP, GEP and LGP have coefficients, all coefficients are fixed constants 

(Baykasoglu et al. 2008). Several studies have utilized GP derivatives for construction industry 

problems. Baykasoglu et al. (2009) applied GEP to determine concrete strength, cost and slump. 

Yeh and Lien (2009) developed a genetic operation tree (GOT) to investigate concrete strength. 

The GOT uses a tree topology (as does GEP) and optimized coefficients that differ from other GP 

derivatives. Coefficients do not frequently appear in formulas programmed using any of these GP 

models. Tsai (2011) proposed a weighted GP (WGP) to introduce weight coefficients into tree 

connections and generate a fully weighted formula.  

Confined concrete with lateral reinforcements increase its strength and ductility in axial 

compression. Many researchers have expended considerable effort to identify confinement 

mechanisms. Most of these studies are empirical or semi-empirical. Some assumptions are 

conventionally adopted to create an empirical or analytical equation and unknowns in an equation 

are obtained by fitting data. Various analytical models have been applied to predict the 

compressive strength and strain of confined concrete beams. For instance, Mander et al. (1988) 

developed a novel equation with five parameters for confined concrete beams. Some studies 

followed the work by Mander et al. (1988) and analyzed different assumptions or parameters 

(Saatcioglu and Razvi 1992, Hoshikuma et al. 1997, Sakai et al. 2000, Penelis and Kappos 1997). 

However, analytical models are frequently limited by their calculation accuracy. Soft-computing 

approaches have potential to enhance prediction accuracy. Particularly, visible formulas can be 

provided by GP and its derivatives.  

The main aims of this paper are as follows. 

(1) Improve GP and WGP; 

(2) Provide polynomials with a modified WGP, namely, soft-computing polynomials (SCP); 

(3) Model confined compressive strength and strain of circular concrete columns with good 

prediction accuracy and visible formulas;  

(4) Study parameter impact using sensitivity analysis; 

(5) Prune techniques for compacting formulas.  

The remainder of this paper is organized as follows. Section II presents the proposed GP, WGP, 

SCP methods and GAs. Section III characterizes confined compressive strength and strain of 

circular concrete columns. Section IV gives analytical results and discussions. Section V makes 

conclusions. 

 

 

2. Genetic programming system 
 

The proposed genetic programming system (GPS) is composed of three models, i.e., the GP, 

WGP and SCP models. Major improvements achieved include coefficient optimization for GP to 

provide weights and terminate operators for WGP to compact formulas. Moreover, the notion of 

SCP in this paper is novel. 

 

2.1 Genetic programming 

 
Genetic programming, a branch of GAs, was proposed by Koza (1992). The original GP is 

constructed by a GA string of numbers and forms an individual with a tree structure. Crossover 
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and mutation are applied directly to GP trees. Following the study by Tsai (2011), this paper 

presents a GP method with an NL-layered tree structure (Fig. 1). The eventual layer has 2
NL-1

 

parameter nodes and each parameter node (xi
NL

) selects one input (including a unit parameter ―1‖). 

When a unit parameter is selected, the value of the parameter node uses its weight (i.e., value of w 

is not 1) to create a coefficient. The concept of an attached w is novel in GP research. Therefore, 

the final GP results have optimized coefficients. This is why this work creates new weights for all 

parameter nodes. 

  NIjPPPPx NIj

NL

i ~0,......1one 21               (1) 

where xi
NL

 represents nodes in the NL-th layer and i is a related node number; Pj is the j-th input 

parameter; and NI is the number of inputs. Each xi
NL

 node selects one attached Pj. All nodes in the 

remaining layers are operator nodes, which use operators to calculate the values of parent nodes in 

a down-top order and are functions of child nodes (Fig. 2). Each operation node y is operated by a 

set of defined functions with the two child nodal inputs of xi and xj. 
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This paper adopts f0 and nine functions in Eq. (2) for each operator selection F. A unique 

operator, f0, is designed as a branch terminal (―T‖). When ―T‖ is selected for an operator node, it 

uses the value of the left-most parameter node as its nodal value directly. Therefore, some operator 

nodes do not exist in the final GP results when ―T‖ is used; thus, ―T‖ is a default operator function. 

Additionally, f1 is the plus operator (+) and f2 is the minus operator (-). Thus, f3 and f4 are  

multiplication (×) and division (/) operators, respectively. Further f5 is a power (^) operator. All of 

these five operators are binary nodes. Besides, f6, f7, f8 and f9 are all unary functional 

operators—sin, cos, exp and log, respectively—and use their left-hand child nodes. Generally, 

each adopted function should be unique. However, exceptions are permitted based on user 

requirements. The last function in Eq. (2) is an example case in which a user has confidence in a 

lucky guess function. Although such a function can be reproduced by combinations of f6, f7 and f1 
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Fig. 1 Genetic programming structure 
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Fig. 2 Elements of GP and WGP 

 

 

and assigning such an appropriate function as a candidate can markedly accelerate convergence or 

increase the probability that the function will appear in the final GP results. Consequently, 

variables that must be optimized include (2
NL-1

-1) operator selections, (2
NL-1

) parameter selections 

and (2
NL-1

) weight optimizations (Table 1). 

 

2.2 Weighted genetic programming 
 

Although the aforementioned GP can generate coefficients, coefficient costs waste a branch of 

the GP structure (i.e., tree). Therefore, coefficients do not frequently occur in GP results. Tsai 

(2011) introduced a weighted balance for GP to create a WGP (Fig. 3). Similarly, each parameter 
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Table 1 Number of variables for GP and WGP 

 GP WGP 

 Number of Number of 

NL Operators Parameters Weights All Operators Parameters Weights All 

2 1 2 2 5 1 2 2 5 

3 3 4 4 11 3 4 6 13 

4 7 8 8 23 7 8 14 29 

5 15 16 16 47 15 16 30 61 

6 31 32 32 95 31 32 62 125 

 

 
node xi

NL
 selects one input (including a unit parameter, ―1‖) following Eq. (3). When a unit 

parameter is selected in GP, its nodal value is a weight; however, WGP uses a value of 1 directly, 

as weights are applied by operators. Each operation node y is operated by a set of defined 

functions with two child nodal inputs of xi and xj with weights of wi and wj, respectively. 
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Additionally, f0 is utilized in WGP. Default ―T‖ is novel in WGP comparing to Tsai and Lin 

(2011). f1 is designed to inherit the child nodes on the left with wi scaling and is a unary operator 

( using ―S‖ ). This ―S‖ does not exist in GP function sets. Although f2 is a plus operator (+), the ―-‖ 

operator in GP is absent in WGP, because f2 fulfills negative weights. Thus, f3, f4, f5, f6, f7, f8 and f9 

are ―×,‖ ―/,‖ ―^,‖ ―sin,‖ ―cos,‖ ―exp,‖ and ―log‖ with balanced weights, respectively. Furthermore, 

a lucky guess function may be utilized. Consequently, variables that must be optimized include 

(2
NL-1

-1) selected operators, (2
 NL-1

) selected parameters and (2
NL

-2) optimized weights (Table 1). 

The difference in number of variables for GP and WGP is (2
NL-1

-2) optimized weights. Fig. 4 

shows differences between WGP and GP with a four-layer tree. Analytical outputs (O) are 

programmed as follows 
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The coefficient term in Eq. (4) is produced by replacing an input parameter with a unit 

parameter ―1‖; however, this wastes a parameter node. Notably, all child nodes in WGP have 

weights to produce coefficients. Additionally, when the optimized coefficient exceeds the search 

domain, GP has substitutions for recovering such, which are to waste additional parameter nodes 

using unit parameters. Fortunately, WGP may produce a large coefficient by combining a large 

number of weight coefficients. Thus, WGP is naturally equipped to produce weight coefficients. 

Furthermore, GP obviously has finite combinations under a fixed NL layer; however, WGP has 

infinite possibilities. Even when NL is 2, the GP result is y=xi+xj and the WGP result is 

y=Ci×xi+Cj×xj with a large number of combinations. Although a WGP should contribute on 

optimizing (2
NL-1

-2) weights additionally, applying weighted balancing for each nodal connection 

is effective.  

 

2.3 Soft computing polynomials 
 
Many operator functions can be created to model problems. If a lucky function is suggested, 

training performance will be improved markedly. However, such good luck is rare. Thus, another 
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choice for modeling problems in a concise and simple format seems to be a good idea. 

Polynomials exist in a wide range of disciplines, including mathematics and the sciences. 

Mathematically, a polynomial is an expression of finite length constructed from variables and 
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constants using only addition, subtraction, multiplication and non-negative integer exponents. This 

paper further designs a novel WGP to provide polynomials for modeling engineering problems, 

namely, soft-computing polynomials (SCP). Therefore, a new function set is designed for WGP to 

create SCP 
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where f1, f2, f3 and f4 are ―S‖, ―+‖, ―×‖ and ―^‖, respectively; the exponent term, wj, in f4 uses 

integers 1–10 to create positive integers as exponent terms for polynomials. The division function 

(f4) in Eq. (3) is not allowed for polynomials. All materials for the GPS, which is composed of GP, 

WGP and SCP, are considered ready, with the exception of operator selection, parameter selection 

and weight optimization. Obviously, optimization generates difficult challenges for the proposed  

GPS when a large NL is used. Further, trying to optimize all variable simultaneously is very 

difficult. A minor discrepancy in operator selection will result in very different optimized weights. 

Fortunately, GA is powerful for global optimization. 

 

2.4 Genetic algorithms 
 
The GA which imitates parts of the natural evolution process, were first proposed by Holland 

(1975). GA is a stochastic search approach inspired by natural evolution that involves crossover, 
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mutation and evaluation of survival fitness. Genetic operators work from initial generation to 

offspring in order to evolve an optimal solution through generations. Each individual of a 

generation generates a result for the problem, which is represented as a string-named chromosome. 

This relatively straightforward and simple implementation procedure gives GAs exceptional 

flexibility to hybridize with domain-dependent heuristics to create effective implementation 

solutions tailored to specific problems. Based on these merits, the potential to use GAs in 

optimization has been studied intensively (Gen and Cheng 1997). However, simple GA is difficult 

to apply directly and successfully to a large range of difficult-to-solve optimization problems 

(Michalewicz 1996). 

MATLAB was employed in this study because it is a powerful tool that incorporates various 

function sets, including genetic algorithm (ga function). To study how the MATLAB ga function 

works is essential due to the numerous parameter settings that must be set properly in order to 

ensure correct results. The five basic steps to use GA are: 

(1) Initialize population – Initial individuals in a population are randomly generated in types of 

―doubleVector‖ varied within 0~1, containing parameter selections (one xi
NL

 node selects an 

attached Pj); operator selection (F) and weights (w). Values are linearly transferred to boundaries 

of xi
NL

, F and w at integer 0~NI, integer 0~9 and float -10~10 respectively. 

(2) Evaluate individuals – Fitness is a major index used to evaluate individual status, with 

decreasing fitness values correlated to increasing degrees of achievement of the model objective. 

In this study, the fitness function was directly set as inverse of the training root mean square error 

(RMSE). A larger fitness value indicates a healthier individual. 

(3) Perform crossover – A positive scalar should be set for parts of the population to perform 

crossover. To create crossover children, a function must be selected. This study performed a 

scattered (function of @corssoverscattered in MATLAB) crossover with a crossover rate of 0.8. 

(4) Perform mutation – A mutation produces spontaneous random changes in chromosomes. 

The MATLAB function @mutationuniform with a mutation rate at 0.05 was used herein. 

(5) Select individuals – The @selectionstochinif was used herein to select parents of crossover 

and mutation children. In additional, two elitist individuals were guaranteed to survive to the next 

generation herein. 

Prior to model execution, two other additional major parameters that should be set include 

population size and iteration number. Two parameters are set on case by case in accordance with 

the experienced input of experts. The population size chosen for this study was 200 and 5,000 

iterations, respectively. 

 
Table 2 Detailed values of inputs and outputs 

Factors Lower bound Upper bound Avg. Std. 

P1: f’c (MPa) 19.45 33 25.1 5.03 

P2: f’co (MPa) 21 32 25.2 4.19 

P3: d (mm) 185 438 329 98.8 

P4: H (mm) 600 1500 1096 359 

P5: fyh (MPa) 307 376 352 19.0 

P6: ρs (%) 0.28 2.5 1.51 0.63 

P7: s (mm) 20 240 72.5 46.1 

P8: ρcc (%) 1.18 4.8 1.97 0.74 

f’cc (MPa) 19.3 54 35.6 11.0 

εcc (%) 0.24 1.38 0.58 0.25 
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3. Confined compressive strength and strain of circular concrete columns  

 
3.1 Data for confined compressive strength and strain of circular concrete columns 
 
Confined concrete is subjected to transverse reinforcement in the form of closed hoops or 

spirals to prevent lateral swelling. Such confinement increases the compressive strength of 

concrete and enhances its ductility. Many studies have focused on developing analytical models 

and identifying factors affecting confined concrete. Oreta and Kawashima (2003) adopted the three 

datasets for circular concrete columns from (Mander et al. 1998, Sakai et al. 2000, Sakai 2001). 

Eight factors were listed for compressive strength of confined concrete specimen f’cc and confined 

strain at peak stress, εcc. These eight factors are: (1) compressive strength of an unconfined 

concrete cylinder, f’c; (2) compressive strength of an unconfined concrete specimen with the same 

size and geometry, f’co; (3) core diameter of a circular column, d; (4) column height, H; (5) yield 

strength of lateral or transverse reinforcements, fyh;(6) ratio of volume of a lateral reinforcement to 

volume of a confined concrete core, ρs; (7) spacing of a lateral reinforcement or spiral pitch, s; and,  

(8) ratio of longitudinal steel to the area of a core of section, ρcc. Although f’co was not used in NN 

prediction by Oreta et al. (2003), it is retained in this work. Of 38 column experiments, 29 were 

used for training and 9 for testing (Table 2). An NN result set (N7-4-2) was adopted from the work 

by Oreta et al. (2003). Their attached RMSE were calculated as 1.68 MPa and 0.054 for f’cc and εcc, 

respectively. Such analytical results provide references for prediction accuracy. Therefore, this 

work attempts to achieve prediction accuracies as good as those of NNs and provide visible 

formulas for f’cc and εcc against black-box NNs. 

 

 

4. Results and comparisons 
 

4.1 GPS Predictions and visible formulas 

 
This paper utilizes NLs in the range of 2–6 to model circular concrete columns. Tables 3 and 4 

list statistical results of 20 runs for f’cc and εcc, respectively. Results focus on training/testing 

RMSE, execution time and ―Count‖. The ―Count‖ is used to count the number of activated 

operators. For instance, a fully linked four-layer tree has 7 operator nodes; thus, the ―Count‖ is 7. 
When a ―T‖ function is used in the third layer (Fig. 4), the ―Count‖ is 6. As a ―T‖ occurs in the 

second layer, three operator nodes are eliminated and the ―Count‖ is 4. Therefore, the ―Count‖ is 

designed to represent the number of operator nodes needed to model f’cc and εcc. The ―Count‖ is 

markedly related to prune the complexity of GP trees and effect on conciseness of resulted 

formulas. Additionally, the use of one-handed operators also positively decreases tree complexity. 

As NL increases, computational time increases, the complexity of the tree structure increases and 

the accuracy of computational results increases. Overall five-layer tree structures are sufficient for 

achieving good prediction accuracy (Tables 3 and 4), as in WGP findings obtained by in Tsai and 

Lin (2011). At NL=2, both WGP and SCP achieve better accuracy than GP because GP does not 

have weighted balancing, as do WGP and SCP. Moreover, WGP has more operator functions to 

select than SCP. As NL increases, the complexity of the tree structure increases and prediction 

results have good accuracy. Among all models, GP and WGP provide similar accuracy as NNs; 

however, SCP generates slightly worse accuracy that is still acceptable. Additional execution time 
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is needed to optimize WGP or SCP coefficients. The run time with WGP is slightly longer than 

that with SCP due to the complexity of operator functions used by WGP. In terms of ―Count‖, SCP 

always uses fewer operators to model f’cc and εcc than do GP and WGP. This reduces the prediction 

accuracy of SCP but results in concise SCP formulas. Finally, a best trial is selected among the 20 

runs according to minimum training and testing RMSE summations. The final f’cc and εcc formulas 

are defined as f’cc
GP

NL and εcc
GP

NL for WGP; f’cc
WGP

NL and εcc
WGP

NL for WGP; and f’cc
SCP

NL and 

εcc
SCP

NL for SCP. These formulas are listed as follows 
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Table 3 GPS results for confined compressive strength of circular concrete columns 

No. of Layers 

NL 
 

GP WGP SCP 

Training/Testing 

RMSE (MPa) 

Time 

(hr) 
Count 

Training/Testing 

RMSE (MPa) 

Time 

(hr) 
Count 

Training/Testing 

RMSE (MPa) 

Time 

(hr) 
Count 

2 

AVG 5.73/6.22 0.26 1 3.85/4.99 0.31 1 3.91/4.81 0.32 1 

STD 0.21/0.24  0 0.29/0.58  0 0.24/0.42  0 

Selected 5.47/5.88  1 4.03/4.62  1 4.02/4.62  1 

3 

AVG 3.54/3.94 0.35 3 2.35/2.91 0.50 2.6 2.09/2.45 0.49 2.7 

STD 0.78/0.54  0 0.38/0.80  0.5 0.21/0.53  0.5 

Selected 2.50/3.58  3 1.83/2.25  3 2.14/1.66  2 

4 

AVG 2.53/3.17 0.52 6.9 2.48/2.98 0.87 6.6 2.25/2.54 0.85 5.0 

STD 0.51/0.84  0.3 0.47/0.63  0.8 0.51/0.45  1.2 

Selected 1.74/1.64  7 1.98/2.22  4 2.00/1.92  5 

5 

AVG 2.37/3.06 0.87 14.2 2.10/2.71 1.62 11.1 2.05/2.57 1.55 7.1 

STD 0.49/0.84  0.8 0.33/0.50  4.0 0.13/0.55  3.3 

Selected 1.49/1.79  13 1.49/2.19  8 2.01/1.87  2 

6 

AVG 1.72/2.68 1.55 26.6 1.95/2.72 3.07 23.3 2.14/2.47 3.01 7.9 

STD 0.31/0.69  3.2 0.50/0.91  6.6 0.23/0.44  5.1 

Selected 1.26/1.73  23 1.40/1.86  27 2.03/1.86  2 
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
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SCP

cc   (31) 

                 
2

6

2

1

5

664 00022.0003.063.0 PPPP
SCP

cc   (32) 

            )4.321681.1477.1(0011.0 81565 PPPP
SCP

cc   (33) 

             42

81666 )00546.00116.0(51.1512.0 PPPP
SCP

cc   (34) 

In terms of prediction accuracy and formula compactness, this paper suggests using f’cc
GP

5, 

f’cc
WGP

5 and f’cc
SCP

4 for predicting f’cc in RMSEs of 1.49/1.79 MPa, 1.49/2.19 MPa and 2.00/1.92 

MPa; and εcc
GP

5, εcc
WGP

4 and εcc
SCP

5 for εcc at 0.084/0.092 MPa, 0.079/0.069 MPa and 0.101/0.102 

MPa, respectively. Although SCP has shortcomings in prediction accuracy, the forms of SCP 

formulas are good and simple to read and study. Therefore, f’cc
SCP

4 and εcc
SCP

5 are finally proposed 

for circular concrete columns (Figs. 5 and 6). 

 

 
Table 4 GPS results for confined strain of circular concrete columns 

No. of Layers NL  
GP WGP SCP 

Training/testing 

RMSE 

Time 

(hr) 
Count 

Training/testing 

RMSE 

Time 

(hr) 
Count 

Training/testing 

RMSE 

Time 

(hr) 
Count 

2 

AVG 0.231/0.167 0.27 1 0.151/0.116 0.32 1 0.197/0.134 0.32 1 

STD 0.032/0.021  0 0.040/0.016  0 0.004/0.018  0 

Selected 0.201/0.147  1 0.119/0.091  1 0.192/0.114  1 

3 

AVG 0.136/0.112 0.36 2.8 0.128/0.099 0.50 2.6 0.181/0.126 0.50 2.6 

STD 0.036/0.014  0.5 0.034/0.012  0.5 0.022/0.021  0.7 

Selected 0.092/0.095  3 0.089/0.098  3 0.158/0.067  3 

4 

AVG 0.136/0.141 0.54 6.6 0.116/0.101 0.86 6.4 0.154/0.124 0.85 5.3 

STD 0.039/0.055  1.1 0.043/0.041  1.1 0.039/0.026  1.7 

Selected 0.102/0.079  7 0.079/0.069  7 0.104/0.080  7 

5 

AVG 0.110/0.108 0.90 12.7 0.088/0.082 1.58 12.0 0.150/0.124 1.56 8.6 

STD 0.027/0.031  2.1 0.015/0.015  4.0 0.042/0.024  3.9 

Selected 0.084/0.092  12 0.075/0.063  15 0.101/0.102  5 

6 

AVG 0.110/0.115 1.52 26.9 0.102/0.100 3.04 24.7 0.167/0.128 2.97 8.3 

STD 0.032/0.032  3.4 0.016/0.046  4.2 0.037/0.050  7.5 

Selected 0.086/0.086  24 0.088/0.073  20 0.122/0.087  13 
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Table 5 Parameter impacts for modeling confined compressive strength of circular concrete columns 

 P1 P2 P3 P4 P5 P6 P7 P8 

f ’cc
GP

2  ■       

f ’cc
GP

3  ■    ■   

f ’cc
GP

4  ■  ■  ■ ■ ■ 

f ’cc
GP

5 ■ ■  ■ ■ ■ ■ ■ 

f ’cc
GP

6 ■ ■  ■  ■ ■ ■ 

f ’cc
WGP

2  ■    ■   

f ’cc
WGP

3  ■   ■    

f ’cc
WGP

4  ■    ■   

f ’cc
WGP

5     ■ ■  ■ 

f ’cc
WGP

6  ■    ■  ■ 

f ’cc
SCP

2  ■    ■   

f ’cc
SCP

3  ■    ■   

f ’cc
SCP

4  ■    ■  ■ 

f ’cc
SCP

5  ■    ■   

f ’cc
SCP

6  ■    ■   

 

 

Since the GPS formulas are visible, they make parameter studies easy. Tables 5 and 6 show the 

number of times input parameters occur in GPS formulas. Thus, P6 is significant when modeling 

f’cc and εcc. Although P1 and P2 are independent parameters, they can be substituted for each 

other (same as findings in Oreta and Kawashima 2003). Additionally, P1 and P2 are important 

when modeling f’cc and εcc. Conversely, P3 has almost no effect on f’cc and εcc according to current 

datasets. The remaining parameters occur sometimes in the formulas. Additional conformation is 

needed because the number of datasets is not large enough to omit specific parameters. However, 

the significances of P1, P2 and P6 are checked with current datasets. 

 

4.1 GPS Predictions and visible formulas 
 

Sensitivity analysis can be applied to assess the impact of parameters (Scardi and Harding  

1999). A common approach in sensitivity analysis is to change one factor at a time to determine its  

effect on output. This work adopts mean values for all inputs and standard deviation of a targeted 

input is treated as the variation of the factor changed. 

)()(2 MVMVSA ii                          (36) 

where M represents mean values of all inputs, δi is the standard deviation of the i-th input and 

impacts the mean value of the i-th input (Table 2) and V is an output value calculated by SCP 

formulas. Therefore, SA
1
i is a sensitivity measurement with a positive variation on the i-th input 

and SA
2

i with a negative variation. Table 7 lists the SCP sensitivity results. When an input 

parameter is linear in an SCP formula, the values of SA
1

i and SA
2

i are the same. As the effect of the 

i-th input on output increases, SA
1
i or SA

2
i increase. When an input is insensitive to outputs, it can 
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be omitted or replaced. For instance, P8 can be omitted to compact f’cc
SCP

4. Consequently, only P2  

and P6 impact on all SCP formulas for f’cc. Notably, P1 and P6, especially P6, are important to SCP 

formulas for εcc. Although parts of aforementioned results have been discussed in Section 4.1, 

sensitivity analysis provides convincing evidence of the impact of parameters. 

 

4.2 Sensitivity analysis 
 
Another method for studying the impact of parameters is pruning technique (Peng et al. 2009), 

which replaces an input with a fixed value (e.g., a mean or median) to determine the effect of 

 

 

Table 6 Parameter impacts for modeling confined strain of circular concrete columns 

 P1 P2 P3 P4 P5 P6 P7 P8 

εcc
GP

2      ■   
εcc

GP
3  ■    ■   

εcc
GP

4 ■  ■  ■ ■  ■ 
εcc

GP
5 ■ ■  ■ ■ ■ ■  

εcc
GP

6  ■   ■ ■   
εcc

WGP
2  ■    ■   

εcc
WGP

3  ■    ■   
εcc

WGP
4  ■    ■   

εcc
WGP

5  ■    ■ ■  
εcc

WGP
6 ■ ■    ■   

εcc
SCP

2      ■   
εcc

SCP
3    ■ ■ ■  ■ 

εcc
SCP

4 ■     ■   
εcc

SCP
5 ■    ■ ■  ■ 

εcc
SCP

6 ■     ■  ■ 
 

Table 8 Pruning and compacting f ’cc
SCP

4 

No. Remove f ’cc
SCP

4 formula RMSE (MPa) 

(a) -- 862 115.040.76.2496.1 PPP   2.14/1.66 

(b) P2 86 115.040.78.24 PP   7.90/8.38 

(c) P6 82 115.04.1396.1 PP   4.82/4.70 

(d) P8 62 40.74.2496.1 PP   2.02/1.90 

(e) P8 6262 48.74.2288.1 PPCPBAP   1.97/1.97 

(f) P2, P6 8115.00.36 P  10.7/11.3 

(g) P2, P8 64.70.25 P  7.94/8.38 

(h) P6, P8 2.1396.1 2 P  4.85/4.72 
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the input on outputs. Furthermore, the pruning technique can be used to prune/compact formulas. 

Selecting f’cc
SCP

4 as an example, it has training/testing RMSEs at 2.14/1.66 MPa originally (step (a) 

in Table 8). The process continues replacing parameters one by one. As P2 is replaced in f’cc
SCP

4, 

RMSEs increase to 7.90/8.38 MPa. Thus, P2 cannot be replaced by its mean. 

Another method for studying the impact of parameters is pruning technique (Peng et al. 2009), 

which replaces an input with a fixed value (e.g. a mean or median) to determine the effect of the 

input on outputs. Furthermore, the pruning technique can be used to prune/compact formulas. 

Selecting f’cc
SCP

4 as an example, it has training/testing RMSEs at 2.14/1.66 MPa originally (step (a) 

in Table 8). The process continues replacing parameters one by one. As P2 is replaced in f’cc
SCP

4, 

RMSEs increase to 7.90/8.38 MPa. Thus, P2 cannot be replaced by its mean. After steps (b)–(d), P8 

is a good candidate for removal from f’cc
SCP

4 with an accuracy at 2.02/1.90 MPa. However, 

coefficients in the formula of step (d) are not yet optimized. The GAs can be applied again to 

optimize constants of A, B and C in the formula of step (e). The accuracy after step (e) is improved 

again relative to that in step (d). Sequentially, steps (f)–(h) (Table 8) remove two parameters at a 

time. Finally, the formula from step (e) is applied to prune f’cc
SCP

4. Furthermore, the pruned and 

optimized f’cc
SCP

4 is very similar to those in Eqs. (12) and (16), although they differ innately. This 

work considers above evidences as the reliability of the proposed SCP. Finally, the formula in step 

(e) (Table 8) is applied to model f’cc and two parameters are involved. The formula is presented  

below with an accuracy of 1.97/1.97 MPa, indicating that f’co and ρs are essential to model f’cc. 

               62 48.74.2288.1' PPf
SCP

cc   (37) 

Other f’cc
SCP

NL formulas may still follow the pruning steps (Table 8) and achieve accurate and 

compact formulas. Of course, pruning technique can also be applied to εcc
SCP

5. When P5 and P8 are 

replaced by their means, the associated RMSEs are 0.126/0.115. The pruned εcc
SCP

5 is shown in Eq. 

(38). Sequentially, coefficients in Eq. (38) can be optimized by the GAs; the final formula is in Eq. 

(39) with RMSEs of 0.116/0.115. 

              )7271.14(0011.0 165  PP
SCP

cc  (38) 

              )8707.19(00107.0 165  PP
SCP

cc  (39) 

Using a final formula for εcc that is the same as that in Eq. (37) is not suitable, as formats of 

εcc
SCP

NL formulas are not in common. However, Eq. (39) states that f’c and ρs are significant when 

modeling εcc in accordance with current data and achieve 0.116/0.115 in accuracy. 

 

 
5. Conclusions 

 

This paper proposes a novel GPS, composed of GP, WGP and SCP, for modeling confined 

compressive strength and strain of circular concrete columns. All models in GPS have good 

prediction accuracy and visible formulas for target strength and strain. The most significant 

findings in work are as follows. 

1. Improvements to GP and WGP are achieved by attaching weight coefficients to parameter 

nodes and a terminate operator to decrease tree complexity and make formulas compact, 

respectively.  
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2. The SCP provides polynomials for compressive strength and strain of circular concrete 

columns. This is a good approach for generating simple solutions to problems. 

3. Visible formulas are bonus production of GPS models comparing black-box NN approaches. 

Unlike analytical models, a prior equation format should be assigned. The proposed GPS models 

provide functional relationships directly for confined strength and strain based on fitting data.  

4. Visible formulas increase the ease of parameter studies, sensitivity analysis, and application 

of pruning techniques. 

5. Eq. (37) was applied to model confined compressive strength based on current data. 

Compressive strength of unconfined concrete specimens of the same size and geometry f’co, and 

ratio of volume of lateral reinforcement to volume of confined concrete core, ρs, are significant 

when modeling f’cc. Additionally, compressive strength of unconfined concrete specimens of the 

same size and geometry, f’c, and ratio of volume of lateral reinforcements to the volume of 

confined concrete core, ρs, are significant when modeling εcc. Therefore, concrete compressive 

strength and lateral steel ratio are important to both confined compressive strength and strain of 

circular concrete columns. 
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