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Abstract.  Asymmetrical reinforcement for circular sections in wall piles is an efficient construction 
component with reduced embodied energy. It has been proven that asymmetrical reinforced wall piles may 
save more than 50% of the reinforcement than the traditional symmetrically reinforced circular sections. The 
use of this new type of structural member increases the number of variables in the design problem, which 
makes its use by engineers more complicated. In order to facilitate the use of the asymmetrically reinforced 
piles, this paper presents a criterion for the design of this type of structural member. The chosen criterion has 
been analyzed with the help of flexural capacity-cost curves. The new criterion is similar to the design 
procedure traditionally used for RC beams. 
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1. Introduction 
 

There are several optimal shapes for the cross-section of reinforced concrete structural 

members, the versatility is attributed to mouldability of concrete to any conceivable shape 

(Narayan and Venkataramana (2007)). Nevertheless circular sections are always attractive; often 

the circular shape is required for architectural or functional reasons. Circular cross-sections can be 

symmetrically reinforced (Belarby et al. (2009)) or asymmetrically reinforced (Hernández-Montes 

et al. (2010)). Asymmetrical reinforcement for wall piles (ARWP in what follows) is a system 

recently proposed by Gil-Martín et al. (2010a) for an energy efficient construction, see Fig. 1. 

Traditionally, longitudinal reinforcement for circular cross sections, used in earth retaining systems, 

consist of a number of bars of the same diameter spaced uniformly around the circumference of 

the section, inset from the face of the member by the required cover distance (see Fig. 2). 

Initial practical experience with ARWP was obtained during the construction of a high-speed 

railway line between Madrid and Barcelona in 2009, for a segment of a cut-and-cover tunnel in 

Barcelona. Five piles were built using asymmetrically distributed reinforcement alongside many 

conventionally reinforced piles, over a 500 m stretch. The excavation was 10 m deep, and was 

braced using separated piles that were 18 m long, diameter of 1.20 m and spaced at 1.40 m on 

centre. ARWP saved nearly one tonne of steel per pile (51% of longitudinal steel with respect to 
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Fig. 1 Asymmetrical reinforcement for wall pile at construction site 

 

 

Fig. 2 Traditional reinforcement of a circular pile 

 

 

the symmetrical case). 

Strength design criteria of common sections are well established in engineering practice, such 

as rectangular sections or symmetrically reinforced circular sections. Asymmetrically reinforced 

circular sections (ARCS in what follows) are a novelty that was partially approached by Weber 

and Ernst (1989), and a design criterion for these sections has not yet been proposed. 

Serviceability limit states for symmetrically reinforced circular sections have been studied by 

Wiese et al. (2004). 

In order to make the paper self contained, a brief review of the traditional criteria for strength 

design of rectangular sections and symmetrically reinforced circular sections has been made. 

Furthermore, a new design criterion for ARCS has been proposed. 

 

 

2. Strength design assumptions in bending 
 
In flexural analysis of reinforced concrete cross-sections for combined bending and axial load 

both the Bernoulli’s hypothesis (i.e., that plane sections remain plane after deformation) and no  
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Fig. 3 Strains and stresses diagrams at cross section level 

 

 

Fig. 4 Strain distributions in the ultimate limit state of bending 

 

 

slip of reinforcement are accepted. The Bernoulli hypothesis allows the distribution of strain over 

the cross section to be defined by just two variables (such as the strain at the centroid (cg) of the 

gross section and the curvature () of the cross section as is indicated in Fig. 3). 

For the ultimate strength design of a reinforced cross-section the strain limits are given in code 

provisions, which define the maximum usable strain at the extreme compression fiber and the 

tensile reinforcement strain. In this situation, if it is assumed that plane sections remain plane, the 

distribution of strain over the cross sections can be defined by just one variable, the unique 

variable considered in this paper is the neutral axis depth (x). So any fiber located at a distance ξ 

from the top fiber (see Fig. 4) presents a strain of 

),( x                                   (1) 

The strain limits adopted in this paper are illustrated in Fig. 4, these limits correspond to 

Eurocode 2 (2002) in the the case of rectangular stress distribution for concrete. The maximum 

usable strain for concrete in bending is given ,3cu the maximum strain for concrete in pure 

compression is 3c and there is no limit for the maximum usable strain for steel in tension. The 

assumption of no limitation for steel in tension is accepted by Eurocode 2 (2002) in case of 

bilinear model for the steel with no strain hardening. This approach is the basis of strain domains; 

wherein the strain diagram pivots about certain points located on the boundaries between adjacent 

domains, see points A and B in Fig. 4. With these limits, Eq. (1) is formulated as follows 
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Steel and concrete behaviour models are expressed as σ(ε) functions. By means of 

mathematical composition of functions the constitutive relations (or stress-strain relations) of the 

concrete and the steel materials, for the case of strength design, can be expressed as a function of 

the variables x and ξ (neutral axis depth and position of any fiber, respectively). 

  ),()),(()( xx                         (3) 

   represents the composition of the mathematical functions σ and ε. Obviously the σ(ε) model 

of concrete has to be valid for ultimate limit state of bending. 

 

2.1 Cross sections with two layers of reinforcement 
 

In the case of two levels of reinforcement, located at d’ and d from the top fiber, as it is seen in 

Fig. 4, Eq. (3) are expressed as 
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Where s  and s  are the strain and stress of the upper steel, and s and s are the strain and 

stress of the bottom steel. 

In the case of the ultimate state limit of bending, the equilibrium equations at the section level 

(e.g. Fig. 3) for a combination of bending moment, Mu, and axial force, Nu, acting simultaneously, 

can be expressed as function of the neutral axis depth, x, as 
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where the subscript “int” means internal resultants. Stresses and axial forces in (5) are positive in 

compression and negative in tension. Without loss of generality, the axial load, Nu, and moment, 

Mu, that equilibrate the internal stress resultants are presumed to act on the centroid of the gross 
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section (see Fig. 3). The moment, Mu, is considered positive if it produces tensile strain on the 

bottom fiber. For consistency, in the case that the applied loads cause compression over the depth 

of the section, the moment is considered positive if the compressive strain at the bottom fiber is 

smaller than the compressive strain at the top fiber. 

The first terms on the right side of Eq. (5) are termed Nc(x) and Mc(x) respectively. They 

represent the contribution of concrete to the internal resultant of axial force and flexural moment 
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Eurocode 2 (2002) (§3.1.7(3)) defines the rectangular stress distribution for concrete as a stress 

block having a constant compressive stress of η·fcd, a depth equal to the λ·x, where x is the depth of 

the neutral axis and fcd= the design strength of the concrete, for concrete in which resistance is 

between 25 and 55 MPa. The factor λ defines the effective height of the compression zone and the 

factor η defines the effective strength. The design strength of the concrete is given as a function of 

the specified characteristic strength, fck, where fcd=αccfck/γc. The term αcc accounting for long term 

effects on strength and the rate at which the load is applied. The term γc is the partial safety factor 

for concrete, taken as 1.5. In this paper we have chosen λ=0.8 and η=1.0 and αcc=0.85 as these 

represent fairly typical values. 

Eq. (5) constitute a nonlinear system of two equations with three unknowns: As, A’s and x 

(Aschheim et al. (2008)). The infinite solutions of this system for reinforcement areas As and A’s 

can be presented as functions of the neutral axis depth, x. The admissible, i.e., positive, solutions 

for As and A′s, obtained from Eq. (5) can be plotted on a reinforcement sizing diagram (RSD) as 

function of the neutral axis depth, x, Hernández-Montes et al. (2005) and Lee et al. (2009). 

Gil-Martín et al. (2011) shown that the minimum total reinforcement solution generally differs 

from the symmetric reinforcement solution that is typically represented using conventional N-M 

interaction charts. 
 

2.2 RC beams with two layers of reinforcement 
 

In engineering practice, the ultimate strength design for rectangular RC beams subjected to 

bending with no axial force is made by imposing the following assumption: 

-  A ś= 0 in case of Md < Mlim, or  

-  balance conditions (i.e., x= xlim, see Fig. 4) in case Md ≥ Mlim 

Using the above assumption, a new condition is added to Eq. (5), so a unique solution can be 

calculated. The above assumptions constitute the traditional method for the strength design of RC 

beams. 

Mlim is defined as the flexural moment given by the stresses in concrete in case x=xlim (i.e., Mc 

(xlim) given by Eq. (6). xlim is the depth of the neutral fiber for which the strain of the bottom 

reinforcement is the yield strain (εy), see Fig. 4. 

Both cases given in the above assumption are particular solutions covered by the Theorem of 

Optimal Reinforcement for Reinforced Concrete Cross Sections (Hernández-Montes et al. (2008)). 

Chakrabarty (1992) describes the optimal design of singly-reinforced concrete beams, which 

constitutes a particular case of the above. Furthermore, diagrams representing the interaction of 

axial load and moment on ultimate strength, known as N-M interaction diagrams, were presented 

575



 

 

 

 

 

 

E. Hernández-Montes, P. Alameda-Hernández and L.M. Gil-Martín 

originally by Whitney and Cohen (1956) and continue to be widely used today. 
 

2.3 Symmetrically reinforced circular sections 
 
The criterion developed in the previous section is only applicable to rectangular cross-sections 

subjected mainly to bending for which the steel reinforcement is usually placed on one or two 

layers. In these cross-sections the depth of the centroid of both, top and bottom reinforcement, 

from the top fiber of the cross-section are d  ́and d respectively, see Fig. 4. 

In the case of circular sections, this criterion is not directly applicable, this is due to the fact that 

it is based on the use of xlim, which depends on d. However, in circular sections there is not a clear 

layer of reinforcement and each bar has its own vertical position, i.e., xlim defined in rectangular 

sections has no meaning for the case of circular sections. Traditionally, longitudinal reinforcement 

for circular cross section has consisted of multiple bars of the same diameter () spaced uniformly 

around the circumference of the section, inset from the face of the member by the required cover 

distance (see Fig. 2). So, each bar has a different lever arm, which is substantially different from 

the others. In this case equations (5) result in 
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Where n is the number of bars and yi is the position of bar i, see Fig. 5. 

For this type of reinforcement (same bar, uniformly distributed) there is only one variable in the 

design: the bar diameter -for a fixed number of bars- or the number of bars –for a fixed bar 

diameter-. In the event that the number of bars is fixed, the size of the bar can be obtained by 

making the ultimate moment equal to or greater than the design moment. In the case that the 

diameter of the bar is fixed, the only one variable to be solved is n, the number of bars. 
 

 

3. Asymmetrically reinforced circular cross-sections –ARCS- 
 
Due to the fact that it is necessary to provide a flexural capacity for potential reversals of 

horizontal forces induced by wind or earthquake loading, unsymmetrical bar arrangements are not 

suitable for common practice in columns. In this case, central symmetrical reinforcement is 

required for circular sections. However, in some engineering constructions, such as retaining walls 

supported by circular piles, the asymmetrically-reinforced cross-section has an immediate 

application because these structural elements are unlikely to experience significant reversals of 

bending moments, Under these circumstances ARWP are very interesting.  

Gil-Martín et al. (2010b) showed that when N-M demands lack symmetry i.e., N-M 

combinations for design represented in N-M graphs are not symmetric-, substantial savings are 

possible using ARCS. This optimization process was applied to two situations: using only one bar 

diameter or two different bar diameters for the longitudinal reinforcement of the circular pile (see 

Fig. 6). 

ARCS are longitudinally reinforced sections with different bar diameters (1, 2,…) at 
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Fig. 5 Strain distributions considered at the ultimate limit state 

 

   
(a) (b) (c) 

Fig. 6 Piles. (a) Conventional reinforcement, (b) Optimized reinforcement using a single bar diameter and 

(c) Optimized reinforcement using two bar diameters 

 

 

Fig. 7 Circular cross section reinforced with two different diameters of longitudinal bars 

 

 

different spacing (s1, s2, …). In the event of two different bar diameters the number of longitudinal 

bars is partitioned into n1 and n2; n1 is the number of 1 bars separated by a spacing s1, and n2 is 

the number of 2 bars separated by s2. Areas A1 and A2 are the cross sectional areas of individual 

bars having diameters 1 and 2, respectively (see Fig. 7). For the case of ARCS the equilibrium 

equations, Eq. (5), can be expressed as 
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Gil-Martín et al. (2010b) showed that the use of ARCS allows for substantial savings compared 

to conventionally reinforced sections of circular piles for retaining walls. These savings can 

represent more that 50% of the reinforcement and 10-15% of total cost (materials and labour) for 

the reinforced concrete portions of the work. 

Section §2.3 showed that the design of central symmetrical reinforcement in circular sections is 

a problem with only one variable. At first sight, for the case of asymmetrically reinforced circular 

sections, the sizing problem is a more complicated problem due to the fact that more variables 

have to be considered. Nevertheless, two considerations are enough to reduce the design problem 

to a problem of one variable: 

- In the compression zone, the bar diameter should be the minimum possible (1) and the distance 

between consecutive bars (s1) the maximum possible. 

- In the tension zone, the bar diameter should be the maximum possible (2) and the distance 

between consecutive bars (s2) the minimum possible. 

Taking these premises into consideration the design procedure turns into a problem of one 

variable and the algorithm to solve it is indicated in Fig. 8, (Gil-Martin et al. 2010b). 

 

 
 

(*)The criterion to fix n1 bars 1 at @ s1 is given by the Standard in use or by the constructional 

procedure. 

(**) Bars 2 added at spacing s2 have to be included at the bottom, at the position that generates highest 

lever arm relative to the centroid of cross-section. When adding bars 2 at s2, there may be interference 

with bars located at a spacing s1. Any bar (1) provided in the first step that is located within the region 

containing bars spaced at s2 or within a distance less than s2 from this region must be removed. 

 

Fig. 8 Flow chart of the design procedure 
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Strength design criterion for asymmetrically reinforced RC circular cross-sections in bending 

In the particular case of circular RC cross-sections reinforced along their perimeter, as shown 

in Figs. 6(a) to 6(c), for both conventional and asymmetrical reinforcement, the design criterion 

given in §2.2 for rectangular cross-sections is not applicable. A new design criterion for ARCS is 

presented in this paper. The new criterion is as effective as the depth limit criterion in the case of 

rectangular cross-sections with two layers of reinforcement –i.e., A’s=0 for Md < Mlim and x=xlim 

for Md ≥ Mlim-. 

In this paper two possible strength design criteria for ARCS are analyzed, however only one of 

them is chosen as a valid criterion. The application of the proposed criterion allows the engineer to 

obtain the optimum pile diameter and the optimum amount of longitudinal reinforcement to resist 

any given applied bending moment, Md. 
 

 

4. Strength design criteria for ARCS in bending 
 
Several interesting structural optimization processes are available in literature, at sectional level 

or at structural level (Topal and Uzman (2006)) or Guerra and Kiousis (2006) respectively. In 

order to understand the design process of ARCS, four circular cross-sections with nominal 

diameters, D, of 500, 600, 800 and 1000 mm subjected to pure bending, Nd=0, are considered. See 

Fig. 9(a). All the circular cross sections have been designed for a characteristic concrete strength 

(fck) equal to 25 MPa and characteristic steel strength (fyk) of 500 MPa. The mechanical cover 

adopted is equal to 70 mm. Two different types of longitudinal reinforcement have been 

considered: one unique bar diameter or two bar diameters. In the event of only one bar diameter 

Ø 16 is used for D=500 and 600 mm and Ø 20 for D=800 and 1000 mm. For two different bar 

diameters Ø 10 and Ø 32 are used for all the diameters of the circular cross-section, D. The spacing 

–clear separation- between two bars is set as 300 mm in the compression zone (or light-reinforced 

zone) and 35 mm in the tension zone (or dense-reinforced zone) of the cross-section (see Figs. 9(b) 

and 9(c)). 

 

 

 

Fig. 9 ARCSs study 
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Fig. 10 D=500 mm 

 

In order to identify the proposed design criterion, a study of the ultimate moment as function of 

the total area of reinforcement is carried out. The study is made for the four circular cross-section 

diameters mentioned before, see Figs. 10 to 13. In these figures the vertical axis represents the 

ultimate moment and the horizontal axis represents the total longitudinal reinforcement area (As) of 

the cross section. As is composed by the area of reinforcement in the light-reinforced zone plus the 

area of reinforcement in the dense-reinforced zone, see Fig. 9. As increases when the zone of 

dense-reinforcement increases, i.e., adding bars in the dense-reinforcement zone. Therefore we are 

merely operating as indicated in the flow chart shown in Fig. 8, computing the ultimate moment 

for each increment in As. 

Two different design criteria are presented in this paper. The first criterion, identified by a little 

square and represented by the number 1 in Fig. 10 to 13, is determined as the last iteration 

(according to Fig. 8) for which the ultimate moment of the cross sections (Mu) causes all the bars 

in the dense-reinforced zone to be at yield stress (fyd), i.e., all of them work in plasticity. For the 

next iteration, adding a bar in the dense-reinforced zone, the new Mu of this cross section will not 

cause yielding in all the bars of the dense-reinforced zone. In other words, the first criterion 

identifies the maximum ultimate moment that keeps all the bars of the dense-reinforced zone 

behaving in post-yield strains. This criterion is very similar to the notion of xlim for rectangular 

cross section. 

The second criterion, represented by the number 2 in Figs. 10 to 13, is determined as the first 

iteration in which the addition of a bar in the dense zone, as indicated in Fig. 8, causes a smaller 

ultimate moment than if the additional bar is located in the upper part of the light-reinforce zone 

–i.e., at the top of the cross section-. 

Fig. 10 shows the flexural capacity of the circular cross-section, D= 500 mm, in pure bending 

as function of the total area of reinforcement, As. Two curves are represented in this figure. The 

upper curve corresponds to reinforcement using two different bar diameters (Ø 10 and Ø 32) and 

the bottom curve corresponds to reinforcement with only one bar diameter (Ø 16). Fig. 10 shows 

that the use of two bar diameters is more efficient than the use of only one bar diameter. 

Furthermore, Fig. 10 illustrates that the range in the abscissa axis is greater when two bar 

diameters are used. Squares in Fig. 10 correspond to: the first proposed criterion (square 1) and the 

second proposed criterion (square 2). 

Figs. 11-13 correspond to the same study for D=600, 800 and 1000 mm respectively. 
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Fig. 11 D=600 mm 

 

 

Fig. 12 D=800 mm 

 

 

Fig. 13 D=1000 mm 

 

 

All the curves in Figs. 10 to 13 show similar trends, these curves present three different 

domains. The initial domain corresponds to the first steep segment. In this domain little increment 

of the tension reinforcement steel placed in the dense-reinforced zone, away from the neutral axis, 

implies a considerable increase in the flexural strength of the cross-section. The boundary between 

the first domain and the second domain is the first design criterion. The second domain is 

identified in Figs. 10 to 13 as the horizontal part of the curve. In this second domain the increase 

of area of reinforcement does not lead to an increase in the flexural strength capacity of the 

cross-section. This blockage in the flexural strength capacity is due to the fact that the 

reinforcement bars are placed in the vicinity of the neutral axis –smaller stress-. In the third 

domain the slope increases again. In this final domain, the reinforcement is in compression and it 
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is introduced far from the neutral axis, improving the flexural capacity of the cross section. It is 

interesting to note that this third domain corresponds to high amounts of reinforcement steel. 

As shown in Figs. 10 to 13, the area of steel reinforcement obtained from the second strength 

design criterion (squares 2) is always bigger than the corresponding to the first one. Figs. 10 to 13 

show that an increase in the area of steel does not always lead to an increase in the flexural 

strength of the cross-section (See Tables 1(a) and (b)), this is due to the fact that the reinforcement 

is added in the horizontal domain of the curves. 

Tables 1(a) and (b) summarise the reinforcement and the bending moment capacity 

corresponding to both studied strength design criteria for all the cases studied. These values have 

also been represented in Figs. 10 to 13. 

 

 

Table 1(a) Circular cross-sections asymmetrically reinforced using two bar diameters (Ø 10 @ 300 mm + 

Ø 32 @ 35 mm) 
Diameter of the cross 

section  

D (mm) 

First criterion 

(squares 1 in Figs. 10 to 13) 

Second criterion 

(squares 2 in Figs. 10 to 13) 

As (cm
2
) Mu (kN·m) As (cm

2
) Mu (kN·m) 

500 
33.74 

(2Ø 10+4Ø 32) 
350.25 

41.78 

(2Ø 10+5Ø 32) 
355.45 

600 
42.57 

(3Ø 10+5Ø 32) 
610.24 

50.61 

(3Ø 10+6Ø 32) 
626.13 

800 
68.27 

(5Ø 10+8Ø 32) 
1420.32 

99.65 

(4Ø 10+12Ø 32) 
1490.27 

1000 
101.22 

(6Ø 10+12Ø 32) 
2684.27 

132.61 

(5Ø 10+16Ø 32) 
2807.19 

 

Table 1(b) Circular cross-sections asymmetrically reinforced using one bar diameter (At 300 mm in the 

compression zone and 35 mm in the tension zone) 
Diameter of the cross 

section 

D (mm) 

First criterion  

(squares 1 in Figs. 10 to 13) 

Second criterion  

(squares 2 in Figs. 10 to 13) 

As (cm
2
) Mu (kN·m) As (cm

2
) Mu (kN·m) 

500 

24.13 

(1Ø 16 @ 300 mm 

& 

11Ø 16 @ 35 mm) 

245.87 

26.14  

(1Ø 16 @ 300 mm & 

12Ø 16 @ 35 mm) 

246.20 

600 

30.16  

(2Ø 16 @ 300 mm 

& 

13Ø 16 @ 35 mm) 

399.86 

34.18  

(2Ø 16 @ 300 mm & 

15Ø 16 @ 35 mm) 

410.59 

800 

59.69  

(3Ø 20 @ 300 mm 

& 

 16Ø 20 @ 35 mm) 

1079.82 

72.25  

(3Ø 20 @ 300 mm & 

20Ø 20 @ 35 mm) 

1126.34 

1000 

84.82  

(4Ø 20 @ 300 mm 

& 

23Ø 20 @ 35 mm) 

1935.64 

100.55 

(3Ø 20 @  300 mm 

& 

29Ø 20 @ 35 mm) 

1981.28 
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In order to obtain a complete vision of both criteria, all the curves that represent ARCS with 

two different bar diameters -upper curves in Figs. 10 to 13 are plotted together in Fig. 14(a). This 

figure shows that the first strength design criterion has a more linear behaviour than the second 

criterion. In fact, it can be concluded that only the first domain has practical consequences.  

 

 
 

(a) 

 

(b) 

Fig. 14 Global results for circular piles reinforced using two bar diameters (Ø 10 @ 300 mm + Ø 32 @ 35 

mm) 

 
Table 2 Cost of a metre of pile 

Unit Price 

Reinforcement steel 0.91 € / kg 

Concrete (incluiding thixotropic mud, transportation, drilling and 

laying): 
 

                 D= 500 mm 78.85 €/ m 

                 D= 600 mm 107.76 €/ m 

                 D= 800 mm 153.81 €/ m 

                 D= 1000 mm 232.95 €/ m 

Aids 2% 

Indirect costs 3% 
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Table 3 Summarize of cost of metre of no symmetrically reinforced circular cross section 

Diameter of the 

cross section 

D (mm) 

Reinforcement using two bar diameters 

First criterion  Second criterion  
Saving (%) 

Cost (€/m) Cost (€/m) 

500 108.14 114.17 12.3 

600 145.13 151.16 15.7 

800 212.78 236.54 19.3 

1000 320.63 344.17 18.1 

 Reinforcement using one bar diameter 

500 100.93 105.45 7.1 

600 135.85 138.85 8.5 

800 206.35 215.77 10.9 

1000 308.34 320.13 9.5 

 

 

The proposed procedure could be summarized as: with the aid of Fig. 8 we try to reach a 

demand (Md, Nd) by adding bars in the dense-reinforced zone. Fig. 14 helps us to choose the most 

convenient section diameter, in order to get as close as possible to the strength design criterion 1 

by the left side (i.e., designing in first domain). 
In order to estimate the cost per meter of pile, the prices of CYPE (2011) database have been 

consulted. Soft soil without cobbles or boulders and concrete poured without shoring has been 

considered. Prices per unit are summarized in Table 2. 

Total costs of the reinforcement, per metre of pile, obtained from both criteria and for both 

types of reinforcement (using only one or two bar diameters) have been summarized in Table 3. 

Total cost includes excavation, concrete and steel. The last column in Table 3 shows the 

percentage of total savings for ARCS designed with the first criterion compared with the 

symmetrically reinforced cross-section, both presenting the same ultimate moment. 

Flexural capacity of the cross sections has been represented with regards to cost per metre of 

pile in Fig. 14(b). Curves in Fig. 14(b) correspond to reinforcement using two different bar 

diameters for the entire studied cross-section diameters (D= 500, 600, 800 and 1000 mm) 

The curves that link the first criterion points of each pile diameter, represented by a thick dash 

line in Fig. 14, can be used to choose the minimum pile diameter for a given design flexural 

moment, Md. For example, for Md=2500 kN the minimum diameter is 1000 mm. 

 
 
5. Conclusions 
 

Substantial reductions in the amount of steel reinforcement and concrete required in the design 

of pile walls can be achieved by coupling a novel solution approach with widely accepted 

assumptions for ultimate strength analysis. The present paper proposes a design criterion for the 

design of asymmetrical reinforcement for pile walls. The chosen solution of longitudinal 

reinforcement and pile diameter gives better flexural capacity to cost ratio. This criterion fixes an 

upper limit of the longitudinal reinforcement area for the design of asymmetrical reinforcement 

circular sections. The criterion is based on the existence of a local minimum in the graph bending 

capacity versus reinforcement area. Beyond this limit, the increment of the area of steel 
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reinforcement will not produce an economical increase in flexural capacity. The most economical 

solution is obtained representing several graphs bending capacity versus reinforcement area for 

different pile diameter. 
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