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Abstract.  In this paper, a new approach for cable layout design of pre-stressed concrete slabs is presented. 
To account the cable profile accurately, it is modelled by B-spline. Using the convex hull property of the B-
spline, an efficient algorithm has been developed to obtain the cable layout for pre-stressed concrete slabs. 
For finite element computations, tendon and concrete are modelled by 3 noded bar and 20 noded brick 
elements respectively. The cable concrete interactions are precisely accounted using vector calculus 
formulae. Using the proposed technique a two way prestressed concrete slab has been successfully designed 
considering several design criteria. 
 

Keywords:   pre-stressed concrete; cable layout design; finite element analysis; stress; B-spline. 

 
 
1. Introduction 
 

The layout of the prestressing cable plays very important role in the stress distribution in 
prestressed concrete structures. Cable layout design of prestressed concrete structures, as reported 
in text books, has been worked out on the basis of limiting eccentricities. In these texts, cables are 
modelled as parabola and their eccentricities are varied to reduce tensile stresses of the concrete. 
This approach has two major drawbacks - 
(1) Cables are not truly parabolic, especially in continuous structures. 
(2) It is computationally very expensive since separate parabola has to be defined for each span. 

For realistic analysis of prestressed concrete structures, advanced computing techniques such as 
finite element method are employed. Linear finite element analysis (FEA) of pre-stressed  
concrete structures has been reported by Pandey et al. (1997), Buragohian et al. (1993, 1997), 
Pathak et al. (2004). The effect of several factors such as tendon profile (straight or deviated), 
strength of the concrete, tendon depth, number of deviators on ultimate stress in prestressed 
concrete beam was studied by Ghallab and Beeby et al. (2005). Finite element modeling of 
continuous reinforced concrete beam with external pre-stressed was carried by Ibrahim and 
Mubarak et al. (2009). 

Non linear analysis of the same are reported by Povoas et al. (1989), Kang et al. (1990), Roca 
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Fig. 1 Actual cable and parabolic profile 
 

 
Fig. 2 B-spline profile 

 

 
 
et al. (1993), Greunen et al. (1983), Figueiras et al. (1994), Vanzyl et al. (1979), Elwi et al. (1987), 
Diep et al. (2002) and Wu et al. (2003). Jirousek et al. (1979) and Buragohain et al. (1993,1997) 
have considered cable as parabolic and cubic curve in shell and semiloof shell elements, whereas 
Pandey et al. (1997) considered the cable as parabola in 20 node brick element. Pathak et al. (2004) 
considered the cable as cubic spline curve in nine node Lagrangean element. Saleem et al. (2008) 
modelled cable as B-spline for two dimensional finite element analysis. Madhavi et al. (2009) 
presented an efficient method for simulation of the complex behaviour of the prestressed concrete 
box girders using composite layered approach using non linear finite element analysis.  

In advanced attempts of cable layout design, Brandt et al. (1989) and Kirsch et al. (1973, 1993) 
have carried out cable layout optimization using mathematical programming methods. Utrilla and 
Smartin et al. (1997), Quiroga et al. (1991) obtained optimum cable layout in bridge decks using 
linear and non-linear programming respectively. Lounis and Arroya et al. (1993) carried out multi 
objective optimization of prestressed concrete beam and bridge girder using Lagrangean algorithm. 
Kuyucular et al. (1991) obtained optimum cable profile of prestressed concrete slabs using elastic 
theory and finite element method. A generalised approach to the single objective reliability-based 
optimum design of prestressed concrete beams was presented by Barakat et al. (2003). The results 
consist of  initial and final prestressing forces, prestressing losses, deflections and upper and 
lower bounds on the parabolic tendon profile. The cable profile was assumed to be the 
combination of parabola, third degree curve, forth degree curve and combination of parabola and 
third degree curve having common tangent at the junctions. These studies suffer from large degree 
of complexity in data preparation as well as in computations. To overcome these limitations; in this 
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study, a holistic approach has been proposed for analysis and design of three dimensional 
prestressed concrete structures. Cable profile is modelled by B-spline which is very suitable for 
these applications. Cable layout designs of several slabs are successfully carried out using the 
finite element (FE) based approach in which B-spline ordinates are considered as design variables. 
The concrete and cable are modelled by twenty noded brick and three noded curved bar elements 
respectively. In this way, a safe and more slender slab can be obtained. Using the proposed 
approach, cable layout design of a two way prestressed concrete slab has been successfully carried 
out. 
 
 
2. Cable modeling 
 

The cable profile plays very important role during the analysis as pressure on concrete depends 
on it. To analyse prestressed concrete structures using analytical approach given in the text books 
(Raju 2000, Lin and Burns 1982), cable profile is modeled by parabola. This brings about constant 
curvature and simplifies the solution. But profile, thus modeled, becomes discontinuous at 
supports (Fig. 1). If cable profile, to maintain continuity, is modeled by higher order polynomial, it 
results in a very zigzag shape. In order to overcome these difficulties, in this study, cable profile is 
modeled by B-spline. A B-spline is a typical curve of the CAD philosophy (Qing and Liu 1989, 
Rogers and Adams 1990). It models a smooth curve between the given ordinates (Fig. 2). The 
theory of the B-spline was first suggested by Schoenberg (1946). A recursive definition useful for 
numerical computation was independently discovered by Cox and by de Boor (Rogers and Adams 
1990). Gordon and Riesenfeld (1974) applied the B-spline basis to curve definition. The brief 
definition of B-spline curve is given below and detailed account of this can be found in Rogers and 
Adams (1990). 
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In above equations, Pi’s are the n+1 defining polygon vertices, k is the order of the B spline and 
Ni,k(t) is called the weighing function. x is the additional knot vector which is used for B- spline 
curve to account for the inherent added flexibility. A knot vector is simply a series of real integers 

xi such that xi ≤ xi+1 for all xi. They are used to indicate the parameter t used to generate a B-
spline. The curve generally follows the shape of the defining polygon and the curve is transformed 
by transforming the defining polygonal vertices. The order of the resulting curve can be changed 
without changing the number of defining polygon vertices. When a B-spline curve is used, the 
geometrical regularity is automatically taken into account. 
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dimensional 20 node concrete element. The shape functions of a 3 node curved bar elements along 
local ρ axis are given by 
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The global coordinates on the curved bar can be defined as 
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The tangent and normal vectors along ρ axis for the cable are given by 
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Where, a is the dot product. 

2

2

 d

Xd

d

dX
a 

 

The unit tangent and normal vectors are 
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The curvature at any point on the cable is expressed by 
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Cable reaction acts as concentrated loads on the concrete at the ends, where cable is anchorage. 
The anchorage end point forces can be calculated by- 

     end
T

A TNP                              (15) 

Where, Tend is the cable tension at the end points and [N] is the shape functions of 20 node 
brick elements.  

 Now total load vector due to interaction of concrete and cable is obtained by   

     ALT PPP                              (16) 

This nodal load vector is applied on the three dimensional finite element model along with live 
and dead load vectors to include pre-stressing effects.  

Local coordinates of known global coordinates are required for calculation of the anchorage 
end point forces as described below. 

 

3.2 Local coordinates computation 
 
Evaluation of local co-ordinate corresponding to known global coordinates is an inverse 

nonlinear problem which can be solved by Newton-Raphson method. The computation is carried 
out iteratively till the difference of two consecutive values becomes less than the prescribed 
tolerance. Let (x, y, z) is the global coordinate and (ξ, η, ζ) be the corresponding local co-ordinate. 
Numerical computations of local co-ordinates can be obtained using following iterative 
relationship 
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In above equation inverse matrix is the jacobian matrix. (xi+1, yi+1, zi+1) and (xi, yi, zi) are the 

known and computed values of the global co-ordinates. Starting values of ξ, η, ζ are considered as 
0, 0, 0. The prescribed tolerance is 0.01. 
 
 
4. Cable layout design 
 
An algorithm has been developed to find the cable layout so that stresses in the structural element 
be below the limiting tensile stress. A check on the compressive stresses will be made in order to 

avoid crushing of the concrete. Based on stress results obtained from finite element analysis, cable 
profile is changed in iterative manner. In the following sections, these steps are described in detail. 
 

81



 
 
 
 
 
 

Ahmad Ali Khan, K.K. Pathak and N. Dindorkar 

 
Fig. 6 Required cable profile 

 

Fig. 7 Variation of cable profile 
 
 

4.1 Criterion for cable layout design 
 
The convex hull property of the B-spline, described above, ensures the curve to be convex or 

concave depending upon the ordinates of the polygon. The objective of the prestressed concrete 
design is to get rid of the tensile stresses produced due to different loading conditions. In Fig. 6, a 
prestressed concrete beam is shown. It is assumed that top fiber at sections 1 and 3 are in tension 
and bottom fiber at section 2 is in tension. The shape of the cable to eliminate the tension should 
be as shown in the same figure. The shape of the cable can be accurately represented by a B-spline 
(Fig 2). By varying the ordinates of the B-spline, cable shape is changed to get the desired profile. 
In this way any 3D prestressed concrete structures can be handled to obtain the optimum cable 
profile. It is also important to know that this would be very difficult if not impossible with any 
other curve. 
 

4.2 Algorithm for layout design 
 
In Fig. 7 a concrete structure with typical loading is selected for cable layout design. Assume 

the cable to be straight between anchorage ends and initial prestressing force be P. Now finite 
element analysis of the concrete structure is carried out for external loads and initial prestressing 
force P acting at the ends. Let sections 1, 2, 3, 4 and 5 be such that bottom fibre of 1, 3 and 5 are in 
tension and top fibre of 2 and 4 are in tension. Assume top and bottom fiber stresses at these 
sections be  it and  ib, where i varies from 1 to 5. 

Since stresses at bottom fiber at 1, 3 and 5 are in tension, the cable should be concave there, 
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whereas at 2 and 4 it should be convex. The ordinates of B-spline will move downward at 1, 3 and 
5 and will move upward at 2 and 4. Let the initial y-coordinates of these points be y1, y2, y3, y4 
and y5. Depending upon top and bottom fibre stresses at a point, following four cases may be 
detected- 
(1) Top fibre is in tension and bottom fibre is in compression. 
(2) Bottom fibre is in tension and top fibre is in compression. 
(3) Both fibres are in tension. 
(4) Both fibres are in compression. 
 
 

4.2.1 Top fibre is in tension and bottom fibre is in compression 
Let  it and  ib be top and bottom stresses, then a ratio R is defined as 

 biit
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R
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                               (18) 

Where abs is the absolute value. New y-coordinates of the B-spline ordinates are calculated as 

  ii yRy  11                               (19) 

here yi represents the y-coordinate of the previous iteration. 
 

4.2.2 Bottom fibre is in tension and top fibre is in compression 
In this case the stress ratio is defined as 
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Once again abs represents the absolute value. New y-coordinates of the B-spline ordinates are 
calculated as 

  ii yRy  11                               (21) 

A check on the compressive stresses at the top fibre will be made for it to not cross the limiting 
value. 
 

4.2.3 Both fibres are in tension 
If top and bottom both fibres are in tension, then either the cable force should be increased or 

the section should be redesigned.  
 
4.2.4 Both fibres are in compression 
Check the compressive stresses at the top and bottom fibres for them not to cross the limiting 

value. If they are below, cable profile is not altered at that section otherwise redesign the section.  
These steps are repeated till the cable profile for limiting tensile stresses is obtained. Based on 

this procedure, ordinate movements of B-spline are shown in Fig. 7. The flowchart of the proposed  
algorithm of cable layout design is shown in Fig. 8. This algorithm is coded in FORTRAN 
software named as PRECLA3D which is used for layout design given below. 
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Fig. 8 Flowchart for cable layout design 
 

 

5. Numerical examples 
 

5.1 Example 1 
 

A two way prestressed concrete slab of 4200 x 4200 x 300 mm is considered for cable layout 
design. Fourteen prestressing cable, 7 each in length and width directions are used. The slab is 
discretised into 49 twenty nodded brick elements and 428 nodes. The loading conditions and three 
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Fig. 9 Two way prestressed concrete slab 

 

 

 
 

 

dimensional finite element model are shown in Fig. 10. Four concentrated loads, PL, of value 270 
kN are applied on the slab as shown in figure. Gravity load is also taken into the account. 
Following material properties are adopted: 
(1) Young’s modulus (concrete) = 2 x104 N/mm2  
(2) Compressive strength of concrete = 40 N/mm2 
(3) Poisson’s ratio = 0.15 
(4) Wobble coeffient = 1x10-5 
(5) Tensile strength of concrete = 0.25 N/mm2  
(6) Density of concrete = 2500 Kg/m3 
The cable layout design is taken up for two conditions: 
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Table 1 Bending stresses (MPa) for constant prestressing force 

Iteration 
No. 

Load 
(kN) 

Maximum bending stresses 
(MPa) Eccentricity 

(mm) 
Compressive Tensile 

1 2000 -17.13 0.83 25 

2 2000 -17.03 0.73 27.33 

3 2000 -16.94 0.65 29.32 

4 2000 -16.86 0.58 31 

5 2000 -16.81 0.52 32.48 

6 2000 -16.75 0.46 33.76 

7 2000 -16.70 0.42 34.89 

8 2000 -16.66 0.37 35.88 

9 2000 -16.62 0.34 36.75 

10 2000 -16.59 0.31 37.52 

11 2000 -16.56 0.27 38.21 

12 2000 -16.53 0.25 38.83 

 
Table 2 Bending stresses (MPa) for variable prestressing load 

Iteration 
No. 

Load 
(kN) 

Maximum bending stresses 
(MPa) Eccentricity 

(mm) 
Compressive Tensile 

1 2000 -17.13 0.83 25 

2 2010 -17.16 0.77 25 

3 2020 -17.18 0.72 25 

4 2030 -17.21 0.67 25 

5 2040 -17.23 0.61 25 

6 2050 -17.26 0.56 25 

7 2060 -17.28 0.51 25 

8 2070 -17.31 0.45 25 

9 2080 -17.33 0.40 25 

10 2090 -17.36 0.35 25 

11 2100 -17.38 0.30 25 

12 2110 -17.41 0.26 25 

13 2115 -17.42 0.22 25 

 
 

5.1.1 Constant prestressing force 
A constant prestressing force of 2000 kN is applied on all the fourteen cables. Initially 

eccentricity of all the cables is kept 25 mm. Maximum compressive and tensile stresses are noted 
during the design process. It was observed that maximum tensile stresses occur at four locations a, 
b, c and d which lie on cable 4 and 11. Hence layout design of these two cable were taken up. It 
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took 12 iterations to converge to maximum tensile stress of 0.25 MPa. Maximum compressive and 
tensile stresses along with eccentricities are given in Table 1. The variation of tensile stresses with 
respect to iteration is shown in Fig. 10 which shows non-linear trend. 

 
5.1.2 Variable prestressing force 
In second case of layout design, eccentricities of all the cables are kept constant 25 mm. based 

on the stress analysis, cable forces are varied. The initial value of the prestressing force is kept 
2000 kN which is varied during the design process. It can be observed that at cable force of 2115 
kN maximum tensile stresses are below the limit. The accounts of the compressive and tensile 
stresses, during the design process, are given in Table 2. It took 13 iterations to bring the tensile 
stresses below 0.25 MPa. The variation of tensile stresses with respect to iteration is shown in Fig. 
11 which shows the linear trend. 
 

5.2 Example 2 
 

A two way prestressed concrete slab of 4900 x 4900 x 300 mm is considered for cable layout 
design. Fourteen prestressing cable, 7 each in length and width directions are used. The slab is 
discretised into 49 twenty nodded brick elements and 428 nodes. The loading conditions and three 
dimensional finite element model are shown in Fig. 10. Four concentrated loads, PL, of value 270 
kN are applied on the slab as shown in figure. Gravity load is also taken into the account. 
Following material properties are adopted: 
(1) Young’s modulus (concrete) = 2x104 N/mm2  
(2) Compressive strength of concrete = 40 N/mm2 
(3) Poisson’s ratio = 0.15 
(4) Wobble coeffient = 1x10-5 
(5) Tensile strength of concrete = 0.25 N/mm2   
(6) Density of concrete = 2500 Kg/m3 

The cable layout design is taken up for two conditions: 
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Table 3 Bending stresses (MPa) for constant prestressing force 

Iteration 
No. 

Load 
(KN) 

Maximum bending stresses 
(MPa) Eccentricity 

(mm) 
Compressive Tensile 

1 2100 -18.15 0.95 25 

2 2100 -18.05 0.85 27.33 

3 2100 -18.96 0.77 29.32 

4 2100 -17.88 0.70 31 

5 2100 -17.83 0.64 32.48 

6 2100 -17.77 0.58 33.76 

7 2100 -17.72 0.54 34.89 

8 2100 -17.68 0.49 35.88 

9 2100 -17.64 0.45 36.75 

10 2100 -17.61 0.41 37.52 

11 2100 -17.58 0.37 38.21 

12 2100 -17.55 0.33 38.83 

13 2100 -17.52 0.30 39.39 

14 2100 -17.49 0.27 39.89 

15 2100 -17.45 0.25 40.22 

16 2100 -17.42 0.24 40.57 

 
 

Fig. 12 Tensile stress vs Iterations 

Fig. 13 Tensile stress vs Iterations
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Table 4 Bending stresses (MPa) for variable prestressing load 

Iteration  No. 
Load 
(KN) 

Maximum bending stresses 
(MPa) Eccentricity 

(mm) 
Compressive Tensile 

1 2100 -18.15 0.95 25 

2 2110 -18.18 0.89 25 

3 2120 -18.21 0.83 25 

4 2130 -18.25 0.77 25 

5 2140 -18.28 0.71 25 

6 2150 -18.31 0.65 25 

7 2160 -18.34 0.6 25 

8 2170 -18.37 0.55 25 

9 2180 -18.40 0.5 25 

10 2190 -18.43 0.45 25 

11 2200 -18.45 0.4 25 

12 2210 -18.47 0.36 25 

13 2220 -18.50 0.32 25 

14 2230 -18.52 0.28 25 

15 2235 -18.54 0.24 25 
3 

 
 

5.2.1 Constant prestressing force 
A constant prestressing force of 2100 kN is applied on all the fourteen cables. Initially 

eccentricity of all the cables is kept 25 mm. Maximum compressive and tensile stresses are noted 
during the design process. It was observed that maximum tensile stresses occur at four locations a, 
b, c and d which lie on cable 4 and 11. Hence layout design of these two cable were taken up. It 
took 16 iterations to converge to maximum tensile stresses below 0.25 MPa. Maximum 
compressive and tensile stresses along with eccentricities are given in Table 3. The variation of 
tensile stresses with respect to iteration is shown in Fig. 12 which shows non-linear trend.  
 

5.2.2 Variable prestressing force 
In second case of layout design, eccentricities of all the cables are kept constant 25 mm. based 

on the stress analysis, cable forces are varied. The initial value of the prestressing force is kept 
2100 kN which is varied during the design process. It can be observed that at cable force of 2235 
kN maximum tensile stresses are below the limit. The accounts of the compressive and tensile 
stresses, during the design process, are given in Table 4. It took 15 iterations to bring the tensile 
stresses below 0.25 MPa. The variation of tensile stresses with respect to iteration is shown in Fig. 
13 which shows the linear trend. 

 
 

6. Conclusions 
 

The proposed methodology of cable layout design is a powerful tool for design of prestressed 
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concrete slabs. It can be observed that for two way slab, at cable force of 2115 kN maximum 
tensile stresses are below the limit considering constant profile while for variable profile it comes 
to 2000KN. It means 5.75% more prestressed force is needed to keep the tensile stresses below the 
permissible limit in case of constant profile. These examples show the efficacy of the proposed 
methodology of cable layout design in terms of design of cable layout and prestressing force. It is 
observed that stresses at symmetrical nodes are equal which validate the methodology of the 
software PRECLAD3D. Out of two preferred cable layout design methods, constant profile is 
found to require higher prestressing loads. 

In this paper a new technique for cable layout design of prestressed concrete slabs is presented. 
The pre-stressing cables are modelled as B-spline curve whose ordinates are taken as design 
variables. Stress analysis is carried out using 3D finite element method. Using the proposed 
methodology, a two way prestressed concrete slab has been successfully designed to satisfy two 
design criteria. The proposed approach offers a powerful tool for realistic cable layout design of 
prestressed concrete slabs. 
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