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Abstract. This paper discusses the combined application of two different techniques, Neural Networks
(NN) and Principal Component Analysis (PCA), for improved prediction of concrete properties. The
combination of these approaches allowed the development of six neural networks models for predicting
slump and compressive strength of concrete with mineral additives such as blast furnace slag, fly ash and
silica fume. The Back-Propagation Multi-Layer Perceptron (BPMLP) with Bayesian regularization was
used in all these models. They are produced to implement the complex nonlinear relationship between the
inputs and the output of the network. They are also established through the incorporation of a huge
experimental database on concrete organized in the form Mix-Property. Thus, the data comprising the
concrete mixtures are much correlated to each others. The PCA is proposed for the compression and the
elimination of the correlation between these data. After applying the PCA, the uncorrelated data were
used to train the six models. The predictive results of these models were compared with the actual
experimental trials. The results showed that the elimination of the correlation between the input
parameters using PCA improved the predictive generalisation performance models with smaller
architectures and dimensionality reduction. This study showed also that using the developed models for
numerical investigations on the parameters affecting the properties of concrete is promising.
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1. Introduction

There are four basic components of concrete: cement, water, coarse aggregates and fine aggregates.

Therefore, modeling such a concrete is a four-parameter modeling problem. Adding other mineral

additives such as blast furnace slag, fly ash and silica fume and other chemical admixtures such as

superplasticizer and air entraining makes this a nine-parameter modeling problem and much more

difficult for concrete mix proportioning and predicting its properties. Therefore, concrete mix design

involves the choice of components proportions that will result in some desired properties. Most

methods of formulating concrete identify slump at the fresh state and compressive strength at the

hardened state as the main properties of concrete. 

Conventional methods to predict the compressive strength of concrete are based on statistical

analysis by which many linear and nonlinear regressions equations were constructed to model a

* Corresponding author, Professor, E-mail: sdkenai@yahoo.com

DOI: http://dx.doi.org/10.12989/cac.2012.10.6.557 



558 B. Boukhatem, S. Kenai, A.T. Hamou, Dj. Ziou and M. Ghrici

predictive problem (Snell and Wallace 1989). For early ages concrete, the literature highlights two

methods for the development of the maturity function, which later led to the establishment of a

strength-maturity relation first introduced by Saul and Nurse in 1949. Later D'Aloia and Chanvillard

(1994) describe a model for predicting early age concrete compressive strength by applying the time

equivalent method. Usually, the compressive strength at early age is incorporated into 28 days

compressive strength equation (BRE 1988). For predicting the 28 days compressive strength of

concrete, many contributions, models and methods were developed from the Ferret or Bolomey

formulas (Bolomey 1995, De Lerrard et al. 1997, Lawrence and Ringo 2000). Other models were

developed based on other approaches (Joe and Eng 1995, Lecomte and De Larrard 2001). However,

modelling and predicting rheological properties of concrete is scarce because of its complex

behaviour. Recently, the early-age properties of cement based materials have been reviewed by

Bentz (2008).

In recent years, Artificial Intelligence (AI) which differs fundamentally from the traditional

methods has been widely used to solve complex nonlinear problems in civil engineering and has

proven to be remarkably successful particularly in concrete technology by applying different approaches:

Expert Systems (ES), Neural Networks (NN), Fuzzy Logic (FL) and Genetic Algorithms (GA)

(Zain et al. 2005, Yeh 2006, Bilim et al. 2009, Uygunoglu and Unal 2006, Jayaram 2009). The

application of these approaches contributes to the improvement of existing models and conventional

methods for the formulation of concrete and the prediction of its performance. There has been an

increasing interest for the use of NN approach. More recently, several researchers moved towards

the adoption of this approach for the development of more sophisticated systems in combination with

ES, FL and GA (Gupta 2006, Topc and Sardemir 2008, Xiaodong et al. 2007) on one hand, and

probabilistic, and Bayesian techniques (Lee 2009, Slonski 2007) on the other hand. These

techniques have effectively improved NN performance by the derivation of more efficient learning

algorithms. However, only few investigations were carried out on the application of a practical

technique and intelligent manipulation for the analysis of all the data before learning a NN model

which may contain redundancies and correlations between them (Bellamine and Elkamel 2008,

Junita and Brian 2008). This represents a very important step before designing a model. 

The main objective of this paper is to explore the feasibility of combining both approaches of

Neural Networks (NN) and Principal Component Analysis (PCA) to predict slump and compressive

strength of concrete. The type of concrete considered here is a concrete containing mineral additives

such as slag, fly ash and silica fume. Data were obtained from laboratory tests and literature. The

PCA is used as a statistical tool for the elimination of correlations between the data as well as

reducing the representation size of these data or data compression. For this reason, six neural

networks models were developed and expanded with their input parameters which are the data

compressed by the PCA. These models are further improved to create the best network model for

each problem. This is done by studying the effect of the parameters used in the construction of

networks. Such a program can be used to study effectively the effects of different constituents of the

mixture on concrete properties. 

2. Neural networks

A neural network is a system composed of a set of neurons interconnected with each other. A

certain disposition of the connection of these neurons produced a neural network model suitable for
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certain tasks. The Back Propagation Multilayer Perceptron (BPMLP) is the most popular neural

network model often used, consisting of three adjacent layers, input, hidden and output (Dreyfus

2002). Each layer contains several neurons (Fig. 1). The NN is trained by presenting a set of

input-output associated data based on learning or training process. The training process uses an

algorithm, in which the NN develops a function between the inputs and outputs. Generally, in a

training process, neurons receive input from the external environment (x1, x2, ... xn) and transmit

them to the neurons in the hidden layer, which are responsible for simple and useful

mathematical calculations involving the connections weight (w11, w12 ..., w1n), bias (b1, b1, …, bn)

and input values. The result of these hidden neurons is passed through a threshold or activation

function (f) in each neuron (processing element) which limits the output of the neuron with a

minimum and maximum allowed bounds. The choice of this function appears to be a very

important element in NN, and often nonlinear functions will be required. Once, this function is

applied, the final results are produced. Thereafter these results become the input to all neurons in

the adjacent layer (the second hidden layer or output layer), and the calculation process is

repeated through the layers until the output layer. The output values are produced with output

neurons (y1, y2 in Fig. 1). At this stage, a value of output error is calculated between the outputs

produced and the desired outputs in a supervised learning. Generally, the training process is

iterative and stops when a designed error is reached. Upon completion of a training process, the

network should be able to give out the solution (s) for any set of data based on the general

architecture that has been developed.

The performance of a BPMLP relies heavily on its ability of generalization, which, in turn,

depends on the data representation. An important feature of data representation is the de-correlation

of these data. In other words, a set of data presented at a BPMLP should not consist of correlations

between them because the correlated data reduce the distinctiveness of the representation of data,

and therefore, introduce confusion to the model during the learning process and, thus, produces a

BPMLP with a low ability to generalization for new data (Bishop 1994). This suggests the need to

eliminate the correlation of data before they are presented at a BPMLP. This can be achieved by

applying the PCA technique on all input data before the training process of the BPMLP (Jolliffe

2002). This technique was considered in this study.

Fig. 1 Multi layer neural network
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3. Principal component analysis

The technique of PCA was first introduced by Karl Pearson in 1901. It is a descriptive technique

to study the dependencies between variables, for a description or a compact representation of these

variables. Since 70 years, many researchers have used the PCA method as a tool for processes

modeling from which a model can be obtained (Kresta 1991, MacGregor 1995). It was also

successfully applied as a technique for reducing the dimensionality of NN inputs in a variety of

engineering applications (Harkat 2003, Kuniar and Waszczyszyn 2006, Shin 2008). 

Mathematically PCA is an orthogonal projection technique that projects multidimensional

observations represented in a subspace of dimension m (m is the number of observed variables) in a

subspace of lower dimension (L<m) by maximizing the variance of the projections. 

In practice, for modeling a process using PCA, the variables of this process are collected in a

matrix Xb (m is the number of variables and N is the number of observations of each variable). Xb is

given by 

(1)

where, x1(1) represents the value of the first variable of the first observation. In order to make the

result independent of the used units for each variable, a pre-treatment is necessary to focus and

reduce the variables. Each column Xj of the new centered matrix is given by

(2)

where, Xj
b is the jth column of the matrix Xb and Mj its mean given by

 (3)

And,  its variance can be estimated using the Eq.

(4)

The new matrix of normalized data is noted

(5)

The correlation matrix is given by

(6)
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written as follows

 (7)

Where, pi is the i th eigenvector of Σ and λi is the corresponding eigenvalue.

If there are q linear relationships between the columns of X matrix, we have q eigenvalues equal

to zero, and the matrix X can be represented by the first L (m-q) principal components corresponding to

eigenvalues not equal to zero. However, the eigenvalues equal to zero are rarely encountered in

practice (quasi-linear relationship, noise...). So, it is necessary to determine the number L which

represents the number of eigenvectors corresponding to the dominant eigenvalues. Many rules are

proposed in the literature to determine the number of L components to retain (Valle 1999). In our

study, the cumulative percentage of the total variance method was used. The basis of this method is

to note that each principal component is representative of a portion of the variance of the process

studied. The eigenvalues are the measure of the variance and can therefore be used in selecting the

number of principal components. For the choice of L, the percentage of the total variance that needs

to be kept should be chosen. The number of components is the smallest number taken so that this

percentage is reached or exceeded; the components are successively selected in the order of

decreasing variances. The percentage of variance explained by the first L components is given by 

 (8)

4. Experimental database

The data of concrete mixes with Blast Furnace Slag (BFS), Fly Ash (FA) and Silica Fume (SF) as

mineral additives in replacement to Cement (C) were extracted and collected form previous research

projects and literature to build the database (Boukhatem 2011). Each set consists of concrete

constituents and its corresponding workability and compressive strength. All the compressive

strength values obtained using different types of specimens were generalized on (100×200 mm)

cylinders cured under normal conditions. The slump was measured by the standard Abram cone

slump test. The ranges and the limits of the constituents of concrete for each additive are shown in

Tables 1, 2 and 3. Fig. 2 presents the distribution of the experimental data which was made

according to the geographical origin of the additives by different researchers. 

The following eight parameters were selected for slump models (cement (kg/m3), additive (kg/m3),

fine aggregates (kg/m3), coarse aggregates (kg/m3), water (kg/m3), superplasticizers (l/m3), air

entraining agent (ml/m3) and temperature (°C). For compressive strength models, the same

parameters were considered in addition to the age of testing (days). The data were organized

according to six NN models as shown in Table 4. The data set was divided into 3 subsets: Training

(60%), Testing (20%) and Validation (20%) for each model. The training set data was used to train

the NN models, the entire validation data was used to stop the training process and all test data was

used to assess the performance of the models after completion of the training process.

∑ PΛP
T

λi pi pi

T

i 1=

m

∑= =

PCV l( ) 100

λj

j 1=

l

∑

λj

j 1=

m

∑

-----------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

%=



562 B. Boukhatem, S. Kenai, A.T. Hamou, Dj. Ziou and M. Ghrici

The components that form the input matrix of a NN model have different limits and are composed

of correlated information with each other, so pre-processing and normalization of data are needed.

In our context, the PCA method for the elimination of correlations between the parameters that

compose the input matrix and also for reducing the problem size was applied. Then, the Min-Max

boundary function on the uncorrelated data between -1 and 1 according to the limits of the used

Table 1 Ranges of constituents and properties of concrete used

Components and properties 
Data

Min Max

Portland cement [ASTM Type I/CEMI/Type 10] (kg/m3) 0 550

Additives
(%)

Blast furnace slag (BFS) 10 80

Fly ash (FA) 10 70

Silica fume (SF) 05 20

Fine aggregates (FA) (kg/m3) 400 960

Coarse aggregates (CA) (kg/m3) 917 1385

Water (kg/m3) 90 248

Admixtures
Super-plasticizer (l/m3) 0 34

Air entraining (ml/m3) 0 1670

Water/Binder ratio 0.25 0.7

Temperature (°C) 5 50

Air quantity (%) 0.9 8

Age (days) 1 91

Compressive strength (MPa) 2 121

Slump (mm) 15 250

Table 2 Range of chemical compositions of the cement and the additives used

SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 SSB (m2/kg)

C 18.97-39 0.27-10 1.2-7.72 43-74.7 0.2-4 0.15-2.5 0.01-1.8 0.3-4.7 255-500

SBS 3.1-43.76 2.8-40 0.1-6.1 0.35-43 0.3-14 0.2-0.9 0.1-2.6 0.1-3.3 250-608

FA 23.1-93.8 0.06-35.4 0.09-28.9 0.12-36 0.16-13 0.3-4.2 0-7.3 0.1-5.1 211-930

SF 20.9-97.1 0.06-41 0.15-4.32 0.07-64 0-4.91 0.04-3 0-1 0.1-2.9 12-54.104

Table 3 Ranges of physical properties of aggregates, admixtures and specimens

Aggregates Admixtures
Specimens

Fine Coarse Superplasticizer Air entraining

FM D WA Mx D WA Base D Base D Type Form (mm)

0.92
-

3.34

2.53
-

2.7

0.8
-

1.8

5-20

5-10

2.0
-

2.89

0.28
-

1.1
NSF 1.8-2.1 SR 1-1.17

Cube
Cylindre

Prism

100 and 150
150×300, 100×200 and 160×320

40×40×160 and 70×70×280

Note: FM: Fineness Modulus of Fine Aggregates, D: Density; Mx: Maximum size of Coarse Aggregates;
WA: Water Absorption, NSF: Naphthalene Sulfonate Formaldehyde, SR: Synthetic Resin.
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Tang-Sigmoid activation function was applied. Finally, the BPMLP was allowed to act more effectively to

find optimal models with improved generalization properties. 

5. Methodology

This section describes the steps taken to implement the PCA and the NN approaches. The

methodology is described in Fig. 3. Two types of PCA data processing were implemented in two

phases. The first phase is called Pre-PCA, which is responsible for pre-processing the training data

matrix concerning the concrete compositions, and eliminates correlations between them. The second

is called Post-PCA, which is used to transform testing and validation data matrix according to its

principal components. The implementation and simulation were performed using the MATLAB 7.5

functions of the Neural Networks toolbox (MATLAB 2007).

5.1 Pre-PCA phase

The use of the PCA function in MATLAB involves specifying a value corresponding to a desired

value as a percentage of lower contribution of the input element. For example, a value of 0.05

means that the components that contribute less than 5% of the total variation in the data set will be

rejected. From this point, this value will be simply referred as the Principal Component Variance

(PCV). 

Before using data (mixture proportions) of the input matrix to train a NN, they must be pre-

Fig. 2 Distribution of data according to the origin of the additive used

Table 4 The organisation of the database

Additive Model identification Training Testing Validation Total

BFS
MPSBFS 101 33 33 167

MPCSBFS 368 122 122 612

FA
MPSFA 66 21 21 108

MPCSFA 240 80 80 400

SF
MPSSF 98 32 32 162

MPCSSF 352 117 117 586

Note: M: Model; P: Predicting, S: Slump and CS: Compressive Strength.
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processed and normalized in order to extract the correlation between them (Fig. 3). First, data from

the input matrix (C) were normalized, which means they have a mean of 0 and a variance of 1.

Then, the PCA parameters (eigenvalues and eigenvectors) were estimated to calculate the principal

components using the correlation matrix derived from the normalised data (N), the mean and

variance values. After that, a transformation matrix is generated (TransMat) and a set of processed

data (Ntrans) composed of non correlated orthogonal elements (principal components) is produced.

These principal components were classified according to their variations. 

Fig. 4 shows a representation of eigenvalues in terms of principal components for the six models

and the relative contribution of each component to the total variance of data. For example, in the

slag concrete slump model, the first component is about 25% of the variance; it means that this

component represents a significant part on the slump. The components 2 and 3 are respectively

Fig. 3 Methodology of implementation of PCA and NN

Fig. 4 Eigenvalues and contributions of components to the total variance
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about 18% and 15% of the variance, while the last four components are approximately 13%, 12%,

9% and 6% respectively. The six components are about 93% of the total variance. The matrix

TransMat was then stored for later use during the phase of Post-PCA.

The cumulative variances of the relative contribution of the principal components to the total

variance of data for all models are given in Table 5.

Looking at the distribution values, the first principal components which have over 90% of the

total variance of data were selected and the others were neglected, because they have no significant

impact on the data. Thus, 8 and 9 parameters of the row input matrix can be replaced by 6 and 7

first principal components based on a chosen PCV values for slump and compressive strength

models respectively. They were then introduced to the NN inputs with their desired output data.

Many NN were trained using different PCV values to determine the optimal percentage of this

value of the total variation in the database.

The PCA method allowed the determination of the significance of variables on the phenomenon

to be studied (slump and compressive strength), where each variable is related to a component

(Table 6). Thus, according to the order of these components the effect of each variable on slump

and compressive strength can be classified. In our study some important findings concerning the

effect of the components of concrete mixtures on the properties studied can be extracted. For

Table 5 Variances of the cumulative contributions of components

 Models

Components

Distribution of cumulative variances (%)

MPSBFS MPSFA MPSSF MPCSBFS MPCSFA MPCSSF

PC1 25.33 28.46 30.58 21.11 22.98 20.93

PC2 43.72 50.13 49.36 37.45 40.57 36.23

PC3 59.21 65.11 64.79 51.81 56.66 50.16

PC4 72.31 79.60 78.22 65.03 70.58 64.17

PC5 83.95 90.04 89.30 76.41 81.36 75.52

PC6 93.26 95.97 95.01 86.64 91.18 85.79

PC7 98.83 99.32 98.71 95.06 96.58 95.34

PC8 - - - 99.09 99.41 98.92

Table 6 Variables importance according to components 

 Models
Variables

Variables importance according to components (%)

MPSBFS MPSFA MPSSF MPCSBFS MPCSFA MPCSSF

Cement 0.63(PC1) 0.51(PC2) 0.46(PC1) -0.64(PC1) 0.63(PC3) 0.57 (PC1)

Additive -0.52(PC1) -0.55(PC4) 0.90(PC4) 0.55(PC1) 0.49(PC1) -0.65(PC5)

Fine aggregates -0.55(PC2) -0.54(PC6) -0.56(PC1) -0.56(PC4) -0.46(PC1) -0.54(PC1)

Coarse aggregates 0.69(PC5) 0.61(PC3) -0.51(PC3) -0.51(PC5) -0.55(PC7) -0.60(PC3)

Superplasticizer -0.65(PC4) 0.64(PC2) -0.68(PC2) 0.46(PC3) -0.61(PC4) -0.55(PC2)

Air entraining 0.50(PC5) -0.49(PC1) 0.76(PC5) 0.56(PC6) 0.59(PC7) 0.77(PC7)

Water 0.50(PC3) -0.43(PC3) 0.54(PC2) -0.60(PC2) -0.71(PC2) 0.58(PC3)

Temperature 0.72(PC6) 0.81(PC5) 0.73(PC6) 0.69(PC7) 0.83(PC6) 0.67(PC5)

Age - - - 0.78(PC5) 0.89(PC5) 0.88(PC6)
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example, for the MPSBFS we note that the first component refers primarily to cement and slag

dosages. The second component is related to fine aggregates. The third component corresponds to

water. The 4th, 5th and 6th correspond respectively to super-plasticizer, air entraining or coarse

aggregates and temperature.

5.2 Post-PCA phase 

During each training process of an NN, validation and generalization performance on testing and

validation data sets were evaluated. Each vector of validation or test data must be post-processed

with the Post-ACP before it can be used by an NN to estimate or predict the output (Fig. 3). 

As in the pre-processing procedure, the validation of test data Cval/test were normalized (mean 0

and variance 1). Then, the normalized data, Nval/test were post-processed based on the correlation

matrix TransMat (obtained during the pre-processing phase) to produce a new transformed data

matrix, Ntransval/test composed of reduced and uncorrelated data. The new data, with its obtained

optimal weights, was used for each trained network to predict designated concrete properties based

on new concrete compositions and for all additives. 

5.3 Training, testing and network selection 

In this study, six NNs models have been developed (Table 4). Each model was trained and tested

with their data set for training, testing and validation based on several values of PCV, using the

Bayesian regularization algorithm (MacKay 1992). The reason to train more models is to get the

best NN architecture, and the optimum PCV value. The best architecture means that the optimal

number of hidden neurons must have an NN in the hidden layer and hence increases the NN

generalization capacity. The optimum value of PCV determines the PC optimal number retained for

each set of data and facilitates the NN training. 

As mentioned previously, training, testing and validation of an NN were conducted simultaneously. In

other words, after training an NN, the test and validation set data were presented to the network at

each cycle to select the best NN. Therefore, the test and validation data were initially processed or

normalised using the Post-PCA. After post-processing, a set of reduced and uncorrelated test data

was produced and then integrated into the NN to get the output values for each test and validation

set. This is based on calculating the sum of square errors which has a decreasing trend with the

number of training cycles (iterations). It is given by the following expression

 (9)

Where, SSE: the sum of square errors; di : the desired output; yi : the real output of the model and

N: the total number of data.

Then, once the desired errors have occurred, the output results obtained for each model were

compared with the corresponding actual results. The comparison was made in terms of calculating

the coefficient of determination R2 and P value. Generally, the calculation of P value was used to

justify the significance of the studied relation, because, even with a high coefficient of

determination, if the P value is greater than 0.1, the relation is not significant. The relation is

considered significant for P values less than 0.001. The ideal values of P and R2 are 0 and 1

respectively.

SSE di yi–( )2

i 1=

N

∑=
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6. Results and discussions 

Table 7 summarizes the training performance and the different architectures adopted in this

application. According to this table, the six models were applied by the introduction of the reduced

and non-correlated data sets. 

After achieving the training process, the models also provided the predictive slumps and compressive

strength of concrete containing blast furnace slag, fly ash and silica fume according to concrete

mixes data based on optimal PCV and best architectures. The best results were confirmed for the

models with input vectors compressed by 6 and 7 PC for all the additives to predict concrete

slumps and compressive strength respectively. The application of such models also led to a better

prediction of the two designated properties. Finally, it was observed that beyond a determined PCV

for all models (Fig. 5), the number of input components becomes smaller, generating a state of lack

of information which prevents the models to be generalized. The overall results show that NN

generalizes better with an optimal number of input data (PC) that does not consist of too much

correlation between them.

Table 7 Architecture and parameters of the models developed

Additives
Input
(X)

PCA Parameters Architectures NN Parameters
Output (Y)

PCC PCV N.PC N.HL N.NHL Mu E/N.ITR R2 P

BFS 8 93.26 0.06 6 2 10/12 0.005 0 1 10−4

Slump
(mm)

FA 8 95.97 0.06 6 2 5/5 0.005 0.004 0.98 0

SF 8 95.02 0.04 6 2 5/9 0.005 0.01 0.96 10−6

BFS 9 95.06 0.03 7 2 7/20 0.005 0.006 0.96 0 Compressive 
strength
(MPa)

FA 9 96.58 0.04 7 2 4/18 0.005 0.02 0.90 0

SF 9 95.34 0.05 7 2 11/1 0.005 0.02 0.94 10−4

Note: N.HL: Number of hidden layers, N.NHL: Number of neurons in each hidden layer, Mu: adaptive mu
value, N.ITR: Number of iterations or cycles, E: the error of the network; R2: coefficient of determination and
P: P Value.

Fig. 5 Variation of principal components number with different PCV
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7. Experimental program 

To demonstrate the utility of the proposed method for improving the performance of the developed NN

models, an experimental program was carried out. The completion of this program involved the

collection of experimental results on the slump and the compressive strength at 3, 7, 28 and 91 days

from different mixtures made of concrete at various water-binder ratios. We focused mainly on 3

types of ordinary concrete in which we replaced optimized quantities: 50% BFS, 25% FA and 10%

SF by weight of cement of these supplementary cementing materials. High performance concretes

was also made by replacing cement by weight with 30%, 15% and 10% BFS, FA and SF, respectively.

The materials used in the experimental program were as follows: 

1. Portland cement CSA Type GU from local areas in Canada;

2. Additives (blast furnace slag, fly ash class F and silica fume) from local areas in Canada; 

3. Tap water; 

4. Super-plasticizer: sodium Poly-Naphthalene Sulfonate (ASTM C 494 Type F), its relative density at

25°C is 1.21 and a solid content of 40.5%.

5. Air entraining: liquid hydrocarbons derived from water-soluble (ASTM C 260), its relative

density at 25°C is 1.0 and a solid content of 5.0%. 

6. Coarse aggregates: 80% of crushed stone 0-14 mm and 20% of the crushed stone 10-20 mm of

Table 8 Composition of concrete mixtures

Water/ 
Binder

Cement 
(kg/m3)

Additives Coarse aggregates
(kg/m3) Fine 

aggregates 
(kg/m3)

Admixtures 

Water
(kg/m3)Type %

 Quantity 
(kg/m3)

SP
(%)

AE
(ml/m3)

80%
5-14 mm

20%
10-20 mm

W/B=0.5

350 C 0 0
860 215 815 0 0

175
856 214 694 0 350

175 BFS 50 175
910 228 737 0 0

175
856 214 659 0 455

262.5 FA 25 87.5
912 228 738 0 0

175
856 214 685 0 718

315 SF 10 35
915 228 741 0.7 0

175
856 214 661 0.6 1200

W/B=0.4

350 C 0 0 957 239 775 0.9 0 140

175 BFS 50 175 955 238 773 1.1 0 140

262.5 FA 25 84.5 950 237 769 0.6 0 140

315 SF 10 35 957 239 775 1.2 0 140

W/B=0.3

500 C 0 0 1075 720 3.5 0 150

350 BFS 30 150 1075 704 3.7 0 150

425 FA 15 75 1075 695 3.3 0 150

450 SF 10 50
1075 703 4.5 0

150
1075 577 4 1603

Note: For W/B=0.3 the maximum size of coarse aggregates varies from 2.5-10 mm, C: the control mixtures.
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2.731 and 2.729 densities respectively (100% of crushed stone 2.5-10 mm of density 2.729 for high

performance concrete). 

7. Fine aggregates: Natural river sand with a module of fineness 2.6, water absorption of 1.16 and

a density of 2653. 

Fig. 6 Comparison of results models/experiments
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Table 8 presents the proportions of all the concrete mixtures used. The procedure used for the

manufacture of mixtures is conforming to ASTM C 192 requirements. The workability of fresh

concrete was evaluated using the slump test (ASTM C 143). Cylindrical specimens of 100×200 mm

were made from 17 concrete mixtures. After 24 hours the specimens were demoulded and then kept

in fog room of 100% relative humidity and a temperature of 20±3°C until the day of testing. The

Fig. 7 Simulation results of slump and compressive strength
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compressive strengths were measured at 3, 7, 28 and 91 (ASTM C 93). Each compressive strength

value is the average of three cylinders tests. 

To demonstrate the prediction ability of the proposed methodology, the results of these “17

mixtures” were compared with those calculated by the developed models by introducing the same

compositions of tested mixtures. Figs. 6(a)-(c) show clearly that there is a perfect correlation

between the slumps and the compressive strength obtained experimentally and those predicted from

the developed models. 

8. Parametrical analysis based on the NNs results

The developed NN models can be used to simulate the effects of some parameters on the slump

and the compressive strength of concrete. The analysis led to the following simulation results as

shown in Fig. 7. This figure shows the large effect of the replacement level of slag, fly ash and

silica fume on the slump and the compressive strength of the concrete mix which was produced

based on the data listed in Table 9. 

The results drawn from these curves are in conformity with concrete mix proportioning rules,

found and accepted by researchers. To some extent, these reasonable results indicate that the

developed NN models exhibit a good performance. 

9. Conclusions

The application of neural networks approach for predicting concrete properties made it possible to

develop systems with quite satisfactory accuracy. In order to improve the predictive ability of these

systems, the principal component analysis approach was applied. The introduction of this technique

led to the compression of the input data and the elimination of the correlations between them. For

this reason, we combined these two approaches to predict effectively the slump and compressive

strength of concrete containing mineral additives such as blast furnace slag, fly ash and silica fume.

Two types of data processing were implemented in the MATLAB software environment for

studying the effects of each parameter of the composition of concrete on the desired properties.

Therefore, six models were developed. These models were validated by comparing their predicted

Table 9 Data of analysis for strength-age and slump curves

Mix proportion

Component
Mix 1

(control)
Mix 2

Slag (0-80%)
Mix 3

Fly ash (10-70%)
Mix 4

Silica fume (5-20%)

Water-to-binder ratio
Cement (kg/m3)
Additives (kg/m3)
Water (kg/m3)
Superplasticizer (l/m3)
Coarse aggregate (kg/m3) 
Fine aggregate (kg/m3)

0.5
350
0

175
0

1075
700

0.5
350

(35-280)
175
0

1075
700

0.5
350

(35-245)
175
0

1075
700

0.5
350

(17-70)
175
1

1075
700
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results with experimental results of actual tests performed in the laboratory. The results suggest that

applying PCA method for data processing is very useful for improving the prediction performance

using the developed models. In addition to perfecting the generalization capacity of theses models,

the PCA technique, also reduced the training time of the network due to the reduction of the

dimension of input space especially in models involving a large number of input data.
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