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Tension stiffening effect of RC panels
subject to biaxial stresses
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Abstract. An analytical model which can simulate the post-cracking nonlinear behavior of reinforced
concrete (RC) members such as bars and panels subject to uniaxial and biaxial stresses is presented. The
proposed model includes the description of biaxial failure criteria and the average stress-strain relation of
reinforcing steel. Based on strain distribution functions of steel and concrete after cracking, a criterion to
consider the tension-stiffening effect is proposed using the concept of average stresses and strains. The
validity of the introduced model is established by comparing the analytical predictions for reinforced
concrete uniaxial tension members with results from experimental studies. In advance, correlation studies
between analytical results and experimental data are also extended to RC panels subject to biaxial tensile
stresses to verify the efficiency of the proposed model and to identify the significance of various effects
on the response of biaxially loaded reinforced concrete panels.

Keywords: tension-stiffening; average stress-strain; reinforced concrete; biaxial tensile stresses.

1. Introduction

Since concrete is relatively weak and brittle under tension, cracking is expected when the
significant tensile stress is induced in a member, and reinforcing steel is used to provide the
necessary tensile strength for a structural member. Steel can be considered a homogeneous material
and its material properties are generally well defined. On the other hand concrete is a heterogeneous
material made up of cement, mortar and aggregates. Its mechanical properties scatter more widely
and cannot be defined easily. For the convenience of analysis and design, however, concrete is often
considered as a homogeneous material in the macroscopic sense.

Because of the low tensile strength of concrete, the nonlinear response of RC structures can be
roughly divided into three ranges of behavior: (1) the uncracked elastic stage, (2) the crack
propagation of concrete and (3) the plastic (yielding of steel or crushing of concrete) stage. The
post-cracking behavior of RC structures also depends on many influencing factors (the tensile
strength of concrete, anchorage length of embedded reinforcing bars, concrete cover, and steel
spacing, etc.) which are deeply related to the bond characteristics between concrete and steel (fib
2000). Accordingly, to verify the nonlinear behavior of RC structures including the bond-slip
mechanism, many experimental and numerical studies have been conducted in the past (Gupta and
Maestrini 1990, Somayaji and Shah 1981, Yang and Chen 1988).
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In earlier studies, characterization itself of the tension stiffening effect due to the non-negligible
contribution of cracked concrete was the main objective. Recently, following the introduction of
nonlinear fracture mechanics in RC theory (Ouyang, et al. 1997, Barros, et al. 2001), more
advanced analytical approaches have been conducted (Salem and Maekawa 1999, Sato and Vecchio
2003), and many numerical models which can implement the tension stiffening effect into the
stress-strain relation of concrete have been proposed (Massicotte, et al. 1990, Gupta and Maestrini
1990, Belarbi and Hsu 1994). Christiansen and Nielsen (2001) presented a simple model for the
prediction of plane stress behavior of reinforced concrete through determining stresses, strains and
crack widths. Besides, the ACI committee 224 (1992) and CEB-FIP (1990) predict, in an empirical
manner, the average stress-strain curves of a RC element subject to biaxial loadings.

Moreover, two basically different approaches have been used in defining the strain softening part
in the tension region (ASCE 1982, CEB 1996, fib 2000): (1) a modified stiffness approach based on
a repeated modification of stiffness according to the strain history; and (2) a bond-slip based model
constructed from the force equilibrium and strain compatibility condition at the cracked concrete
matrix with the assumed bond stress distribution. Even though the second approach is broadly
adopted in finite element formulation, there are still some limitations in application because this
approach requires the assumption of bond stress distribution function along the axis of
reinforcement, and it follows a series of complex integration and derivation procedures to calculate
the elongation and strain increment of steel and accompanying relative slip.

To address this limitation in adopting the bond-slip based tension stiffening model, an analytical
approach to predict the post-cracking behavior of RC structures is introduced in this paper. Unlike
previous approaches based on the assumed bond stress distribution function, the strain distribution
of concrete, which is abruptly changed after cracking occurs, is defined with a polynomial function
satisfying the boundary conditions at the crack face and at the inner end of the transfer length. The
polynomial order is determined from the energy equilibrium condition before and after cracking.
The validity of the introduced approach is established by comparing the analytical predictions for
RC tension members with results from experimental and previous analytical studies. Moreover,
numerical analyses for idealized RC panels are conducted to verify the applicability of the
constructed tension stiffening model to RC containments subject to internal pressure.

2. Cracking behavior of tension member

Tension stiffening effect can be illustrated by the relation between the average stress and the
average strain of an axial member through the entire range from the uncracked state to the yielding
state (see Fig. 1). During the formation of primary cracks, the average strains increase with a
decrease of the stress in the concrete until a stabilized cracking state is reached (point A in Fig. 1).
A continuous increase of loading results a gradual increase of the stiffness because of the bond
resistance between concrete and steel, and the crack width is gradually enlarged without an
additional change in the number of cracks up to the yielding of reinforcing steel at the crack (point
B in Fig. 1). Moreover, when the average strain along the entire length of a member reaches the
yielding strain, the stiffening effect of concrete ends at point C in Fig. 1.

Fig. 1, which illustrates the typical experimental responses of reinforcing steel, also shows that the
average stress-strain curve of reinforcing bars embedded in concrete is very different from that of
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the bare steel bars. First, the average yield stress of embedded steel bars fn is significantly less than
the yield stress of bare steel bars fy and, secondly, the post-yield range of the average stress-strain
curve of RC composite represents a more inclined line, rather than an almost horizontal plateau in
bare steel bars.

From these results mentioned above, the following can be inferred: (1) the tension stiffening
model proposed in the CEB-FIP (1990), which assumes the same slope of the stress-strain relation
with that of the bare steel bar on the basis of no bond-slip at the post-cracking stage (A-B region in
Fig. 1) overestimates the stiffness of RC structure; and (2) a direct use of the stress-strain relation of
bare steel bar will result in an overestimation of the post-yielding behavior of RC structures in the
case of considering the tension stiffening effect into the stress-strain relation of concrete as shown in
Fig. 1(b). (3) beyond steel yielding and up to the end of the yield plateau, the concrete matrix can
contribute to the strength of a tension member through the remaining bond resistance (B-C′ region
in Fig. 1).

Accordingly, to trace the cracking behavior of RC structures up to the ultimate limit state by using
the smeared crack model in which the local displacement discontinuities at cracks are distributed
over some tributary area within the finite element and the behavior of cracked concrete is
represented by average stress-strain relations (Kwak and Song 2002), the average stress-strain
relation of steel needs to be defined. Considering these factors, the following average yield stress,

Fig. 1 Post-cracking behavior of RC tension member
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which was introduced by Salem and Maekawa (1999) from the analytical results through correlation
studies with experimental data, is used in this paper to revise the monotonic envelope curve of bare
steel

(1)

(2)

3. Tension stiffening model of uniaxial tension member

3.1. Bond-slip behavior of tension member

A part of an RC member subject to uniaxial tension is shown in Fig. 3. When the axial load N is
applied, from the basic assumptions adopted, the far ends represent the fully cracked state with a steel
strain of εs2. The tensile force N is transferred from the steel bar to the concrete by bond stress, and the
value of the bond stress is zero at the inner end of the transfer length lt. This means that there is no
bond-slip within the central region of the transfer length. Moreover, it can be assumed that the strains
in steel and concrete are equal to each other at x=lt, and the strain value corresponds to εs1.

From the strain distribution, the local slip w(x) can be defined as the total difference in
elongations between the reinforcement and the concrete matrix measured over the length between a
distance x from a crack face and the center of the segment (x=s/2). That is

(3)

On the basis of the force equilibrium and the relation of Eq. (3), the very well-known following
governing differential equation for the bond-slip can be obtained (Gupta and Maestrini 1990, fib

fn fy δ 
ft

ρ
---–=

δ 1

1 1.5ρfy+
----------------------------=

w x( ) εs x( ) εc x( )–( ) xd
x

lt

∫=

Fig. 2 Correction of coefficient δ
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2000). The general solution of the differential equation is obtained in previous studies by applying
the boundary conditions at the crack face and at the center of the cracked region based on an
assumed bond stress distribution (Somayaji and Shah 1981, Yang and Chen 1988). However, this
approach has some limitations in simulating the cracking behavior of RC axial members because it
requires a series of complex integration and derivation procedures and the calculated location
representing the maximum bond stress value is not coincident with that obtained from experimental
study. To solve these limitations, an analytical approach on the basis of the assumed strain
distribution function of concrete is introduced in this paper.

3.2. Determination of strain distributions

When the applied axial load N1 is relatively small, the strains in steel and concrete maintain a
uniform distribution with along the length. As the axial load (N2)
gradually increases, the strains in steel and concrete represent different distributions in the region
from the crack face to the inner end of the transfer length (see Fig. 4). Moreover, the steel strain εs2

at the crack face and εs1 at the center of the segment become  and
, respectively.

From Fig. 4, the concrete strain distribution εc(x) is assumed with a general n-th order polynomial
function, and the steel strain distribution εs(x) can also be expressed in terms of the concrete strain
distribution function from the force equilibrium of N2=εs2·AsEs=εs1·(AsEs+AcEc) and the relation of
εs1=εc1. The strain distributions lead to

εs1 N1 AsEs AcEc+( )⁄=

εs2 N2 AsEs( )⁄=
εs1 N2 AsEs AcEc+( )⁄=

Fig. 3 Strain distribution in a part of an RC tension member
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(4a)

(4b)

where the area parameter nρ is in the range of 0.02~0.5 (Gerstle, et al. 1978). Moreover, the
transfer length lt can be determined by the following linear relationship proposed by Somayaji and
Shah (1981) on the basis of many experimental data for the pull-out tests.

(5)

where Nc is the transfer load equal to , and Kp is a constant
determined from the pull-out test. The experimental study by Houde and Mirza (1972) indicates that
the value of Kp is in the range of 1/266~1/714 in2/lb, and the average value of 1/385 in2/lb is used
in this paper.

The strain distribution of reinforcing bar changes from the uniform distribution εs1 along the
segment before cracking to the assumed polynomial distribution with the strain εs2 at the crack face
and εs1 at the inner end of the transfer length after cracking (see Fig. 4). From the energy
conservation just before and after cracking at the same axial load N, the assumed polynomial order
nc can be determined because all the internal strain energy components can be represented in terms
of the concrete strain with the assumed polynomial order nc, while there is no additional external
work by the axial load N at cracking. The strain difference of steel εs2 − εs1 means an increase of the
strain energy at the reinforcing steel, ∆Us, and that of concrete εs1 − εc(x) corresponds to a decrease
of the strain energy at the concrete, ∆Uc. Moreover, the difference between ∆Us and ∆Uc means the
energy loss caused by the bond-slip, Ub. Therefore, the energy conservation can be written as

εs x( ) εs2
1

nρ
------εc x( )–=

εs x( ) εs1 1 1 x
lt

-- – 
  nc

–
 
 
 

= : x lt≤

εs x( ) εc x( ) εs1= = : lt x s 2⁄≤ ≤

lt Kp
Nc

Σ  o

-------=

Nc AcEcεs1 N 1 nρ+( )⁄= =

Fig. 4 Strain distribution after cracking
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(6)

where

(7a)

(7b)

(7c)

and hence

(8)

While calculating the bond energy variation Ub, the relation of Eq. (3) and the following nonlinear
bond stress-slip relation (CEB-FIP 1990) are used.

(9)

where τmax is the maximum bond stress of concrete, and w1 and α have the values of 1 mm and 0.4,
respectively, when a very good bonding condition is maintained in a confined concrete (CEB-FIP
1990).

As shown in Eqs. (7a)-(7c), all the strain energy variations are expressed with the assumed
polynomial order nc. Consequently, the order nc can be determined through the successive iteration
using the bisection method until Eq. (8) is satisfied.

3.3. Average stress-strain relation of concrete

If the applied axial load N in a tension member reaches to 1.3 times Ncr at the first crack, the
specimen shows the stabilized crack pattern without additional occurrence of cracking (CEB-FIP
1990, FIB 1999), and the strain distribution along the member length can be represented by Fig. 5
(CEB-FIP 1990). After the crack formation has finished (point A in Fig. 1), the maximum crack
spacing between adjacent cracks can be assumed to be 2.0 times the minimum crack spacing and is
equal to the transmission length lt (length over which slip between steel and concrete occurs) (CEB-
FIP 1990).

From the geometric configuration for the strain distribution in Fig. 5, the average strain of
reinforcing steel can be expressed as

(10)

∆Us ∆Uc– Ub=

∆Us ∆us Vd
V∫ σs°§ εd Vd
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where σs2 is the steel stress at the crack face when the applied axial load has N = 1.3Ncr and can be
calculated as

(11)

As shown in Fig. 5, on the other hand, the strain distribution of concrete decreases in contrast to
an increase of the steel strain because of a decrease of the bond resistance and represents the
concrete strain itself not considering the crack width (Belarbi and Hsu 1994). Accordingly, to satisfy
the assumption for the consistent displacement field between concrete and steel, the strain increment
developed from the consideration of the crack width needs to be added. It might be reasonable to
assume that the average concrete strain εcm at the stabilized crack condition can be simulated by the
average steel strain εsm defined in Eq. (10). With the average strain determined and the force
equilibrium equation, the average stress of concrete at the stabilized crack condition can also be
calculated as follows

(12)

From the CEB-FIP (1990), the coefficient α in Eq. (9) lies between 0 and 1. As the value of nc

increases according to an increase in α, the minimum value of nc can be assumed as 1.0. The
tension stiffening effect corresponding to an arbitrary applied axial load Nm can be defined with the
strain difference between εs2 and εsm (εTS = εs2 − εsm). Moreover, the average steel strain can be
represented by εsm = εs2 − 1/nρ · εcm from Eq. (4a), and the average concrete strain can also be
expressed by εcm = nc/(nc+1) · εs1 within the transfer length range when the strain distribution of
εcm(x) is defined with a nc-th polynomial function. Accordingly, the strain difference corresponding
to the tension stiffening effect can finally be expressed by εTS = εs2 - εsm = 1/nρ · εcm. From this, the
strain difference at the crack formation stage and that at the crack stabilizing stage are εTS

cr = 1/
nρ · nc

cr/(nc
cr+1) · εs1 and εTS

st = 0.75/nρ · nc
st/(nc

st+1) · εs1, respectively. On the other hand, the strain
difference εTS must be gradually decreased as the applied axial load N increases. Namely, the strain
difference at the first cracking (εTS

cr ) must always be greater than that at the stabilized cracking
(εTS

st ), and this condition induces the following inequality condition of

(13)

σs2

ft

------- 1.3 1 nρ+
ρ

----------------⋅=

σc

σs2As εEsAs–
Ac

---------------------------------=

0.75  
nc

st

nc
st 1+

---------------  
 
 
 

⋅  
nc

cr

nc
cr 1+

----------------  
 
 
  εs1

cr

εs1
st

------⋅≤

Fig. 5 Stabilized crack pattern with Smax = 2Smin (CEB-FIP 1990)
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Consequently, the successive iteration of Eq. (8) must be continued in the range of nc which
satisfies Eq. (13). From Eqs. (8) and (13), nc

st should increase by about 10% more than nc
cr for

generally used reinforcement ratio. Hence, it can be assumed .
A continuous increase of the axial load N over the stabilized cracking load leads to the yielding of

reinforcing steel at the crack face while maintaining the elastic state at the other region (point B in Fig.
1). It means that the average steel stress of the embedded steel bar through the entire length will be
smaller than that of the bare steel bar. A portion of the resisting capacity corresponding to the difference
of yielding stress between the bare steel bar and the embedded steel bar must be carried by concrete.
Therefore, the effective concrete stress σc and strain εc at point B in Fig. 1(b) can be calculated by

, (14)

More increase of the axial load N finally cause the yielding of the embedded steel bar along the
entire span length. To study the influence that bar yielding and large strains have on tension
stiffening, a series of RC prisms were tested by Mayer and Eligehausen (1998). As a result, the
yield plateau of the bare steel bar practically disappears in the member response, since the plastic
strains in the embedded steel bar are limited to the regions close to the main cracks and hardly
contribute to the overall elongation. Namely, a larger axial load corresponding to the yielding of the
bare steel bar can still be resisted in the post-yielding range of steel. On the other hand, the post-
yield behavior of RC members was described as the ratio (εsm/εsr) between the average steel strain
esm and the steel strain εsr at the crack face with respect to εsr, as shown in Fig. 6.

As long as the concrete is uncracked, the ratio εsm/εsr should be equal to 1. After abrupt drop of
the ratio εsm/εsr at the first cracking because of a local increase of steel strain at the crack face, it
should increase again between first cracking and bar yielding. Beyond εy, and up to the end of the
yield plateau, the ratio esm/esr significantly reduces, until hardening is activated (εsr = εsh). The
steep reduction is caused by the build-up of the plastic strain εsr close to the bending cracks, while
the strains between the cracks are still elastic and exhibit high gradients. It means that the concrete
contributes to the strength of a tension member even after yielding of steel through the remaining
bond resistance.

nc
st nc≈ cr

σc

ft

----- fy fn–( )ρ
ft

---= ε
fn

Es

-----=

Fig. 6 Relation between esm and esr at post-yielding stage
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To take into account this contribution of concrete at the post-yielding stage, the slope of the
average stress-strain relation is changed in this paper. As shown in Figs. 1(a) and 1(b), the slope of
line BC, ρEsh = ρ(fy − fn) / (εsh − εsm), have been modified to the slope of line , ρ(Esh − ( )/
(εsh − εsm)), where the stress differences fy − fn and  can be assumed to be 0.89 and 0.18,
corresponding to εsr = εsy and εsr = εsh in Fig. 6, respectively. The slope of line  seems to be
converged to 0.8ρEsh instead of 1.0ρEsh, and the average stress-strain relation of concrete in the
region  is followed with the equilibrium equation.

4. Extension of model to biaxial stresses

Unlike the reinforcing bars embedded in the concrete element, whose biaxial material properties
are assumed to be simulated by the direct superposition of each element without any change in
material properties, concrete under combinations of biaxial stress exhibits different strength and
stress-strain behaviors from those under uniaxial loading conditions by the effects of Poisson’s ratio
and microcrack confinement. To simulate the change of material properties according to the biaxial
tensile stress state, it is required to define the biaxial strength envelope in the tension-tension region.

Fig. 7 shows the biaxial strength envelope of concrete under biaxial tension. In contrast to a shear
wall which experiences a biaxial stress combination in the tension-compression region, most of wall
in the containment structures subject to internal pressure experiences biaxial stress combinations in
the tension-tension region. Accordingly, in the biaxial strength envelope in the tension-tension
region is regarded to be of great importance. In this paper, the biaxial strength envelope proposed
by Aoyagi and Yamada (1983) is used, and the accompanying equation for the failure envelope in
the tension-tension region is expressed by

BC ′ fy′ fn–
fy ′ fy–

BC ′

BC ′

Fig. 7 Biaxial strength envelope of concrete under biaxial tension
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(15)

The tensile strength in the primary direction decreases with increasing tensile stress in the other
principal stress direction, and the failure takes place basically by cracking in the primary direction.
When the cracking occurs, however, the principal tensile stress and strain in the other direction still
remain in the ascending branch of the concrete stress-strain relation. Therefore, the proposed model
introduced in this paper follows the assumption that the concrete stress-strain relation in the other
direction (σ2 direction in Fig. 7) is the same as that of uniaxial loading and does not change with
the variation of tensile stress in the primary direction before concrete cracking. Using the tensile
strength σ1p determined from Eq. (15), the stress-strain relation of concrete in the tension part can
finally defined on the basis of the uniaxial tension stiffening model introduced in this paper (see
Fig. 1).

In addition to the definition for the constitutive relations of concrete under biaxial loadings,
additional modifications for the stress-strain relation of steel is also required. From the biaxial
loading test for a series of orthogonally reinforced concrete panels, Pang and Hsu (1995) found that
there was a substantial difference in the apparent yield stress fn between 90 deg panels with the
longitudinal steel oriented at 90 deg to the applied principal stress and 45 deg panels with the
longitudinal steel oriented at 45 deg. As shown in Fig. 8, the apparent yield stresses fn for 45 deg
panels are lower than those for 90 deg panels by approximately 12 percent, regardless of the
parameter B = ( ft/fy )1.5/ρ derived by Belarbi and Hsu (1994), and this reduction is attributed to the
kinking of steel bars at the cracks.

When this 12% reduction is applied to the equation of fn/fy = 0.43+0.5fy
*/fy , introduced by Belarbi

and Hsu (1994), it results the average yield strength reduction of about 0.06fy . In addition,
Yamada’s experimental results (Yamada and Aoyagi 1983) also show that the maximum shear
strength of RC panels occurs at 45 deg panels because of the most dominant dowel action and its
magnitude symmetrically decreases up to the angle of 90 deg between the longitudinal steel and the
applied principal stress.

σ1p

ft

------- 1 0.25–  
σ2

σ1

-----   
  2

=

Fig. 8 Apparent yield stress of steel bars as function of parameter B
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Accordingly, to define the average stress-strain relation of steel embedded in concrete panels with
an arbitrary angle θ to the applied principal stress, Eq. (1) defined for the uniaxial behavior of RC
axial member has been modified as follows:

(16a)

(16b)

On the other hand, an exact assessment of the cracking in RC panels subject to general membrane
stresses seems to be very difficult because of many influencing factors such as different steel ratios
in both directions and changing crack angles according to the stress ratios. Most constitutive models
to trace the cracking behavior of concrete, therefore, are based on the material matrix in the
principal axes, using the equivalent steel ratio of ρeq fy = ρx fycos2θ + ρy fy sin2θ (Massicotte, et al.
1990) derived from the force equilibrium equation at the fully cracked ultimate state of a RC panel.
This approach can be effectively used in concrete panels orthogonally reinforced with similar steel
ratios in both directions but also has some limitations in application to other RC panels.

When the steel ratios in both directions represent a remarkable difference, the reinforcement with
a smaller steel ratio will govern the tension stiffening effect, and in advance, the post-cracking
behavior of RC panels. Accordingly, for an exact simulation of the cracking behavior, it might be
proper to calculate the tensile stress and strain of concrete along the steel direction first, instead of
the principal directions of concrete. Then, these stress and strain are transformed into the principal
directions of concrete by

(17a)

(17b)

where θ is the angle between the direction normal to the crack and the global x-axis, and αi is the
orientation of reinforcement relative to the global x-axis.

5. Numerical applications

To study the behavior of reinforced concrete structures subject to biaxial tension, such as
containment walls of nuclear power plants, a comparison of analytical predictions with experimental
results from panels tested in the Korea Atomic Energy Research Institute (KAERI) (Chung 2000)
was carried out. Among the tested panels, panels designated as S40, S60, R2 and R3 were
selectively analyzed in this paper.

The specimen dimensions were 1500 mm × 1500 mm × 600 mm for S40 and S60,
1000 mm × 1000 mm × 380 mm for R2, and 900 mm × 900 mm × 380 mm for R3. Reinforcement
was arranged at 90 deg, with respect to the applied loading directions (x, y coordinates in Fig. 10).
The loading ratio and material properties of each panel are summarized in Table 1. Specimens were
subject to biaxial tension in the x, y-directions.

Panels are modeled with a single four-node element because of the uniformity of the strain and

fn fy δ 
ft

ρ
---– 0.06fy

θ
45
------–= 45– θ 45≤ ≤

fn fy δ 
ft

ρ
---– 0.06fy

90 θ–
45

---------------–=
45 θ 90≤ ≤
90– θ 45–≤ ≤

εc1 εx θ2cos εy θ2sin γxy θcos θsin+ +=

σc1 σci θ αi–( )2cos
i

n∑=
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stress field. The analytical predictions of the proposed model for four test panels are compared to
the experimental average stress-strain relations from LVDTs. As shown in Fig. 10, the cracking
stresses and failure stresses from the numerical analyses agree fairly well with those of the
experimental results. Thus it can be concluded that the prediction from the analytical model of
orthogonally reinforced concrete in biaxial tension is reasonable. As evident from the comparison,
the proposed cracking model can effectively reflect the influence of the amount of the
reinforcement.

6. Conclusions

An analytical model which can simulate the post-cracking behavior of an RC tension member is
proposed. Instead of using the assumed bond stress distribution, the concrete strain distribution with

Table 1 Loading ratios and material properties of biaxial tension panels

Panel
Loading
(σx : σy)

ft Ec ρx = ρy fy Es1 Es2
db

(mm)
S40 2:1 2.1 28,328 0.0085

(0.0105*)
410 205,744 0.02Es1 35

S60 2:1 2.4 29,435
R2 1:1

2.1 27,477
0.0135

404 194,413 0.02Es1 29
R3 1:1 0.0188

unit: MPa, ft = 0.33( )0.5, *: effective reinforcement ratiofc ′

Fig. 9 Configurations and dimensions of biaxial tension specimens
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n-th order polynomial function is assumed and the polynomial order is determined on the basis of
the energy equilibrium before and after cracking. The effective concrete stress-strain relation at the
yielding state is derived from the average steel stress of the embedded steel bar. By adopting the
proposed model, the post-cracking behavior of RC tension member can be easily analyzed without
any additional complex calculation. The efficiency and reliability of the proposed model is
demonstrated through application examples of biaxially loaded RC panels.

Fig. 10 Average stress-strain curves of biaxial tension specimens
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