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Finite element modeling of slab-on-beam
concrete bridge superstructures
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Abstract. This paper presents a study of four finite element techniques that can be used to model slab-
on-beam highway bridges. The feasibility and correctness of each modeling technique are examined by
applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other
issues related to bridge modeling such as torsional constant, support conditions, and quality control check
are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress
distribution in a beam section depends on the modeling technique being utilized. It is observed that the
behavior of the bridge superstructure can be better represented when accounting for composite behavior
between the supporting beams and slab.
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1. Introduction

Finite element analysis (FEA) has proven to be a useful tool for the structural analysis of
buildings and highway bridge superstructures. Research has shown that different modeling
techniques as well as different types of elements can be used when modeling a bridge superstructure
(Mabsout, et al. 1997, Eom and Nowak 2001). Some research has also shown that, depending on
the bridge type and geometry, some modeling techniques may yield more accurate results than
others (Mabsout, et al. 1997). One typical application of finite element analysis is to determine live
load distribution factors in highway bridges. The lateral distribution factor is an important parameter
in highway bridge design. Using a distribution factor, the lateral effect of live load on a bridge
beam is simply decoupled from the longitudinal effect. As a result, bridge engineers can
conveniently determine the maximum moment and shear of an individual beam in a bridge due to
live load by multiplying the distribution factor to the maximum moment and shear obtained from a
single beam analysis under truck load.

The American Association of State Highway and Transportation Officials Load Resistance and
Factor Design (AASHTO LRFD) Specifications (AASHTO 1994) presents a set of equations for
calculation of live load distribution factors for both moment and shear. Most variables in these
equations contain ranges of applicability. These variables include span length, beam spacing, slab
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thickness, beam stiffness, and number of beams. When the variables are within their range of
applicability, the distribution factors calculated from these equations are considered accurate.
However, the equations become less accurate when the ranges of applicability are exceeded. The
AASHTO LRFD Specifications state that a refined analysis should be pursued for the distribution
factors of bridge beams when the requirements and/or ranges of applicability of the equations are
not met. Two of the most popular refined methods include the grillage analysis and the finite
element analysis. The maximum moment under truck loads is determined from the refined analysis
and used in the calculation of distribution factors. The AASHTO LRFD Specifications state that
consideration shall be given to aspect ratios of elements, positioning and number of nodes, and
other features of topology that may affect the accuracy of the analytical solution.

The objectives of this study were to investigate four different modeling techniques that can be
used in modeling prestressed concrete beam bridges and to compare and evaluate the four
techniques. Two bridges, one prestressed I-beam bridge and one prestressed box-beam bridge, were
used to evaluate each modeling technique. In addition to the modeling techniques, other issues that
directly affect the accuracy of analytical models such as torsional constant, support conditions, and
support diaphragms are briefly discussed in this paper. The live load applied to all models was an
AASHTO LRFD HL93 live load truck as classified in the AASHTO LRFD Specifications.

2. Literature review

2.1. Finite element modeling

Barker and Puckett (1997) explain that the bending of a beam-slab system causes in-plane effects
at a beam-slab cross section. This bending produces compression in the deck slab and tension in the
beam when positive moments are present. The deck slab itself will exhibit in-plane and out-of-plane
effects that can be modelled by one element, commonly called a shell element. A typical shell
element has three or four nodes with six degrees of freedom per node. The beams in a bridge
superstructure can typically be modeled with beam or frame elements. The beam/frame element is a
two-node element with six degrees of freedom per node. The eccentricity of the beam (composite
beam) can be modeled by placing the beam elements at the centroidal axis of the beam, which
creates additional degrees of freedom. These additional degrees of freedom may be related to the
degrees of freedom of the shell by assuming a rigid linkage exists between the two points. A few of
the terms used by some programs for this rigid linkage are: rigid link, element offset, or element
eccentricities. Another approach to link the beam and slab is to use the additional degrees of
freedom at the beam level but to declare them as slaves to the deck nodes directly above. 

Mabsout, et al. (1997) reported a comparative study of four finite element modeling techniques.
These techniques were used to model steel beam highway bridges. Nonlinear behavior was not
considered in this study. In the first model, the concrete slab was idealized as quadrilateral shell
elements and the steel beams were idealized as space frame members. The centroid of each beam
coincided with the centroid of the concrete slab. The second model idealized the concrete slab as
quadrilateral shell elements and space frame members eccentrically connected to the shell elements.
Rigid links were used to connect the space frame and shell elements at their centroids on beam
lines. The third model idealized the concrete slab and steel beam web as quadrilateral shell elements
and the beam flanges as space frame elements. The flange to deck eccentricity was modeled by
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imposing a rigid link. The fourth model idealized the concrete slab by using isotopic eight node
brick elements. Both the steel beam flanges and web were modeled using quadrilateral shell
elements. It was concluded that when using the first model, sufficient accuracy could be obtained
for typical steel bridges. The other cases could also be used, but require more input time. The uses of
the other models also require the beam moment to be calculated from stress values at critical locations.

In a study conducted by Chen and Aswad (1996), the bridge beam-deck structural system was
modeled using both shell and beam (stiffener) elements. A standard quadrilateral (four-node) shell
element of constant thickness was used when modeling the horizontal slab. Prestressed I-beams
were described using standard isoparametric beam elements. The composite action of the beam and
slab was accomplished by connecting the center of the slab and beam with rigid links. Chen (1999)
pointed out that box-shaped girders could also be represented by 2-node isoparametric beam elements.

2.2. Quality control check for finite element models

When utilizing the finite element method, it is essential to perform a check on the computer
output to ensure the results are accurate. Chen and Aswad (1996) suggested comparing the average
tensile stress, favg, in the bottom fiber computed from the finite element analysis with that predicted
by the beam formula:

(1)

where NL = number of loaded lanes; Mcen = midspan moment per lane; Ng = number of beams; and
Sbc = composite section modulus at bottom fiber of beam. Eq. (1) is equivalent to the total applied
moment check:

(2)

where = summation of beam moments.

3. Finite element modeling 

Four different modeling techniques were investigated in this study. The first three modeling
techniques (cases 1-3) described herein were implemented using the commercial finite element
analysis program ANSYS 6.1. SAP 2000 was used for modeling case 4. Typically, when
considering distribution factor calculations, concrete cracking is not considered. Therefore, linearly
elastic behavior was assumed in the study.

For cases 1-3, a BEAM44 element was chosen to idealize the prestressed beams in the bridge
superstructure. This is a uniaxial element with tension, compression, torsion, and bending
capabilities. The element has six degrees of freedom at each node� It allows a different
unsymmetrical geometry at each end and permits the end nodes to be offset from the centroidal axis of
the beam (ANSYS 2002). In all models, the beams were typically meshed as 305 mm long elements.

For modeling case 4, a frame element was used to idealize the composite section consisting of
both the prestressed beam and slab. The frame element uses a general three-dimensional beam-
column formulation, which includes the effects of biaxial bending, torsion, axial deformation, and

favg

NLMcen

Ng average Sbc( )
-----------------------------------------=

Mc∑ NLMcen=

Mc∑



358 Michael D. Patrick and X. Sharon Huo

biaxial shear deformations (SAP 2002).
A SHELL63 element was chosen to idealize the deck slab for cases 1-3. This element has both

bending and membrane capabilities. Both in-plane and normal loads are permitted. The element has
six degrees of freedom at each node. Stress stiffening and large deflection capabilities are also
included (ANSYS 2002). The typical sizes of shell elements for the deck slab in this study were
305 mm by 305 mm. For modeling case 4, shell elements were used in order to connect the
composite beam sections. The elements were connected at the composite beam centroid. For skewed
models, triangular shell elements were used near the support locations to accommodate the change
in geometry and to allow for better load distribution.

3.1. Modeling techniques

Similar to the research conducted by Mabsout, et al. (1997), the first modeling technique, case 1,
considers the beam and deck slab to share the same centroid as shown in Fig. 1(a). In the present
study, the accuracy of this technique is investigated for precast/prestressed concrete beam bridges. 

ANSYS has the capability of offsetting the beam element from a reference node. This capability
was incorporated into case 2, shown in Fig. 1(b). The reference nodes lie in the same plane as the
deck slab centroid. The offset is equal to the distance between the slab centroid and the beam
centroid. The offset distance is specified with the beam element properties. Offsetting the nodes in
this manner enables complete composite action between the beam and deck slab by applying a rigid
linkage between the two points. 

Case 3, shown in Fig. 1(c), considers the beam nodes to be coupled with the nodes in the slab
directly above them. The nodes of the beam and corresponding slab are coupled such that the two
nodes will have the same displacements. In this case, the beam and slab centroids are located in
positions that replicate an actual bridge superstructure. The location of the beam and slab centroid is
similar to case 2, the only difference being the nodes are physically offset in the model. 

For modeling case 4, shown in Fig. 1(d), the actual composite section consisting of both beam
and slab was used. The composite section was created in SAP’s Section Designer. Creating the
section in this manner allowed the transformation from one material to the other to be simplified.
The program calculated the composite section properties based on the base material, which was
defined as the deck slab material. By taking advantage of this process, the composite moment at a
given section was easily read from the output without the need for stress values. This case was
comparable to case 2, since composite action was being considered.

The corresponding bending stress distribution diagrams for cases 1 - 4 are shown in Fig. 2. The
stress distribution for case 4 was calculated based on the moment on the composite section obtained
from SAP output. The stress distribution shown in Fig. 2(a) and Fig. 2(c) show two separate
elements acting as individual flexural members. The only difference between these two cases is the
location of the deck slab within the analytical model. From Fig. 2(b) and Fig. 2(d), it can be
observed that the stress distribution is that of a composite section.

3.2. Torsional constant

Consideration must be given to the St. Venant torsional constant, J, when utilizing the finite
element method. The AASHTO LRFD Specifications state that in lieu of more refined information,
the torsional constant may be determined by the following equations assuming that the concrete
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Fig. 1 Modeling techniques: (a) case 1- nodes coincide; (b) case 2 - beam offset; (c) case 3 - coupled nodes;
and (d) case 4 - SAP section designer

Fig. 2 Bending stress distribution diagrams: (a) case 1; (b) case 2; (c) case 3; and (d) case 4
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sections remain linear, elastic, and uncracked.

For stocky open sections, e.g., prestressed I-beams, T-beams, etc., and solid sections:

(3)

For closed thin-walled shapes, e.g., steel and concrete box sections:

(4)

where b = width of plate element; t = thickness of plate-like element; A = area of cross section;
Ip = polar moment of inertia; Ao = area enclosed by centerlines of elements; and s = length of a
side element.

Another approximate method for calculating the torsional constant involves using idealized
rectangular sections (Sanders and Elleby 1970). For a girder consisting of three idealized rectangles,
the torsional constant can be calculated as follows:

(5)

where Ki is a coefficient that can be found in many books on elastic analysis; wi = smaller side of
rectangle; and di = longer side of rectangle. 

3.3. Support conditions

Typically, the support conditions for a single span bridge consist of a hinge at one abutment and a
roller at the other abutment. For a multi-span bridge, the same concept holds true when the
longitudinal movement is not fully restrained. Usually, a hinge is used at one abutment, while a
roller is placed at all interior supports and the other abutment. The hinge maintains the structural
stability of the bridge, while the roller allows for expansion and contraction of the bridge. The
support conditions for a real bridge may be specified as a hinge and roller, but it is possible for the
supports to possess a certain amount of fixity. A roller support may not roll due to the presence of a
diaphragm, friction at the joint, etc. In this study, two support conditions for each bridge were
studied, one with hinges and rollers and the other with all hinges. The all-hinges condition is similar
to the support condition that might be expected for an integral bridge. A hinge was modeled by
restraining all three translational degrees of freedom, e.g., UX, UY, and UZ. A roller was modeled
by restraining only the UY and UZ degrees of freedom, which allowed translation in only the global
X direction, the longitudinal direction of the bridge. By comparing the hinge-roller supports to the
all-hinged supports, the sensitivity of the support conditions can be assessed.

3.4. Presence of diaphragms

Many researchers have studied the effect of support diaphragms and intermediate diaphragms.
Intermediate diaphragms have been shown to distribute load more evenly, however, their presence
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has also been shown to make the girders more vulnerable to damages due to lateral impacts
(Sengupta and Breen 1973). Because intermediate diaphragms were not used in the two bridges in
this study, they were not considered in the bridge models. However, the effect of support
diaphragms was investigated for both bridges. Typically, support diaphragms are considered to
provide stability for the supporting beam members as well as continuity over interior support
locations. In both bridges studied, the support diaphragms were made of reinforced concrete and,
therefore, were modeled by using a beam/frame element. 

3.5. Quality control checks for skewed bridge models

The purpose of a quality control check is to ensure that the FEA model for a bridge is developed
correctly and the actual behavior of the bridge member is reflected accurately in the analysis results.
As indicated in the previous section, Chen and Aswad (1996) suggested checking the total applied
moment, NLMcen, with the summation of beam moments obtained from analysis, � Mc ,  as shown in
Eq. (2). However, this equation is only valid for nonskewed bridges. When a skewed bridge model
is analyzed, the summation of beam moments from the analysis becomes smaller than the total
applied moment. This is because the load transfer paths in the bridge are much more complex when
the support lines are skewed. For a skewed bridge model, instead of the total applied load being
transferred to supporting beams as expected, part of the applied load is transferred directly to the
nearest support through the deck slab. The load transfer path is dependent on the angle of skew, the
stiffness ratio of transverse member (deck slab) to longitudinal member (beam), the spacing of
beams, and the length of the bridge. In order to consider the reduction of beam moments due to the
skewness of a bridge, a simple reduction factor equation for the quality control check, Eq. (6), was
developed through this study. Using the reduction factor from Eq. (6), a definite moment that is
carried by all beams in a skewed bridge can be determined by multiplying the reduction factor to
the total moment based on a beam line analysis and the number of trucks applied. The equation for
model quality control check is expressed in Eq. (7). If a finite element analysis model is correctly
developed for a bridge, the definite moment should be approximately equal to the summation of
total beam moments.

(6)

(7) 

where Fskew = skew reduction factor for quality control check; S = spacing of beams (m); L = span
length (m); ts = thickness of slab (mm); d = depth of beam (mm); θ = skew angle (deg.); � Mc =
summation of beam moments; NL = number of loaded lanes; and Mcen = midspan moment per lane
from two-dimensional analysis. The term FskewNLMcen is the definite moment. The variables α and β
are dependent on bridge type. For the prestressed concrete I-beam bridge, the variables α and β are
−0.2 and 2.0, respectively. For the prestressed concrete spread box beam bridge, the variables are
0.1 and 1.3, respectively.
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4. Application of modeling techniques to two bridges

Two prestressed concrete slab-on-beam bridges were used for application and evaluation of the
four modeling techniques. Finite element models were generated to determine the maximum
moments in the interior and exterior beams. Multiple trucks were positioned on each bridge and
moved in both the longitudinal and transverse direction in order to obtain the maximum moment.
Only one truck could occupy a lane at a time in the longitudinal direction (AASHTO 1994, 1996),
but the number of trucks in the transverse direction depended on the roadway width. Due to the
application of multiple presence factors, two trucks traveling in the same direction resulted in the
maximum moment for both interior and exterior beams. 

4.1. Two-span continuous prestressed concrete I-beam bridge

The two-span bridge herein was modified from the Pistol Creek Bridge located in Blount County,
Tennessee. Pistol Creek Bridge has five spans of approximately 22900 mm each. For the
convenience of modeling and analysis, only two of the five spans were used and slight
modifications were made to the bridge geometry. The two-span bridge has a total length of 45800 mm,
22900 mm for each span. The thickness of deck slab is 216 mm and it is supported by five lines of
AASHTO Type III prestressed beams. The specified compressive strengths of concrete for beam
and slab are 41MPa and 28MPa, respectively. The actual bridge is a non-skewed bridge. To observe
how the live load moment changes in a skewed bridge, a second model was analyzed with a skew
angle of 45o. The skew angle was measured from a line perpendicular to the beam lines to the
support lines of the bridge. The plan view of each bridge model and the typical cross section of the
bridge are shown in Fig. 3. The finite element mesh of the non-skewed bridge model is shown in
Fig. 4.

Fig. 3 Two-span prestressed I-beam bridge: (a) plan view and (b) typical cross section



Finite element modeling of slab-on-beam concrete bridge superstructures 363

Fig. 4 Typical finite element mesh and support restraints

Fig. 5 Loading position for non-skewed bridge (prestressed I-beam bridge): (a) transverse location and (b) 
longitudinal location
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The moments from finite element analysis are shown in Table 1 and are based on the loading
position shown in Fig. 5. The trucks were positioned so that the maximum moment in an exterior
and an interior beam could be obtained. Similar trends were observed in the moments changes for
all modeling cases when the skew angle was increased to 45°. With the increase in skew angle, the
moments in the interior and exterior beam were reduced.

The quality control check was performed by running a beam line analysis, which involved the
analysis of one beam loaded with one truck. The resulting maximum moment for this case was
1173 kN-m. The percent differences shown in Table 1 were calculated as follows:

(8)

As shown in Table 1, for the model with no skew, the summation of the moments for each case is
approximately 2346 kN-m. The differences are well below +/- 1%. When comparing the average
bottom fiber stresses for case 2, the difference between Eq. (1) and finite element results is
approximately 2.3%. For the model with a 45° skew angle Eqs. (6) and (7) were used before
calculating the percent difference. From Eq. (6), Fskew = 0.944 resulting in a definite moment of
2214 kN-m. Using the definite moment, the percent differences for all but case 3 are well below
1.0%. One point worth noting is the difference in the distribution of moment to each supporting
member when different modeling cases are used. With reference to Table 1, cases 1 and 3 resulted
in a moment distribution that was gradually spread out from the heavily loaded beams to other
supporting members. For cases 2 and 4, beams 1, 2, and 3 are shown to carry the majority of the
load. Because the beams and slab were acting compositely, the stiffness of the section is increased
as compared to the other cases and therefore, more load is carried by these members. As a result,
the load distribution was relatively localized, so members that were closer to the applied load
resisted most of the load. Since cases 2 and 4 model the composite action between the beam and
slab, the live load distribution from these two modeling cases should better represent the true
behavior of the actual bridge.

The same models were also analyzed with different support conditions, hinge-roller supports and

% Difference
moment from FEA∑( ) FskewNLMcen( )–

FskewNLMcen( )
-------------------------------------------------------------------------------------------------------=

Table 1 Beam moments for non-skewed bridge (prestressed I-beam bridge)

Beam

Moment (kN-m)

0o Skew angle 45o Skew angle

case case

1 2 3 4 1 2 3 4

1 899 894 932 876 839 819 875 836

2 800 903 820 912 734 840 751 834

3 462 451 463 448 427 440 430 415

4 173 86 156 98 178 104 174 105

5 21 26 30 25 41 12 36 27

Total 2355 2361 2400 2359 2218 2215 2265 2217

Difference 0.40% 0.64% 2.34% 0.59% 0.17% 0.05% 2.29% 0.13%
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all hinged supports. Support diaphragms were not included in these models. Only cases 1 and 2
were investigated because they yield similar results to cases 3 and 4, respectively. Changing the
support conditions did not affect the results for case 1. However, the beam moments for case 2 were
slightly different when different support conditions were applied. In general, the beam moments
with all hinged supports were lower than those with hinge-roller supports. The only exception was
the exterior beam for the 45° skew model. The all hinged condition resulted in an increase in
moment by approxmately 4.9%. The maximum difference for the interior beam for both skew
angles considered was only −1.5%.

For each modeling technique, the effect of support diaphragms was investigated. Diaphragms
were placed between beams over pier and abutments across the bridge width. The results for each
model with diaphragms are shown in Table 2. The presence of diaphragms at the supports resulted
in a reduction in the live load moment for both interior and exterior beams. For each skew angle
considered, the maximum reduction for the exterior and interior beam was 4.44% and 4.38%,
respectively.

4.2. Simply-supported prestressed concrete spread box-beam bridge

The simply supported prestressed box-beam bridge was modified from the Del Rio Pike Bridge,
located in Williamson County, Tennessee. This one span bridge of approximately 21340 mm crosses

Table 2 Moments with support diaphragms present (prestressed I-beam bridge)

Beam
Moment (kN-m)

Exterior interior
Skew angle (deg) 0 45 0 45

case

1 869 802 784 702
2 898 847 898 816
3 932 852 820 734
4 867 819 901 822

Max. diff. between w/and w/o
support diaphragms -3.32% -4.44% -1.98% -4.38%

Table 3 Beam moments for skewed bridge (prestressed box-beam bridge)

Beam

Moment (kN-m)
0o Skew angle 45o Skew angle

case case
1 2 3 4 1 2 3 4

1 587 637 684 595 443 564 620 508
2 580 628 640 607 429 533 568 508
3 547 572 560 576 392 475 495 472
4 502 474 455 465 343 390 393 368
5 455 365 330 387 306 295 322 292

Total 2671 2677 2669 2631 1913 2257 2398 2148
Difference 0.49% 0.73% 0.44% -1.01% -13.59% 1.95% 8.31% -2.98%
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the West Harpeth River and is supported by five prestressed concrete spread box beams. The
thickness of the deck slab is 210 mm. The specified compressive strength of concrete is 38 MPa for
beam and 28 MPa for deck slab. The actual bridge has a skew angle of approximately 49°, but for
the convenience of modeling, a skew angle of 45° was used. For the purpose of comparison, this
bridge was also modeled with no skew angle to observe the effect of skew. Fig. 6 shows the plan
view of both bridge models and the typical cross section. Both models, with skew and without
skew, were also analyzed to investigate the impact of different support conditions and the presence
of support diaphragms.

The moment values from finite element analysis are listed in Table 3. The beam moments in
Table 3 demonstrate the load distribution pattern across the bridge for each modeling case. It can be
seen from Table 3 that case 3 moment values for the 0° skew model are higher than both cases 2
and 4 for the beams near the loading location. For the 45° skew model, case 3 moment values are
higher than all other cases for all beams. Since composite action between the beams and slab is
being modeled for cases 2 and 4, thereby giving a better representation of the actual response of the
bridge members, the observation of case 3 results suggest a certain degree of inaccuracy with this
modeling case. 

The moment values shown in Table 3 were also used in the quality control check for each
modeling case. The maximum moment from the beam line analysis was Mcen = 1329 kN-m and the
number of loaded lanes was NL = 2. Using Eq. (8), the percent differences for both models were
calculated. For the model with no skew, the differences were well below 1% for cases 1-3, and only

Fig. 6 Single-span prestressed box-beam bridge: (a) plan view and (b) typical cross section
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2% for case 4. The difference between Eq. (1) and finite element results for case 2 is approximately
0.8%. For the 45° skew model, the skew reduction factor, Fskew = 0.833 by using Eq. (6). The
definite moment for the quality control check was calculated using Eq. (7) and was equal to 2214
kN-m. As shown in Table 3, the difference between the definite moment and the summation of
beam moments for cases 2 and 4 was reasonablely small. However, a larger discrepancy was
oberved for cases 1 and 3. The reason for this large difference could be related to many factors such
as no composite action between the beams and slab and/or the relatively smaller stiffness ratio of
prestressed beam and cast-in-place concrete deck slab. Due to these factors more load effect was
directly transferred to the bridge supports through the slab.

Each model was analyzed with the hinge-roller and all-hinged support conditions. The beam moments
with all-hinged supports were lower than those with hinge-roller supports. A maximum decrease of about
5.5% was observed for both the exterior and interior beams for the model with no skew.

Diaphragms were placed at both end support lines in order to investigate their effect on live load
distribution. The diaphragms were modeled noncompositely with the deck slab. A hinge-roller
support condition was used for this model. The results for the model with a 45° skew angle are
shown in Table 4. It can be observed from Table 4 that the support diaphragms have a small effect
on the moment magnitude. The moment values were reduced by a maximum of 5.61% and 5.85%
for the exterior and interior beam, respectively.

A sensitivity analysis was performed on this bridge in order to determine the change in moment
results when the element size was increased. The non-skewed model was used for the analysis and
only case 2 was investigated. The same transverse and longitudinal loading location was used with
the model of large size of elements as was used with the finer meshed model. The use of the larger
element sizes (610 mm x 610 mm) resulted in a total moment difference of 1.4% to the exact value,
while the difference for the finer mesh (305 mm x 305 mm) was only 0.7%. When comparing the
average bottom fiber stress with Eq. (1), a larger difference was observed from the model with larger
size of elements. Based on this analysis the finer mesh models used in the study should yield more
accurate results.

5. Model verification through field testing

The validation of a finite element model is typically done by use of experimental results.
Shahawy and Huang (2001) showed a comparison between theoretical and experimental results for
seven concrete slab-on-girder bridges. The finite element model used in the study was similar to the
case 2 model discussed in this paper. The bridge deck between girders was modeled as a series of
quadrilateral plate and shell elements with six degrees of freedom at each node. The girders were

Table 4 Comparison of models with and without support diaphragms (prestressed box-beam bridge)

Moment (kN-m)
Beam Exterior Interior
Case 1 2 3 4 1 2 3 4

with Diaphragm 443 564 620 508 429 533 568 508
without Diaphragm 418 534 610 479 404 515 561 487

Difference -5.61% -5.27% -1.69% -5.76% -5.85% -3.36% -1.26% -4.00%
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modeled using space bar elements. A rigid link was used to connect the centroid of the beam to the
centroid of the slab. The test results were found to be very close to those obtained by the finite
element model indicating the accuracy of the modeling technique.

The modeling and analysis techniques presented by Chen (1995, 1999) and Barr, et al. (2001),
similar to case 2, were verified by comparing the finite element results to experimental results.
Excellent agreement was shown between the analytical model and field measurements.

6. Conclusions

Finite element analysis can be used effectively to determine the maximum responses, such as
moment and shear, in bridge beams when the bridge is modeled and analyzed properly. With the
maximum response values obtained, distribution factors can be easily calculated. The AASHTO
LRFD Specifications demand refined analysis such as finite element analysis when the ranges of
applicability of the variables in the distribution factor equations are exceeded. Selecting the correct
modeling technique is very important to accurately perform a rigorous analysis method, such as
finite element analysis. In this paper, a prestressed I-beam bridge and a prestressed spread box-beam
bridge were modeled using four modeling techniques. The feasibility and correctness of each
modeling technique were examined. The following can be concluded from this study:

� Modeling cases 1, 2, and 4 can be used to effectively and efficiently model the bridge
superstructures presented in this paper. Composite action between prestressed beam and cast-in-
place deck has an impact on the magnitude and distribution pattern of beam moments in a
bridge. Upon further comparison of cases 1, 2, and 4, it was found that cases 2 and 4 better
represent the behavior of actual slab-on-beam bridges because of the inclusion of composite
action. The literature review revealed that the accuracy of modeling case 2 has been verified by
use of experimental results. The applicability of these modeling techniques to other bridge types
should be investigated before utilization. 

�The distribution of truck loads were more localized for the composite modeling cases (cases 2
and 4) and more evenly distributed for the noncomposite modeling cases (cases 1 and 3). 

�A proper quality control check is necessary to ensure the correctness of the modeling technique.
The equations for a quality control check for a non-skewed bridge were presented in the
literature review. The equations for a skewed bridge were developed and presented in this paper. 

� Special consideration must be given to the calculation of the St. Venant torsional constant. The
torsional constant should be calculated by using the most accurate methods available. When the
concrete sections are assumed to remain linear, Eq. (3) through Eq. (5) give a good
approximation for the applicable sections. 

�The finite element analysis results were shown to be sensitive to the changes in support
condition. The supports should be modeled according to the actual bridge situation. It is
therefore recommended that engineers use their own judgment when modeling support
conditions. 

�The presence of support diaphragms had a minor impact in the load distribution for both bridges
investigated. The reduction in the moment values due to presence of a diaphragm was less than
7% for all cases considered. 
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