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Abstract. The Component-Based Software Development (CBSD) has established itself as a sound
paradigm in the software engineering discipline and has gained wide spread acceptance in the industry.
The CBSD relies on the availability of standard software components for encapsulation of specific
functionality. This paper presents the framework for the development of a software component for the
design of general member cross-sections. The proposed component can be used in component-based
structural engineering software or as a stand-alone program developed around the component. This paper
describes the use-case scenarios for the component, its design patterns, object models, class hierarchy, the
integrated and unified handling of cross-section behavior and implementation issue. It is expected that a
component developed using the proposed patterns and model can be used in analysis, design and detailing
packages to handle reinforced concrete, partially prestressed concrete, steel-concrete composite and steel
sections. The component can provide the entire response parameters of the cross section including
determination of geometric properties, elastic stresses, flexural capacity, moment-curvature, and ductility
ratios. The component can also be used as the main computational engine for stand-alone section design
software. The component can be further extended to handle the retrofitting and strengthening of cross-
sections, shear and torsional response, determination of fire-damage parameters, etc.

Keywords: data communication; structural engineering; structural models; information management; computer
application; objects; components; patterns.

1. Component Based Software Development (CBSD)

The mechanical and electronic industries have long embraced the idea of the component-based
manufacturing of their main products. For example, several components used in cars are identical
across different models or even different brands. A similar concept is used in the manufacturing of
computers, where the standard components are assembled and integrated into different computer
models, brand names, and configurations.

The component-based manufacturing concept has been extended to the development of software
applications in recent years. Component Based Software Development (CBSD) is a logical
extension of object-oriented concepts and the corresponding object technologies, which have
pervaded in the software industry since the early 1990s. With the almost universal availability of the
Internet and other network facilities, it has become viable for application software not only to be
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deployed at locations different from their users’ computers, but also to break up and deploy large
systems from several locations. The CBSD has also made it possible for parts of the same software
to be developed by different organizations, and to assemble new applications from existing
specialized or generalized components. In such a scenario, the component-based architecture can
significantly formalize, streamline, expedite, and enhance the software development process for
structural design applications as well.

Since the introduction of object-oriented concepts, a whole new breed of object technologies and
paradigms has evolved for the development of software systems. One of these is the concept of
components. Component Based Software Development is supported by, and has given rise to
several new paradigms, programming environments, languages, tools and development architectures.
These include Object Linking and Embedding (OLE), ActiveX, Common Object Model (COM),
Distributed Common Object Model (DCOM), Open DOC, Java Applets and Java Beans, Common
Object Request Broker Architecture (CORBA), Distributed Computing, Client Server Applications
(CSA) and the new .Net framework, Sun Open Network Environment (Sun One) (http://
www.sun.com 1999) and the Java 2 Enterprise Edition (J2EE). A completely new way of building
systems using software components has evolved (Crnkovic 2002). Most programming languages
now provide support to the use of conventional function libraries, as well as these new component-
based developments. The .Net framework introduced by Microsoft in July 2000, provides a
productive multi-language environment for platform-independent development and deployment of
applications using Extensible Markup Language (XML) as the standard for communicating and
processing information between Web services (or components) for Visual Basic (VB) and C-based
programming (Brill 2001). The J2EE is a conceptual definition for enterprise system architecture
providing design philosophy for large, scalable (Web-enabled) systems. This definition comprises of
several Application Programming Interfaces (API) for email, database, distributed computing and
web-based applications. J2EE is a new deployment specification for packaging the Java components
into a single enterprise system. It extends the basic Java Archive standard for a single deployable
file to the Web Archive (WAR) and Enterprise Archive (EAR) formats, for deploying large
component based systems (Brill 2001). A component coordination model for component-based
systems has been presented (Mathee and Betanov 2000). It is believed that component-based
approaches will be at the forefront of software development in the next few years (Capretz, et al.
2001). The challenges and difficulties faced during development, implementation and use of
component-based systems have been addressed recently (Crnkovic and Larsson 2002). An
application framework for the development of simulation tools for construction projects has been
proposed (Hajjar and AbouRizk 2000), that is based on the object oriented library and design
patterns. They have demonstrated that use of component based software development significantly
reduces the development time for new program as well as adding functionality to exXisting tools.
Krishnamoorty, Venkatesh and Sudashan (2002), have applied the concept of object-oriented
framework to the development of program for space truss optimization. This framework, however,
is only limited and specific to the truss analysis and optimization problem using genetic algorithm
and not intended for overall integrated design of general structural system.

2. CBSD framework for structural design applications

The structural engineering discipline, and hence the scope of computer applications and software
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development, deals with a very broad range of activities and applications. The applications can be
classified by the type of structure it handles and the extents of the overall design process. The
applications can be as small and specific as a program for the design of reinforced concrete cross-
sections, or as large and general as a fully-integrated analysis, design, detailing, and costing
program for structures. Recently, applications for design process management, design documentation
and web-based information collaboration have also become popular (Pena-Mora and Choudary
2001). Current structural engineering software not only addresses the computational aspects, but
also focuses on interactive and graphical user interfaces, specialized pre-and post-processing,
graphic visualization, database management, and integration and interaction with other software
systems (Adeli and Yu 1995), (Stamatakis 2000) and (Sotelino, et al. 1998).

Formal development of software typically deals with two disciplines or domains: software
engineering (along with related knowledge and expertise) and the application domain, such as
structural engineering as in this case (Pressman 1992). Significant developments and diversifications
have occurred in both the software development industry and the structural engineering discipline.
At the same time the structural engineers’ expectations of software range, application and level of
sophistication are ever increasing. These expectations are driving attempts to develop more
complex, comprehensive and integrated software systems. It is becoming increasingly difficult for
the researchers and developers of software for structural engineering to keep abreast of all the latest
developments, both within their own field and in the general structural engineering industry. It
therefore makes sense for individual researchers or team of developers to focus on their own
particular area of interest and expertise and develop programs and software within their specialty.
These software or programs, when developed using well-defined frameworks and patterns, can
become software components that can then be connected in a variety of ways to develop and deploy
complete systems or solutions. In a typical scenario, researchers in the finite element technology
could focus on developing a dedicated structural analysis component. Experts in computer graphics
could develop components for graphic display and manipulation of structural models, as well as
visualization of response. Similarly, specific components could be developed for design of concrete,
steel or composite structural members. These components could be used time and again in a variety
of ways and be physically integrated into applications or used over the Internet as web services or
part of application servers. The component frameworks formalize and generalize the basic design
issues in the structural design software. Component-Based Software Development ultimately hinges
on the object-oriented techniques and concepts. Several successful applications of object-oriented
software development in structural engineering have already been demonstrated, (Adeli and Yu
1995), (Anwar and Kanok-Nukulchai 1996), (Aster, Bergmeister, Rio, Schonach, and Sparowitz
1998), and (Tailibayew 1999).

For these components to work together, a framework defining the overall architecture must be
developed. Such a framework has two parts: that dealing with the computer science aspects
(commonly known as horizontal framework), such as programming environments, operating
systems, communication protocols, hardware compatibility etc.; and that dealing with the structural
engineering aspects (commonly known as vertical frameworks). Several horizontal frameworks
already exist, such as COM/DCOM, CORBA (Pritchard 1999), Net, J2EE. As for the vertical
frameworks in A/E/C discipline, an information technology-based framework for large-scale project
planning with special emphasis on IT investment, and strategic planning using 1T diffusion concepts
has been proposed (Pena-Mora, ef al. 1999). A detailed framework using components library to
build software for construction management applications has also been proposed (Pena-Mora,
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Vadhavekar and Dirisala 2001). Their paper demonstrates the importance and usability of
component-based software development in civil engineering applications. It presents not only the
basic framework for developing components using patterns, but also incorporates a methodology for
searching existing components and patterns for re-usability in new system. With regard to the
development of component-based software in structural engineering, however, no well-defined
domain-specific, vertical framework could be found in the literature.

3. Information oriented component based framework

By definition, frameworks “... provide a skeletal design that can be built upon to create an
organized system where many packages or components work together” (Stevens and Pooley 2000).
The basis of a framework in the development of structural design applications is laid out in Fig. 1,
where the overall information space of a construction project and the role of structural design are
shown. A conceptual information package architecture based on this information model is shown in
Fig. 2, with the proposed information flow mechanism.

In general, the top level role of an application is to define the bounds of structural design
information space; establish the extent of information processing to be performed by the application;
establish ways and means of obtaining the information needed from other information sources,
identify and integrate packages to complete the contents of the required information space; and
finally, update and communicate with the outgoing information sources. The overall conceptual
structural design information package architecture is shown in Fig. 3. This framework is derived
from the information content and flow in a typical structural design process. The main packages
have been identified along with their linkage to the information space as well as the user interface.

The specific design and functionality of the individual packages identified above vary significantly
depending on the type of structure and level of integration of the packages. However, the common
framework and pattern for these packages can be defined in terms of the basic role they play in the
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overall application. Each package is basically an information processor. Upon activation, it takes the
required information from the information space using the information bus, converts it to
appropriate context, processes this information using its components and produces new information
or updates the initial information, converts it back to the global context, and returns it to the main
information space. A sample framework pattern for the structural design package is shown in Fig. 4.
The internal working of the package is not of concern at this stage of framework definition. In some
ways, the general package framework is similar to the application framework, except that in this
case the packages within the application are replaced by components within the package.

4. The section design (SD) component

4.1. Significance

For the Component Based Software to work, it is essential that ready-to-use plug-able components
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are available. Almost every structural analysis and design software handles the design of member
cross-sections such as columns, beams, etc. The functionality to design a typical cross-section for
frame type members can be encapsulated into a complete component that can be used both with the
analysis package and with the design package. When linked to the analysis package it can provide
the ability to create or define the cross sections and to compute the properties needed for analysis.
When linked with the design package, it can provide the functionality to design the cross-sections,
check the stresses, compute the capacity ratios, and determine the performance and ductility
parameters. The section design component can also be used in the detailing package to provide the
cross-section geometry, graphics and other detailing information obtained or updated from the
design process. This use-case scenario of the SD Component is shown in Fig. 5. In addition to
being used in main packages, the SD Component can be used as an independent stand-alone
program as shown in Fig. 6.

4.2. Functionality

The SD Component, as proposed here, is intended to provide all necessary functionalities to
determine the required response of structural member cross sections subjected to general actions and
deformations from a typical finite element analysis, as well as to provide the properties needed for
the analysis itself. The specific implementation of the component may be limited to the
determination of a simple beam section properties, to a full performance-based analysis and design
of general beam-column section used in non-linear dynamic or pushover analysis. The component
design discussed and presented in this paper can handle all of these cases. The proposed component
is able to handle cross-sections of different materials and shapes, including reinforced concrete, pre-
stressed concrete hot rolled steel and composite sections and is able to determine response ranging
from computing geometric properties, to elastic stresses, section capacity, ductility and performance
indicators. The design and implementation of such a comprehensive component requires careful
planning and consideration, as presented here.

4.3. Design patterns

The component needs to be developed using standard design patterns so that their re-use is
guaranteed. Three design patterns for the SD Component are shown in Fig. 7, with progressive
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Fig. 6 Stand-alone use of SD component as complete section design program
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increase in level of details and corresponding reduction in generality. The highest-level pattern in
Fig. 7 is in fact applicable to any information-processing component. The second level pattern
considers the general demands of the SD Component, whereas, the third level pattern gives the
functionality and interface of the SD Component. This pattern is further expanded into a full
computational model presented in the next section.

4.4. The computation model for the cross-section behavior

The Section Designer component is designed to provide a significant amount of varied output.
Some of the outputs are related to particular input parameters, whereas others are related to the
intrinsic property of the cross-section and can be obtained once the geometry and materials are
defined. Fig. 8 shows a computation model in which the sequence of computation and the
relationship of various response parameters are linked to the input parameters. It can be seen from
the figure that the cross-section response is progressively built-up based on the available
information either from previous steps or from additional input from the component client. This
computation model ensures that the component can be used at various levels and for various
purposes. It is important to note that the axial-flexural interaction surface and curves are an intrinsic
property of the section and can be generated without the need to define the loading conditions. This
feature can be used for writing automated, iterative design procedures.
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Fig. 8 Overall computation model for the determination of section response

4.5. The public interface

The entire functionality of the component needs to be exposed through a public interface. In other
words, any item that is not defined in the public interface will not be available to the users or
clients of the component. Therefore, the definition of the interface is critical to the use of the
component. The minimum level of access to the component must allow for:

a) Defining section geometry and material models

b) Defining input actions

¢) Obtaining required response.

The communication with the component can be done in several ways. The simplest interface
would be to simply write three public functions:

1- ReadData (fileName)

2- Execute

3- WriteResults (fileName)

In this model, all data needed by the component will be written in a file and read through a call to
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ReadData function. The Execute call will do all computation and WriteResults call will produce the
output. However, this interface provides no flexibility in the use of component, and the file data
format becomes a rather rigid link between the client and the component.

On the other extreme level of use, an object-oriented interface would expose the object model to
the user, with the public interface of each object available for individual access in any order or for
any purpose. This would provide complete freedom to the client of the component, but would
require several calls and significant amount of programming.

A third alternative is to provide a logical set of higher level access functions in the component
that will help in performing bigger and more abstract tasks. This third option is used in the present
paper to define the public interface of the component. Table 1 lists the functions that are exposed
for use by the component client. This is only a partial list and other functions for more refined
access to the component functionality may be added in specific implementations.

4.6. Object model

The SD component does not have a very deep object model. The component itself is fairly
specialized and has a lower level of functionality. It basically consists of a collection of shape
objects and a collection of material objects. The cross-section geometry is handled by the shape
objects that represent both polygon shapes as well as the rebars or prestressing strands. Each
shape object is associated with one material object from a collection of various material objects
encapsulating material properties and material behavior. The overall object model is depicted in
Fig. 9. It can be seen from the figure that the shape objects have a one-to-many relationship with
the section object whereas the material objects have one-to-one relationship with the shape
objects. Therefore, the section is, in fact, composed of several shapes, each of a specific material.

Table 1 The public interface functions for the section designer component

S No Public Interface Function
1 New Section() Section
Add Polygon Shape() Shape ID
3 Add Point Shape() Shape ID
4 Add Material Type() Material 1D
5 Assign Material to Shape
6 Compute Geom Properties() Geom Prop
7
8
9

Generate Interaction Surface() IAS
Generate Elastic Stresses () Stresses
Generate Moment Curvature () M Fi Curves

10 Compute Capacity Ratios() Cap Ratio
11 Add Action Set () Set ID

12 Remove Shape()

13 Remove Material()

14 Draw Section()

15 Draw Section Stress()

16 Get PM Curve () Curve

17 Get MM Curve () Curve

18 Get Neutral Axis() NA Data
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Defining the material model in separate objects rather than as properties of the shape objects
allows for much greater flexibility in the handing of complex cross-sections made up of several
shapes and materials.

4.7. Class hierarchy

The final coding of the component is done using object-oriented programming and is based on a
hierarchy of classes. The SD Component is expected to be used in graphical user interface
environment,. It is, therefore, imperative that the component contains and exhibits graphics capability
as well. The graphics functionality of the component is provided in either of the two ways.

1- The information generated or needed by the component is provided to a separate graphics

component that handles the input as well as the graphics display of results.

2- The classes in the component are inherited or derived from the graphics classes so that all

graphics interaction is handled by the classes within the component, in collaboration with
other graphics related classes.

cShapeArea

cShape

cShapePoint

cGraphicObject

cSection

>

Fig. 10 Hierarchy of shapes and section classes
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The second option is used in the present research as it has several clear advantages over the first
option. The encapsulation of the graphics functionality and behaviors within the component makes
the component complete and self reliant. It also provides for easier linkage to main programs as the
graphics interaction does not have to be handled by the main program separately. For this reason
both the section class itself and the shape classes are inherited or derived from the base graphics
class. The shape class is further specialized into polygon shape class and point shape class to handle
area and rebars etc. A base material class is used to define the basic material properties and
behavior, which is then specialized into concrete material and steel material to handle specific
demands of these materials. For example the concrete material class may be needed to handle creep
and shrinkage in a specialized manner, not relevant to steel. Similarly the steel material is further
specialized into mild steel to handle structural steel, and rebar and into pre-stressing steel to handle
pre-stressing strands and wires. The need for this specialization is to tackle the special behavior
such as relaxation, pre-stress losses etc., which is not relevant to the reinforcing or structural steel.
The partial design of the section class, the shape class and the material class is shown in Fig. 10
and Fig. 11 respectively.

The main cross-section class contains the functionality to combine these shapes, mesh them into
appropriate non-overleaping, exclusive and convex polygonal meshes. Each mesh element is derived
from the corresponding shape and inherits the material properties. The final mesh elements are then
used to compute various cross section responses including the axial-flexural capacity, the moment-
curvature curve, the geometric properties, stress distribution and other required responses. Fig. 12
shows the overall design of the cross-section class showing the main properties and services.

5. Unified approach to cross-section response
5.1. The diversity of the problem and unification of the solution
Generally, design of structural members can be divided and categorized in many ways based on

type of member, type of material, type of applied action, type of cross-section shape, design code
and design method. Often each of these types and their combinations are treated separately and
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SampleProj::cXSectionComposite

-myName : String
-myCaption : String
-myShapes : cShapesGeneral
-mylocation : CPoint
-myQrient : String

-myXoo : Single

-myYoo : Single

-myArea : Single

-mylyyo : Double

-mylxxo : Double

-mylxyo : Double

-myJo : Double

-mylrr : Double

-mySax : Double

-mySay : Double

-myZxx : Double

-myZyy : Double

-myZpx : Double

-myZpy : Double

-myLabels : cDimensionLines
-myMainMat : String
-mySubMat : String
-myBaseEMod : Single
-myBaseFy : Single
-myBaseFc : Single
-myStressMesh : udtSpArea
-myMesh : udtSpArea
-mylASurface : udtlAPoint
-myMomCurve : udtlAPoint

+Create()

+Copy()

+Rotate()

+TotalAst()
+ComputeBasicGeomProperties()
-ClearProperties()
+SectionHasChanged()
+ComputeAdditionalGeomProperties()
-ComputeTorsionalJ()
-ComputeShearAreaAndPlasticMod()
+ResetProperties()
-GenerateMeshForCalc()
-ChecklIfShapesOverlap()
+ComputelASurface()
-ComputeCapaitiesAtZeroMoment()
-ConvertShape ToComponents()
+ComputeMomentCurvature()
+FindNeutralAxisForActions()
-StressResultantsForGivenNA()
+GenerateStressesForGivenNA()
+ExtractPMCurveFromlAS()
+ExtractMMCurveFromiAS()
-GenStrainCurveLinear()
-GenUDTSSCurveForConc()
-GenUDTSSCurveForSteel()
+ComputeNormalStressForMesh()
+GenerateAxialStressIAS()
+ComputeTorsionalStressForMesh()
+ComputeShearStressForMesh()
+ComputeShearTosnonStressForMesh()
+DrawAreaMesh()

Fig. 12 The cross-section class
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Table 2 Diversity of the concrete section design problem

Types of Material Types of Location of Stress-Strain Cross-section Design Approach
Combinations Actions Reinforcement Curve Shape and Method
- Un-reinforced - Uniaxial - Singly - Simplified - Rectangular - Allowable
Concrete Bending, Mx or Reinforced Rectangular - Circular Stress Design
- Reinforced My only - Doubly Block - Flanged - Ultimate
Concrete - Uniaxial Reinforced - Semi-Parabolic - General Strength Design
- Partially Bending and - Arbitrarily and Full Polygonal - Load Factor
Prestressed Axial Force, Mx Reinforced Parabolic Design
Concrete or My and P Curves
- Fully - Biaxial Bending, - Curves for
Prstressed Mx and My Confined and
Concrete - Biaxial Bending Unconfined
- Fiber and Axial Force, Concrete
Reinforced Mx and My - Linear Elastic
Concrete and P - Bilinear
- Steel-Concrete Elasto-Plastic
Composite - Elastic, Post
Elastic, Strain
Hardening

differently for the purpose of determining the design strength. The design strength of a member is
largely derived from the design strength or capacity of the cross-section. The diversity of the
concrete cross-section design problem is summarized in Table 2. The proposed component is
designed to handle most if not all of these specializations. The proposed component is designed to
handle several types of cross-section shapes and materials. This requires the development of unified
approach for representing cross-section shapes and materials and for determining the cross-section
response. Based on unification and integration of the following specializations:

* Beams and Columns

» Reinforced Concrete and Pre-Stressed concrete

* Reinforced Concrete and Composite concrete

* Design Methods, Design Approach and Design Codes

* Cross-Section Shapes and Reinforcement

* Cross-Section Materials

All of these unifications are based on the development of a generalized cross-section
representation and determination of its response.

5.2. Generalized cross-section representation and response

A general cross-section consisting of a combination of shapes of different materials is considered
including concrete and steel. The cross-section may also contain holes, and reinforcements at any
arbitrary locations. These material shapes may lie partially or completely within another shape. It is
also considered that all parts of the section have not been built at the same time and that the cross-
section has been loaded incrementally. This means that at any given time and loading state the
strains in adjacent materials at the same location may not be the same. A generalized representation
of such a cross-section is shown in Fig. 13.
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Fig. 13 General cross-section with arbitrary arrangements of shapes, holes and reinforcement

In the proposed model, such complex cross-sections are represented by a combination of two
basic entities, polygons and points. The polygons may be used to represent solid shapes and holes,
and the points may represent the conventional reinforcing bars and prestressed strands. Curved
shapes and boundaries are modeled by several straight edges. Each different material or same
material with different properties or loading history is represented by a separate entity. For the
convenience of computations, the global X-Y coordinate system is defined such that the entire
section (all shapes, holes, reinforcement and prestressed strands) lies in the first quadrant. The
plastic centroid of the section is chosen as the origin of the local xy axes, and located at X, and V..

Each material used in a cross-section is defined as a separate entity. For each material the
following relationships are defined in the overall material model.

* The basic stress-strain relationship: used to obtain basic stress for a given strain;

* The time dependent stress modification relationship: used to model change in concrete strength
and modulus of elasticity with time;

* The basic stress modification relationship: used to model pre-stress conditions, such as residual
stresses or other non-strain dependent stresses, and;

* The time dependent strain relationship: used to model creep, shrinkage and relaxation.

Once the materials are defined, they are assigned to corresponding entities on the cross-section. It
is important to note that each of these relationships can be assigned to different entities in the
section independently. In theory, therefore, any combination of the basic stress-strain relationships,
time dependent stress variations, time dependent strain variations and pre-strain conditions can be
used for the same entity within the cross-section.

5.3. Determination of section capacity

The capacity of a general cross-section made up of several shapes and materials as described
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above is determined using the basic concepts of the fiber model. In this approach, the stress at each
point (or fiber) in the cross-section is determined and then integrated to find the internal stress-
resultants. Although the concept is simple its application requires handling of several aspects that
are not as simple. For example, how to discretize the cross-section into appropriate fibers/mesh?
How to determine stress at each point? And how to integrate the stresses accurately across the
areas? Several approaches and methods have been developed and proposed by researches to handle
these issues. Some are applicable to simple or specific sections and materials, whereas, others are
quite general in application. The authors have developed a fairly general procedure for automatic
discretization of a general cross-section made up of several materials, including the effect of non-
linear strain distribution, and non-linear stress-strain relationship.

Discretization of the cross-section converts a planer continuum to fibers or a mesh element of
finite size and position. For a general cross-section, represented by a number of complex polygons
and points, the points need not be discretized, and each is taken as an individual fiber. Each of the
complex polygons is discretized in following levels:

* Primary meshing based on cross-section geometry

* Secondary meshing based on the stress variation along the bending direction

* Tertiary meshing based on the stress variation normal to the direction of bending

After the final mesh has been generated, it is converted into triangles and the stress variation on
each triangular element is considered linear in both directions and can be integrated exactly.

Once the cross-section has been discretized, the procedure followed for the determination of
capacity interaction surface of any given cross-section is summarized as follows and
diagrammatically represented by Fig. 14. Various steps can be omitted from this procedure if certain
phenomena are not considered. However, in general:

* Assume a neutral axis depth and orientation for the specified failure criteria. For this assumed

depth and orientation of the neutral axis, determine the strain profile.

Assume Neutral Axis Depth
and Orientation for given

Failure Strain
i l Stress Strain Curve }
[ Strain Profile ‘
[ Modified Strain Profile |« e Pre-Strain
No Modified Stress
Strain Curve
! Stress Profile ‘
’ Modified Stress Profile I Yes Pre-Stress
No

Interaction Curves
and Surface

Fig. 14 Cross-section capacity determination procedure
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Modify this strain profile for strains obtained as an effect of loading history, residual strains or

other pre-strains.

* Using the age of concrete determine the modified stress-strain curve for each material in a
cross-section.

» Using the modified stress-strain relationships of the various materials over which the strain field

is obtained, determine the stress distribution.

Modify the stress distribution obtained for the cross-section for other time dependent stresses

(such as relaxation).

* Calculate the stress resultants using the modified stress distribution.

* Repeat the process for various neutral axis orientations varying the depth throughout the depth

of the cross-section.

Plot the stress resultants in 2D and 3D space.
Similar procedures are used to determine other responses such as, elastic and cracked stresses, and
moment curvature curves.

5.4. Implementation and deployment issues

The conceptual design of the SD component, as presented here, is fairly general and
comprehensive and can be implement in various systems. The implementation, however, requires
handling of several specific issues related to three main aspects:

A. The scope and functionality actually implemented in a particular instance of the Section

Designer component using this overall framework is presented here.

B. The use-case scenarios for the SD Component and the main analysis and design system in

which SD Component will be used.

C. The programming environment and the object technologies used for the development of the SD

Component, including the underlying operating system and hardware platforms.

As for the programming environment there are basically two choices:

1- Use the Microsoft-based technologies: In this case, the choice can further be made between the
COM/DCOM and the .Net framework. The choice of language can be between VC++ and
VB6 for COM/DCOM and between C# and VB .Net for the .Net framework.

2- Use the non-Microsoft technologies: In this case the main object specification is the CORBA,
which can be implemented using either C++ or Java.

The above choices are in fact quite general as far as implementation of component-based software
systems is concerned, especially on the PC platform. The other systems suitable for Mac/OS, Unix
or Linux-based development are not considered here, as their use in the current structural
engineering applications is not as widespread as windows-based PC’s. Fig. 15 shows the summary
of choices for implementation of the SD Component on PC platform.

The deployment, integration and use of standard component is just as important issue as the
development and implementation. The SD Component is expected to be used by other software
systems on varied environments. Its deployment can be done in several ways:

a) The developers of main analysis program may use the patterns and framework proposed in the

present paper and write their own source code and completely integrate it within their
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software. This is the minimum level of reuse of this component and does not exploit the full
benefits offered by the development of this component.

b) The Section Designer component can be implemented as an ActiveX control, or an ActiveX
DLL using the COM/DCOM technology. In this case, the interface exposed by the component
can be used by the host programs to access its functionality.

¢) The component can be implemented as a .Net assembly in which case it can be used in .Net
based development environment, again using the public interface of the component.

d) The component can be programmed as a Java Bean and to be used with Java-based
technologies.

¢) The component is deployed as an ASP (Application Server Provider) or a Web Service
implementation that can provide access to the components functionality in Web-enabled
system.

The actual implementation and deployment choice will depend to a great extent on the personal
and organizational preferences as well as on industry demands. Probably more than one
implementation and deployment choice may be considered for wider usage.

In this research, the implementation and deployment is focused on the .Net framework as that is
seen by many to be the development choice for a significant amount of PC-based software in the
future, replacing the COM/DCOM technologies.

5.5. Sample implementation

A generalized component, within the framework described thus far in the paper, has been
developed. The component is designed to be used in component-based structural engineering
software as well as a stand-alone application. The component is used in analysis, design and
detailing packages, such as BATS, GEAR, CSISectionBuilder and CSICOL to handle plain
concrete, reinforced concrete, prestressed concrete, composite section, and hot-rolled sections. The
entire response parameters of cross-sections can be determined using this component, including
geometric properties, elastic stresses, cracked stresses, moment curvature curves, flexural capacity
curves, and ductility ratios. The SD component receives the basic input parameters such as section
dimensions, amount of reinforcement, material properties, etc., from the client application. These
properties are then used to determine the requested response of the section and the output is

NON-MS

v

.NET
Framework
Java VB6 C++ ASP.NET VB.NET

Fig. 15 Some of the choices for the implementation of SD component in PC platform
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provided to the client.

As a stand-alone component, the SD interacts with the user through a graphical, highly interactive
and user-friendly interface. Material properties for the section may be defined using the various
material types available in the material library.

In this implementation the section geometry may also be created easily using various available
section shapes in the built-in shape library. The component is also capable to import section
coordinates from other file formats such as .txt and .DXF. In addition to this, various tools are
provided to facilitate the accurate graphical drawing and editing of section shapes such as rotate,
flip, merge and scale. Similarly, tools for addition and distribution of rebars and prestressing strands
over the section are provided. The materials defined earlier may be assigned to any part of the
section. Thus, the component allows for building of sections having non-uniform material properties
for a single section. Once the section and material properties have been defined various outputs may
be generated. A few of these are described next in this paper.

5.6. Geometric properties

The geometric properties are computed and reported in terms of the base material property
defined for the entire section. If the material specified for the section is concrete of a particular
strength, then the properties of all shapes in that section are weighted using the appropriate factors
and the concept of modular ratio. The individual properties of the shape are therefore multiplied by
this factor and added to the properties of other shapes. This is true even if there is only a single
shape in the section.

8.7. Flexural capacity curves

The detailed procedure for the determination of the flexural capacity of cross-sections has been
described earlier in this paper. Flexural capacities of sections are reported in various different
formats according to user preferences. These include capacity surface generation, P-M curves at
various neutral axis angles, M-M curves at various axial load values and capacity ratios for defined
loading conditions. These outputs are generated and reported in both graphical and text formats and
may be exported to other applications for post-processing. Although the program is able to generate
capacity curves for any section and combination of different shapes and materials, it is important
that this information is used with proper understanding and checks on the validity and applicability
of such calculations. In general, the capacity calculations are intended for reinforced concrete
sections, but may also be used for fully composite and plastic sections.

5.8. Moment-curvature curves

The SD component generates the moment curvature curves for a given value of axial load,
direction and magnitude of moment, and a specified strain criterion. Various strain criteria such as
maximum strain, failure of first rebar, failure of any or all parts of the section may be specified for
the computation of the moment curvature curves. The component reports the output in both text and
graphical form.
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5.9. Stress distribution plots

This component generates the following stress plots on the section:

* The combined normal stress for axial load, moment M, and moment M, This stress calculation
is based on elastic properties and the linear strain distribution assuming fully composite and
connected behavior of various shapes and components in the section.

* The shear stress distribution along the y and x axes. This shear stress is computed using the
general shear stress equation. The same equation is also used to calculate the shear area. All
shapes in the section are assumed to be fully connected and fully effective in resisting shear
force. The shear stress distribution is computed along two orthogonal axes independently,
assuming no interaction.

* Cracked Section Stresses showing stresses variation according to the stress-strain curve assigned
to the section are displayed in 2D and 3D space along with the location of the neutral axis.

The section or parts of the section can be rotated at any angle for computation of geometric
properties and capacity calculations as well as for determining the stress distributions. This allows
capacity calculations to be performed in any direction.

Fig. 16 shows the various outputs that have been generated using CSISectionBuilder®, a software
developed on the proposed component based framework.

6. Conclusions

The overall development of a software component for the design of member cross-sections is
presented. The component is developed with a view to be used in component-based structural
engineering software as a stand-alone program developed around the component. The paper
describes the basic use-case scenarios for the component, its basic design patterns, the integrated
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Fig. 16 Various outputs developed using the component-based section designer program
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and unified handling of cross-section behavior and implementation issue. It is expected that a
component developed using the proposed patterns and model can be used in analysis, design and
detailing packages to handle reinforced concrete, partially prestressed concrete, steel-concrete
composite and steel sections. The component can provide the entire response parameters of the
cross section including determination of geometric properties, elastic stresses, flexural capacity,
moment curvature and ductility ratios. The component can also be used as the main computational
engine for stand-alone section design software. The component can be further extended to handle
the retrofitting and strengthening of cross-sections, determination of fire-damage parameters, etc.
Other extensions, specialization and implementations of the proposed component are possible within
the overall component-based framework.
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