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Abstract. A FE-(FE-HE)-BE procedure is presented for dynamic analysis of concrete arch dams. In
this technique, dam body is discretized by solid finite elements, while the reservoir domain is considered
by a combination of fluid finite elements and a three-dimensional fluid hyper-element. Furthermore,
foundation rock domain is handled by three- dimensional boundary element formulation. Based on this
method, a previously developed program is modified, and the response of Morrow Point arch dam is
studied for various conditions. Moreover, the effects of canyon shape on response of dam, is also
discussed.
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1. Introduction

Researches have used different methods to study the dynamic response of concrete arch dam-
reservoir-foundation systems, such as the time domain analysis (Chuhan, et al. 1995), the hybrid
frequency-time method (Camara 2000), or the frequency domain solution. Concentrating on this last
alternative, which is also the procedure adopted in this study, one of the most extensive
investigations has been carried out by Fok and Chopra (1986). However, the dam-foundation rock
interaction was simplified in that study by implementing a massless foundation model. Later on,
Tan and Chopra (1995a) improved the initial underlying technique and they presented a procedure,
which considered dam-foundation rock interaction completely. This was achieved by employing a
two-dimensional (2D) boundary element formulation combined with a series expansion along the
canyon axis direction for the foundation rock domain. However, the main limitation of this work, is
that the foundation rock geometry must be that of a uniform canyon extending to infinity. An
alternative approach was also presented for dynamic analysis of general concrete arch dam-
reservoir-foundation rock systems, which was mainly dependent on boundary element formulation
(Maeso and Dominguez 1993, Dominguez and Maeso 1993, Maeso, et al. 2002).

In this paper, the problem is analyzed by FE-(FE-HE)-BE technique. That means, dam body is
discretized by solid finite elements, while the reservoir domain is considered by a combination of
fluid finite elements and a three-dimensional fluid hyper-element. Furthermore, the foundation rock
domain is represented by utilizing a three-dimensional (3D) boundary element formulation. It should
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be also mentioned that in this approach, the geometry of canyon could be quite arbitrary and this
has become possible due to the fact that a 3D boundary element formulation is applied for
foundation rock domain. In the following, the general formulation is presented initially. Based on
this method, a previously developed computer program (Lotfi 2001, 2003) is modified, and the
response of Morrow Point arch dam is studied as a typical example. The investigation is carried out
for various conditions and the effects of canyon shape on the response, is also discussed.

2. Method of analysis

The analysis technique utilized in this study is based on the FE-(FE-HE)-BE method, which is
applicable for a general concrete arch dam-reservoir-foundation system. This means, the dam is
discretized by solid finite elements, while, the reservoir is divided into two parts, a near field region
(usually an irregular shape) in the vicinity of the dam and a far field part (assuming uniform
channel), which extends to infinity. The former region is discretized by fluid finite elements and the
latter part is modeled by a three-dimensional fluid hyperclement (similar to references, Fok and
Chopra 1986, Tan and Chopra 1995a). Furthermore, boundary elements are used for modeling of
foundation rock domain (see Figs. 1 and 2 for typical discretizations).

The formulation could be explained much easier, if one concentrates initially on a dam with finite
reservoir system (basically the same as a model of dam and reservoir near field), and subsequently
add the effects of reservoir far field region and foundation domain for the general case. For this
purpose, let us begin with this simpler formulation and then complete the formulation for the more
general case on that basis.

2.1. Dam with finite reservoir system

This is the problem, which can be totally modeled by finite element method. It can be easily
shown that in this case, the coupled equations of the system may be written as Lotfi (2002):

{M 0} H .\ {c 0} H . {K —BY} H _ [-MJa, O
B G| |p 0 Ljp 0 H P —BJa,

M, C, K in this relation represent the mass, damping and stiffness matrices of the dam body, while
G, L, H are assembled matrices of fluid domain. The unknown vector is composed of r, which is the
vector of nodal relative displacements and the vector p that includes nodal pressures. Meanwhile, J is
a matrix with each three rows equal to a 3%3 identity matrix (its columns correspond to unit rigid
body motion in cross-canyon, stream, and vertical directions) and a, denotes the vector of ground
accelerations. Furthermore, B in the above relation is often referred to as interaction matrix.

For harmonic ground excitations a,(t) = ag(w)eiw’ with frequency @ displacements and
pressures will all behave harmonic, and the Eq. (1) can be expressed as=

—WM +K(1 +28,) B’ H _ [—MJag} @
~w'B ~wG+iwL+H|P]  [-BJa,
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In this relation, it is assumed that the damping matrix of the dam is of hysteretic type. This means:

_ 2P
C = wK 3)

Where [3; is the constant hysteretic factor of the dam body. Relation (2) is the coupled equations of
a dam with finite reservoir system in frequency domain, which can be made symmetric by
multiplying the lower partition matrices by a factor of w?.

2.2. Pseudo-symmetric technique

Considering the coupled Eq. (2), it is noticed that unsymmetric terms are due to B matrix and its
transpose appearing in this relation. This matrix is usually obtained by assemblage of contributing
submatrices of interface elements located at fluid-solid contact, or even surfaces where fluid
elements are adjacent to rigid or absorbing boundaries. However, to make it more convenient from
programming point of view, one can ecliminate these interface elements and consider its effect as
part of adjacent fluid element matrices. In that case, matrices of the jth fluid element which
contribute to the corresponding total mass, damping and stiffness matrices of the system would be
generally as follows, respectively:

. T
Q= |2 Yol = 0 M ana Qf = |07 )
B, G, 0L, 0 H,

In the present work, interface elements are excluded and their effects are considered as part of
fluid element matrices similar to the above explanation. However, everything is made symmetric
from the very beginning. This means that fluid element matrices are considered symmetric
artificially as below:

T ~
Q= "Bl o =" g =" 5)
B, G, 0L, 0 H,

This presumption makes the method very convenient from programming point of view. However,
it would yield to a coupled relation in the frequency domain, which is not really satisfied
completely (Lotfi 2002)

~M+K(1 +2B,i)  -w'B rl . {—MJag} ©
~w'B ~w'G +iwL+H||P ~BJa,
It is noticed that a special notation = is utilized in this relation. This is to emphasize that equality

is slightly damaged due to an extra «’ factor appearing in the second term of the upper partition of
this relation in comparison to Eq. (2). When this term is corrected, it is noticed that the lower
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partitions are also required to be multiplied by w?, to preserve symmetry. Of course, it must be
mentioned that in actual programming, the total dynamic stiffness matrix (i.e., the resulting left hand
side matrix of Eq. (6)), could be stored based on symmetric skyline technique and the two above-
mentioned steps would be simply performed by multiplying the columns corresponding to pressures
degree of freedom by a factor of w?, while the same factor is also applied to the lower partition of
right hand side vector. In this manner, the final coupled equations of the dam with finite reservoir
system in the frequency domain would be:

—wM +K(1 +2,i) -B' r|_ { ~MJa, j o

-B W (-G +iwL +H)|| P —w’ BJa

The above approach could be visualized as the frequency domain extension of the Pseudo-
Symmetric technique originally explained elsewhere for time domain (Lotfi 2002).

In this manner, the usual interface elements are excluded and their effects are considered as part
of the adjacent fluid finite element matrices. Meanwhile, all these matrices are made symmetric
artificially from the very beginning. Therefore, usual symmetric memory allocation and efficient
symmetric skyline solvers could be employed. Of course, slight adjustments are required to be
implemented as discussed above, before the actual equations solving routine is started.

This approach is very convenient as a technique for general-purpose finite element programs in
regard to their fluid-structure module in frequency domain, since the program would not even feel
the slightest non-symmetry even at the element level, while the interface elements are also
excluded.

2.3. Reservoir near field boundary conditions

As mentioned in the previous section, the boundary conditions for reservoir near field (except at
the water surface which is easily applied), are usually implemented by the help of interface
elements. However, these elements could be excluded and their effects could be incorporated in the
adjacent fluid elements. On that basis, the fluid element matrices are in general as shown in
relations (5), and depending on the type of condition utilized, either one of the matrices L,,B, or
both will be generated. Of course, it is clear that if the fluid element is not adjacent to boundary,
there is no need for these matrices and displacement degrees of freedom are excluded for those

Table 1 Conditions for reservoir near field boundary

Generation of Matrices

Type Relation
P Li Bi
I Z—I:Z = —pii, No Yes
dp n dp
[1 - = —pa,—qg-—+ Yes Yes
an Pl
I dp _ _Lop Yes No
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elements. In the case of perimetral fluid elements (adjacent to reservoir near field boundary), there
are three types of conditions as listed in Table 1, which could be imposed.

It should be mentioned that in relations of Table 1, the constants p, ¢ are mass density and
compression wave velocity of water, respectively. Furthermore, » is the reservoir near field outward
normal direction, ag, the free field ground acceleration in the n-direction and ¢ is the admittance or
a damping coefficient for the corresponding boundary (Fenves and Chopra 1984). The coefficient ¢
is also related to a more meaningful wave reflection coefficient a,

a = 1—gc ®)

1 +gc

which is defined as the ratio of the amplitude of the reflected hydrodynamic pressure wave to the
amplitude of a propagating pressure wave incident on the reservoir boundary in the normal
direction.

The condition of type I, is considered for the contact of fluid with flexible solid, such as the dam-
reservoir interface or even fluid-foundation interface, if the interaction is going to be treated
rigorously. The second type of condition is the so-called approximate boundary condition. This can
be imposed at the reservoir bottom for an approximate treatment of fluid-foundation interaction. The
last type of condition (11l) is referred to as Sommer-feld boundary condition. This is usually applied
at the reservoir near field upstream boundary (in cases which far field region is not modeled), as a
substitute for a precise transmitting boundary. However, when a fluid hyper-element is utilized, this
condition is not required and waves are transmitted exactly through that semi-infinite element.

2.4. Fluid hyper-element

As mentioned, the three-dimensional fluid hyper-element is utilized to model the reservoir far-
field region for the more general case. This part of the water domain, is assumed to be as a uniform
channel with an arbitrary geometric shape in the vertical plane which includes x, z-axes (see Fig.
1(b) for a typical discretization), and extends to infinity in the upstream direction (negative y-
direction). Although, this is a three-dimensional semi-infinite fluid element, its discretization is
performed in the vertical plane perpendicular to channel axis, which is referred to as the reference
plane ( y=0). Therefore, the element consists of several sub-channels, which extend to infinity and
all the nodes of the hyper-element are located on that reference plane. The formulation of this
element is presented as follows:

Assuming water to be linearly compressible and neglecting its viscosity, the small amplitude,
irrotational motion of water due to harmonic excitation is governed by Helmholtz equation;

Ip,op,0p, &
ox dyz oz C
where p is the amplitude of the hydrodynamic pressure (in excess of hydrostatic pressure) and C is

the velocity of pressure waves in water.
By seeking solutions of the form ¢ in the stream direction, the Eq. (9) becomes,

p =0 ©

Fp . &
Np+ZL+ZL = ¢ 10
P o’ 9 (10
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with the following definition of A.
)
w
A=K+ 2 (11)
By applying the variational method on Eq. (10), the following matrix relation is obtained at each
sub-element level:

[-A°A°+ C]P° = R® (12)

where P¢ is the vector of nodal pressure amplitudes for each sub-element nodes located on hyper-
element reference plane (i.e., y = 0). Furthermore, matrices A°, C° and vector R are defined below:

e 1 T
A° = = (NN' d4 13a
g (3
=1 J(N.N,+N.N.") a4 (13b)
pA
e = Lenop
R’ = prdnds (13¢)

In the above relations, N is the vector of shape functions, and N,, N, denote derivatives of this
vector with respect to x, z coordinates, respectively.
As for boundary conditions; neglecting gravity waves, one can write the condition

p=0 (14)

for the water surface. The condition at reservoir-foundation contact boundaries, can be expressed by
the approximate relation,

0 wo
& = —pay(w)~iwyp (15)
n

which allows for refraction of hydrodynamic pressure waves into the reservoir bottom materials or
flexible foundation rock. The admittance or damping coefficient ¢ in this relation is defined as,
- _P
g = £
Py

where p is the fluid density, and oy, C; are density and pressure wave velocity of the reservoir
bottom material, or foundation rock material. The damping coefficient ¢ is also related to a more
meaningful wave reflection coefficient @,

1—qC
1+qC
which is defined as the ratio of the amplitude of the reflected hydrodynamic pressure wave to the

amplitude of a propagating pressure wave incident on the reservoir boundary, in the perpendicular
direction.
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Imposing condition (15) on relation (13c) for sub-elements adjacent to the foundation contact
surface, would yield:

R® = ~(D"a, + D”a, + iwgL;P°) (16)
with the following definitions:
D® = [Nn, ds (17a)
D” = [Nn. ds (17b)
=1 [NN'ds (17¢)
h p )

n,, n. are the components of a unit outward normal vector for the fluid sub-element boundary.
Taking into account relations (14), and (16), the corresponding relation (12) for the hyper-clement,
is obtained by assembling contributions from different sub-elements:

[-A’A + iaqLy, + C]P = —«(D"ay + D’a}) (18)

P in this relation, is the vector of nodal pressure amplitudes. It includes all nodes of the fluid hyper-
element below the water surface (n-nodes), which are located on the reference plane (i.e., y =0).

Considering homogeneous boundary conditions in Eq. (18) corresponding to zero ground acceleration,
it leads to the following eigenvalue problem:

[-AJA +iwgL, + C]X; = 0 (19)

)\f , X; are the jth eigenvalue and eigenvector of the fluid hyper-element.

There also exists particular solutions for relation (18) which corresponds to uniform unit
acceleration of reservoir boundary in the I-direction (x, or z-direction). In these case, the solution is
independent of y-direction (k=0), and considering relation (11), it yields:

[—‘*—’jA +iogL, + C}P; = -p' (20)

C

The general solution for the amplitude of hydrodynamic pressures vector at an arbitrary y-
coordinate is obtained by combinations of the eigenvectors and the particular solutions calculated
from relations (19), (20). Meanwhile, considering the exponential form of the individual solutions in
y-direction, one would have:

n ky X z z
P = Zy,xje Y4 Phay(w) + Pl (w) 1)
J=

In this relation, y; is the participation factor for the jth mode, and a':,(a)), a;(a)) are included
because, unit vertical accelerations were assumed initially for calculation of particular solutions.
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For the hyperelement reference plane (i.e., y = 0) which is denoted by A, the vector of pressure
amplitudes (21) becomes:

P, = Zijj + P,a,(w) + P,ag(w) (22)
J=
It can also be written in a more convenient matrix form,
Ph = th + Ppag(w) (23)

with the help of following definitions for reservoir hyper-element modal matrix, vector of
participation factors and a matrix which includes particular solution vectors for different directions.

X, = [X,X,,...,X,]
r = [yl!ylv"'!yn]T

b= ror

Moreover, the fluid y-direction (stream component) accelerations vector for an arbitrary vertical
plane parallel to reference plane (constant y-plane), is obtained through differentiation of relation
21):

1

- n kyy
= _EJJ-Z. ykXe (24)

For the reference plane, this vector becomes;

U) = —})XhKhr 25)

where K, is a diagonal matrix with the jth diagonal element being equal to ;.

Solving for the participation vector from Eq. (23) by employing orthogonality condition of modal
matrix and substituting in Eq. (25) yields:
U, = —%)X,1K,1XZA(P,1—Ppag (26)

Multiplying both sides of this relation by —A, one obtains:
Rh = HhPh _Rpag(w) (27)

by employing the following definitions:

R, = AU, (28a)

H, = %)AXhK,,XZA (28b)
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R, = H,P, (28¢)

In relation (27), R, represents a consistent vector equivalent to integration of inward horizontal

acceleration (negative of stream component) for the hyper-element, and this vector contains

essentially similar quantities as the components of the right hand side vectors of usual fluid finite
elements.

2.5. Dam-reservoir system

The formulation for a dam with finite reservoir, was already presented. For the case where the
reservoir extends to infinity, a hyper-eclement must be used along with the fluid finite elements
utilized for reservoir near-field. Meanwhile, the governing relation for hyperelement was derived in
previous section (relation (27)). Therefore, if the matrices of the hyperelement assemble in
conjunction with the fluid finite elements, Eq. (7) would now become:

— WM +K(1 +28,i) -B' r|_ ~MJa, 9

-B W2 ((~)G + il + H) + Hy(w)|| P w’(~BJa, +R,(w)a,)

Where H,(w) and R,(w) are the expanded form of H,(w) and R,(w) matrices which cover
the entire fluid domain pressure degrees of freedom. Assuming that the pressure degrees of freedom
related to hyperelement are ordered first in the unknown pressure vector, then these matrices would
have the following forms:

(o) = {Hh(‘*’) "} (30a)
0 0
R, (0) = {Rp(“’)} (30b)
0

The relation (29) is the equation to be used instead of Eq. (7), when the reservoir is extended to
infinity and one is considering the direct approach in frequency domain.

2.6. Dam-reservoir-foundation system

In the previous study (Lotfi 2003), derivation of foundation impedance matrix was presented in
details by applying boundary element technique.

Furthermore, it was shown that how the combined matrix equation for the dam-foundation system
could be obtained by applying the following two conditions: The equilibrium of interaction forces
between the dam and foundation rock, and compatibility of corresponding displacements at the
interface.

Following the same steps, it can be easily shown that considering a flexible foundation would
modify the dam-reservoir governing matrix relation (29) as follows:
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T

[—w2M+K(1 +2,8dz')+Sf(wﬂ -B r

-B W ((~w'G +iwL + H) + Hy(w))|| P

= M 31
w (-BJa, +R,(w)a,)

in which S/(w) is the expanded form of foundation impedance matrix (Lotfi 2003).

The relation (31) is a system of equations, which can be solved for nodal displacements vector at
specified frequencies for different forms of ground accelerations vector a,(w) corresponding to
upstream, vertical or cross-canyon excitations.

It should be also mentioned that in this process, a significant amount of the computational time is
spent for calculation of foundation impedance matrix at each frequency. However, this could be
remedied by calculating the impedance matrix only at certain frequency points and interpolating this
matrix for intermediate frequencies similar to the work of Tan and Chopra (1995b). In the present
study, 25 equally spaced frequency points are used and cubic interpolation scheme is implemented
(Lotfi 2003).

3. Modeling and basic parameters

A computer program (Lotfi 2002) was enhanced based on the theory presented on the previous
section. The program is based on the FE-(FE-HE)-BE concept. This means, the dam is treated by
solid finite elements, while the reservoir is divided into two parts, the near-field region in the
vicinity of the dam, which is discretized by fluid finite elements, and the far-field part is modeled
by a three-dimensional hyper-element. Moreover, boundary element technique is utilized for
modeling of foundation rock domain.

3.1. Models

An idealized symmetric model of Morrow Point arch dam is considered. The geometry of the
dam may be found in reference (Hall and Chopra 1983).

The dam is discretized by 40 isoparametric 20-node finite elements (Fig. 1(a)). The water domain
is divided into two regions (Fig. 1(b)). The near-field part is considered as a region, which extends
to a length of 0.2H in upstream direction at dam mid-crest point. H being the dam height or
maximum water depth in the reservoir. The far-field region starts from that point and extends to
infinity in the upstream direction. Both these regions combined are assumed to form a uniform
reservoir shape to be consistent with the work of Tan and Chopra (1995a). The former domain, is
discretized by 80 isoparametric 20-node fluid finite elements, while the latter part is modeled by a
hyper-element which itself is costructed from 40 isoparametric 8-node sub-elements. Furthermore,
the foundation rock is modeled by 178 isoparametric 8-node boundary elements considered at the
foundation surface. However, two alternatives are studied as far as the foundation geometry. In all
of the initial cases, whenever the foundation rock is considered as flexible, the canyon shape is
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Crest nodal point ( 6 =0° )

Crest nodal point (6 = 13.25° )
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Fig. 1(a) Finite element mesh of the dam body

Fluid Hyper-element
(extending to infinity in the
upstream direction)

T
LTI

-

-

|

\

Fig. 1(b) Discretization of water domain (fluid finite elements and the fluid hyper-element)

L] ]

.
™
ey
P

[ [ [ ] ]

—

assumed uniform (Fig. 2(a)) as in the Tan and Chopra study (1995a). Subsequently, in the latter part
of the study, a second shape is also employed, which represents a typical non-uniform canyon shape
(Fig. 2(b)). This is utilized to study the effects of canyon shape on the response.

3.2. Basic parameters

The dam concrete is assumed to be homogeneous with isotropic linearly viscoelastic behavior and
the following main characteristics:

Elastic modulus (£,) = 27.5 GPa.

Poisson’s ratio = 0.2

Unit weight = 24.8 kN/m’

Hysteretic damping factor (3;) = 0.05

The impounded water is taken as inviscid, and compressible fluid with unit weight equals 9.81
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Fig. 2(b) Boundary element discretization of foundation rock (non-uniform canyon shape)

kN/m’, and pressure wave velocity C=1440 m/sec.

The foundation rock, is idealized by a homogeneous, viscoelastic domain. The basic properties of
this region are:

Elastic modulus (£) = 27.5 GPa.

Poisson’s ratio = 0.2

Unit weight = 26.4 kN/m?

Hysteretic damping factor () = 0.05

4. Results

The dam-reservoir model with rigid foundation is considered first (Fig. 1). The responses of dam
crest are obtained due to upstream, vertical and cross-stream excitations (Fig. 3). In each case,
several values of wave reflection coefficient a are selected to investigate the effects of reservoir
boundary absorption. The result for an empty reservoir case is also shown in each graph as a
reference.
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It should be mentioned that the response quantities plotted are the amplitudes of the complex
valued radial accelerations for two points located at dam crest (Fig. 1(a)). This is either the mid-
crest point (6=0°) selected for upstream or vertical excitations or a point located at (6=13.25%)which
is used for the case of cross-stream excitation. This is due to the fact that radial acceleration is
diminished at mid-crest for the cross-stream type of ground motion.

In each case, the amplitude of radial acceleration is plotted versus the dimensionless frequency for
a 51gnn‘“ icant range. The dimensionless frequency for upstream and vertical excitation is defined as
w/ (q where w is the excitation frequency and wl is the fundamental frequency of the dam on
rigid foundation with empty reservoir for a symmetric mode. For the cross-stream excitation cases,
the dimensionless frequency is defined as @/ «f , where «j is the fundamental resonant frequency
of the dam on rigid foundation with empty reservoir for an anti-symmetric mode.

In the response to upstream ground motion, it is noted that fundamental resonant frequency of the
dam-reservoir system reduces in comparison with an empty reservoir case. The amplitude of the
corresponding response at this frequency is increased significantly for the case of fully reflective
reservoir boundary (i.e., a = 1) relative to the empty reservoir case. However, for absorptive reservoir
boundary cases considered, the peaks at the fundamental frequency are lowered. Meanwhile, for all

Upstream Ground Motion Vertocal Ground Motion
sa T T T T T T T T se T T T T T T T T

L 6=0 Curve Reflection Coefficient (01) ] E 6=0" ]

3 : 1.0 E sl E
H - 0.75 F

£ a5 0.5 3 E 3
-+ 0.0 E

ser -- Not applied E 3ep E

(empty reservoir) 3

20

Radial Acceleration
Radial Acceleration

18-

Radial Acceleration

a
0/oF

Fig. 3 Response at dam crest due to different excitations for various values of wave reflection coefficient a
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cases, the response at higher frequencies is significantly lower than the empty reservoir case due to
radiation damping effect. Moreover, it is observed that with decreasing wave reflection coefficient a,
the amplitude of the fundamental resonant peak decreases, whereas the second, smaller peak increases,
resulting in a single fundamental resonant peak at an intermediate frequency value. This is consistent
with what other researchers have reported (Tan and Chopra 1995a).

For vertical and cross-stream excitations, it is noticed that very sharp peaks (actually unbounded)
occur at certain frequencies referred to as cut-off frequencies for the rigid reservoir boundary case
(a=1). However, reservoir boundary absorption eliminates the unbounded responses at these
frequencies for other cases.

In the next stage, the results for the following four systems are compared (Figs. 4-6): dam on
rigid foundation rock with empty reservoir, dam on flexible foundation rock with empty reservoir,
dam on rigid foundation rock with full reservoir, and dam on flexible foundation rock with full
reservoir. It should be mentioned that for the flexible foundation cases of this stage, the canyon
shape is assumed uniform. Therefore, the foundation is discretized as shown in Fig. 2(a).
Meanwhile, the results of these four cases are compared for two values of wave reflection
coefficients a =1, 0.5 due to different excitations. Similar results can be found in the work of Tan
and Chopra (1995a) for all three types of excitations presented herein. However, due to space
limitations, only their results for the upstream ground motion are illustrated in Fig. 7 for comparison
purposes. These results could be compared with the corresponding results of the present study (Fig. 4).

It is noticed that general trend is similar and relatively good agreement exists between the results
obtained herein (Fig. 4) and the ones taken from the above-mentioned reference (Fig. 7). The main
difference is the amplitude of the peaks, which are slightly higher in the work of Tan and Chopra in
comparison with the present study results for the flexible foundation cases. This observation was
already reported in the previous study in the case of flexible foundation with empty reservoir (Lotfi
2003). The same trend is noticed here not only for empty reservoir but also for full reservoir cases,
whenever the foundation is taken as flexible. This is mainly due to the fact that in the Tan and
Chopra study, the foundation impedance matrix is obtained by applying a fine mesh and
implementing static condensation to eliminate the extra degrees of freedom (Tan and Chopra 1995a).

Non-absorptive Reservior Boundary, o= 1 Absorptive Reservoir Boundary, o = 0.5
50 P T T T T 50 P e
Eoe=0 Curve  Water Foundation Rock ] F =0 E
E - None Rigid F

sk 4w0f E

— None Flexible
£ Fult Rigid 1 ; 3
E = Full Flexible L ]

200

Radial Acceleration
Radial Acceleration

s
ooy 0T

Fig. 4 Response at dam crest due to upstream ground motion under different conditions
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Non-absorptive Reservoir Boundary, o.=1 Absorptive Reservoir Boundary, o= 0.5
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s -- None Rigid r
0 — None Flexible 3 40 E
s F Full Rigid ] 3 ]
® F = Full Flexible c F
2 30 L - S 30 - -
a E i = £
< k) b 3
k] 8 i
© Q L 3
& N E
g 1
3 \ E
® ]
10 F E
0

2 s
[WON /0

Fig. 5 Response at dam crest due to vertical ground motion under different conditions

Finally, it was decided to show the effects of canyon shape on the response. For this aim, a
second foundation rock discretization was introduced (Fig. 2(b)). In this case, it is assumed that the
topography at the crest level makes an angle of 60° with the stream direction. This is for both
upstream and downstream directions at both left and right banks. At lower elevations, this angle is
reduced based on a quadratic function of height, such that it becomes zero at the base of the dam.

The results for uniform and non-uniform canyon shapes are compared in Figs. 8-10 for different
types of excitation. It should be also noted that the illustrated responses correspond to full reservoir
cases, and for each excitation the comparison is carried out for two different values of wave
reflection coefficient. Meanwhile, the response for the rigid foundation case with full reservoir is
also shown in each graph as a reference.

It is observed that for upstream excitation, the response is significantly affected due to change in
canyon shape (Figs. 8-10). The peaks of the response for the non-uniform canyon shape is lower than
for the uniform canyon shape, and the natural frequencies of the system are also reduced. This is
because, the foundation domain has become more flexible as a result of thinner abutment, and the
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Fig. 6 Response at dam crest due to cross-stream ground motion under different conditions
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Fig. 7 Response at dam crest due to upstream ground motion under different conditions (result taken from the
work of Tan and Chopra (1995a) for comparison)

behavior is similar to reducing the foundation elastic modulus as explained elsewhere under the empty
reservoir conditions (Lotfi 2003). Similar observations are noted for the vertical and cross-stream
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Fig. 10 Influence of canyon shape on the response at dam crest due to cross-stream excitation

excitations. However, in those graphs, sharp peaks are also present in the response for the non-
absorptive reservoir boundary condition cases, which correspond to reservoir cut-off frequencies.

5. Conclusions

The formulation based on FE-(FE-HE)-BE procedure for dynamic analysis of concrete arch dam-
reservoir-foundation rock systems, was explained. A computer program was prepared based on this
methodology and the response of Morrow Point arch dam was studied for various conditions as
well as different shapes of canyon. Overall, the main conclusions obtained by the present study can
be listed as follows:

» The FE-(FE-HE)-BE technique is proved to be an effective method for dynamic analysis of

concrete arch dams.

» The results presented hercin are in very good agreement with the work of Tan and Chopra
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(1995a) for rigid foundation cases (dam with full reservoir and different assumptions on reservoir
boundary condition). However, the amplitude of the peaks obtained at the fundamental frequency
due to different excitations are slightly lower in comparison with their results for the flexible
foundation cases. This is noticed both for empty and full reservoir conditions, and it is mainly
due to the fact that they have computed the foundation impedance matrix at each frequency by
applying a fine mesh and implementing static condensation to eliminate the extra degrees of
freedom.

+ The main advantage of the present technique over the method of Tan and Chopra (1995a) is that
there are no restrictions imposed as to the geometric shape of the canyon.

- It is observed that response is significantly affected due to change in canyon shape. This was
already noticed and reported in a previous study for empty reservoir condition. However, this
effect was controlled even further in the present study under the full reservoir condition and for
two different values of reservoir boundary reflection coefficient. It is noted that the peaks of the
response for the non-uniform canyon shape is lower than for the uniform canyon shape, and the
natural frequencies of the system are also reduced. This is because; the foundation domain
considered for the non-uniform canyon shape has become more flexible as a result of thinner
abutment.
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