
Computers and Concrete, Vol. 1, No. 1 (2004) 77-98 77

forced
ete is
effects
lytical
ctors

tion of
stress-
tio and
ess the
lized

quakes
ela
ation

ameters
ess the

 range

avior.
ing to

curate
s and

DOI: http://dx.doi.org/10.12989/cac.2004.1.1.077
Cracking behavior of RC shear walls
subject to cyclic loadings

Hyo-Gyoung Kwak† and Do-Yeon Kim‡

Department of Civil and Environmental Engineering, KAIST,
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea

(Received August 6, 2003, Accepted October 9, 2003)

Abstract. This paper presents a numerical model for simulating the nonlinear response of rein
concrete (RC) shear walls subject to cyclic loadings. The material behavior of cracked concr
described by an orthotropic constitutive relation with tension-stiffening and compression softening 
defining equivalent uniaxial stress-strain relation in the axes of orthotropy. Especially in making ana
predictions for inelastic behaviors of RC walls under reversed cyclic loading, some influencing fa
inducing the material nonlinearities have been considered. A simple hysteretic stress-strain rela
concrete, which crosses the tension-compression region, is defined. Modification of the hysteretic 
strain relation of steel is also introduced to reflect a pinching effect depending on the shear span ra
to represent an average stress distribution in a cracked RC element, respectively. To ass
applicability of the constitutive model for RC element, analytical results are compared with idea
shear panel and shear wall test results under monotonic and cyclic shear loadings.

Keywords: pinching effect; shear walls; cyclic behavior; average stress-strain; nonlinear analysis.

1. Introduction

Reinforced concrete (RC) structures in regions of high seismic risk experience many earth
and develop inelastic deformations when subjected to strong earthquakes. Since the instic
deformations accompany a lot of complex structural behavior, to insure adequate deform
capacity at a given shear stress level, it is usually necessary to determine design par
affecting strength and deformation capacities in the case of RC shear walls. In order to ass
margin of safety of RC structures against failure, an accurate estimation of the ultimate load is
essential and the prediction of the load-deformation behavior of the structure throughout the
of elastic and inelastic response is desirable. Considering these factors, a rigorous nonlinear analysis
is required to more exactly evaluate ultimate resisting capacity and load-deformation beh
Hence, many experimental and analytical studies for predicting the nonlinear behavior accord
load reversals and for computing the ultimate resistance of isolated RC shear walls have been
performed (CEB 1996, CEB 1996a, Penelis and Kappos 1997).

In contrast, numerical models for FE analyses of RC shear walls, which can provide ac
simulations of cracking behavior under severe loading conditions such as seismic loading
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reversed cyclic loadings, are somewhat less commonly used due to the complexities in the
hysteretic modeling of reinforced concrete composite material after cracking or crushing of co
and yielding of steel.

RC structures representing shear dominant structural behavior show pinched hysteresis respo
which mean poor energy absorption capacities and stiffness degradation as the number of
increases. The design procedures for RC shear walls, however, do not take into account th
features of hysteretic response (Sittipunt and Wood 1995). There is no design code that mention
any criterion requested to reserve the ultimate resisting capacity and the corresponding duct
a RC shear wall subject to cyclic loadings.

The bond mechanism at the reinforcement and surrounding concrete interface plays an im
role in reinforced concrete structures. Especially, for shear dominated structures such as pan
shear walls which offer great resistance for lateral loads, concrete cracking, steel yielding an
slip behavior govern the overall nonlinear response of structures since those structures exp
severe strain in the principal tensile direction followed by yielding of steel. Therefore, a num
model must simulate effectively these nonlinear behavior of structures subjected to in-plane
shear. Based on these aspects, nonlinear FE analysis considering shear deformation e
definitely required. Moreover, it may be necessary for an enhanced evaluation of hysteretic be
to model each constituent material and interaction between reinforcing steel and co
appropriately with complex hysteretic stress-strain relationships.

This paper presents an analytical model for RC shear walls subject to general in-plane lo
The rotating crack assumption is adopted, and simple hysteretic stress-strain curves of concr
reinforcing steel are introduced. In addition, to consider the shear stiffness degradation visual
a pinching phenomenon in a hysteretic relation of low-rise shear wall, a direct modification
hysteretic stress-strain relation of steel is suggested by referring to the existing moment-curvatur
model which takes into account the pinching effect according to the shear span length (CEB
and Roufaiel and Meyer 1987). The developed numerical model is validated through compari
the obtained numerical results with experimental data for four idealized orthogonally reinf
concrete shear panels (Vecchio and Collins 1982, Stevens, et al. 1991). In addition, to assess th
applicability of the material model under different stress conditions, load-deformation relation
obtained are compared with cyclic shear wall test results (Lefas, et al. 1990, Oesterle, et al. 1976).

2. Material model

2.1. Concrete

2.1.1. Monotonic envelope

Concrete is assumed to be an orthotropic material in the principal strain directions and is 
as an incremental linear elastic material. The incremental constitutive relationships referring to the
principal axes are described as follows:

(1)
dσc1

dσc2

dτc12 
 
 
 
 

1

1 ν2–
---------------

E1 ν E1E2 0

ν E1E2 E2 0

0 0 1 ν2–( ) G⋅
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where, E1 and E2 are the tangent moduli of the elasticity in the direction of the axes of orthotr
which are oriented perpendicular and parallel to the crack direction, G is the secant shear modulus
and ν is Poisson’s ratio. After cracking, if microcrack zone is fully developed, Poisson’s e
disappears.

The most interesting feature of the material stiffness matrix in principal coordinates is
presence of the shear stiffness term, which is implicit to compression field theory due t
assumption that the principal concrete stress direction equals the principal concrete strain di
This term has the value

(2)

Most of a wall subjected to shear forces experiences biaxial stress combinations in the te
compression region. Accordingly, the biaxial strength envelope in the tension-compression re
regarded as of great importance. In this paper, the biaxial strength envelope proposed by Kupfeet al.
(1973), shown in Fig. 1, is used, and the accompanying equation for the failure envelope 
tension-compression region is expressed by

(3)

where compressive stresses are assumed to be negative and tensile stresses positive, and the
principal stress directions are chosen so that  algebraically; σ1p and σ2p are the maximum
principal stresses corresponding to the current principal stresses σ1 and σ2, respectively.

As cracks propagate and widen, the concrete struts are disconnected and are finally c

G
1
2
---

σc1 σc2–
ε1 ε2–

----------------------⋅=

σ1p

f ′t
--------- 1 0.8

σ2p

f ′c
--------–=

σ1 σ2≥

Fig. 1 Biaxial strength failure envelope of concrete
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Accordingly, the compressive strength of concrete decreases due to opening of the cracks. V
et al. (1982) verified this phenomenon clearly through shear panel tests under in-plane loadin
showed that the tension cracking reduces the compressive strength in the tension-comp
region.

To describe the biaxial behavior of concrete in this region, therefore, the experimental re
proposed by Vecchio, et al. (1993) is used in this study. The relation between the compres
strength and the principal tensile strain is defined by the following equation (see Fig. 2).

(4)

where fc2max is the reduced compressive strength, ε1 is the principal tensile strain, εc is the strain
corresponding to uniaxial compressive strength, and β is the reduction coefficient.

In describing the uniaxial compressive stress-strain relation of concrete, the model of Thore
et al., later calibrated by Collins, et al. (Vecchio and Collins 1993) is used. To provide th
confinement effect which brings significant increase in ductility, the strain-softening branch in
compression for confined concrete is described by a straight line proposed by Kappos (
After cracking, tensile stresses in the concrete also arise from interactions between the reinfo
and the concrete. In this study, the tension stiffening relation developed by Kwak and Kim (20
adopted to define the envelope curve in the tension softening part. More details for the confin
effect and tension stiffening effect of RC composite material can be found elsewhere (Kappos
Kwak and Kim 2001).

2.1.2. Cyclic envelope

Since a cyclic stress-strain curve describes the changing material properties of concrete
cyclic loadings, its exact definition must be preceded. Nevertheless, unlike the envelope 
obtained from monotonic loading tests, the difficulties in conducting experiments for plain con
subject to cyclic loadings make it almost impossible to develop a mathematical model of a cyclic

fc2max

f ′c
-------------- 1

1 Kc+
--------------- 1

1 0.27
ε1

εc

---- 0.37– 
 +

------------------------------------------------ β 1.0≤= = =

Fig. 2 Strength reduction factor β (Vecchio and Collins 1993)
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stress-strain curve on the basis of experimental results. The related research has been limite
1996, Mansour, et al. 2001), and only a few simplified cyclic stress-strain curves have b
introduced through experimental studies for RC shear panels (Stevens, et al. 1991, Mansour, et al.
2001). As an example, the simplest cyclic stress-strain curve, which assumes that the unlo
reloading branches always pass the origin regardless of the loading history (Vecchio 199
generally used in the nonlinear analysis of RC structures. In addition, linear inelastic unloa
reloading branches have been assumed. These assumptions may lead to a greater diffe
structural response between numerical analyses and experimental study as the deformation in

To improve the structural behavior of RC shear walls under cyclic loading accompanying large
deformation, a curved idealization of unloading-reloading branches in a stress-strain relat
introduced in this paper, on the basis of the steel model used. The proposed cyclic stres
relation of concrete is shown in Fig. 3 and can basically be divided into three different regions.

Region 1 (the monotonic envelope curves � , �, and� in Fig. 3): as mentioned in the monotoni
envelope, the monotonic compressive stress-strain curve of concrete is used with the equ
concrete compressive strength σ2p (see Fig. 3(b)). To describe the biaxial behavior of crack
concrete, which represents a decrease of the compressive strength due to cracks opening 
shear panel cracks, the compressive strength reduction coefficient β in Fig. 3(b) is used (see Eq
(4)). The uniaxial tensile strength of concrete also needs to be reduced to the equivalent 
strength feq as shown in Fig. 3(a) to account for the effect of the compressive stress in the b
compression-tension region of the biaxial strength envelope.

Region 2 (the curved regions of � and � in Fig. 3): when unloading is initiated at the tensi
stress less than the cracking stress feq, the unloading behavior maintains elastic behavior and follo
the monotonic envelope curve. Once the cracking stress of concrete is exceeded, howev
unloading behavior follows a different path from the elastic skeleton curve because of micro
broadly distributed around the cracked region. The experimental results by Stevens, et al. (1991)
show that the unloading-reloading branches of concrete do not pass through the origin and re
a very soft linear response in the tension region until reaching the zero strain level and an initially
stiff response in the compression region (see the branch � in Fig. 3(b)). In advance, experimenta
results (Stevens, et al. 1991) also show that the unloading branches originating in the tension re
pass the two common points B(0,0.07 ) and C(0.15 /Ec, 0.15 ) in Fig. 3(a) regardless of th
position of an unloading point.

f ′c f ′c f ′c

Fig. 3 A proposed cyclic stress-strain relation of concrete
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Therefore, when the loading is reversed from the tension region to the compression reg
point A(ε t

un, σ t
un) in Fig. 3(a), located at the strain softening part, the simplest unloading br

may be defined by a piecewise linear relation connecting the three points of A, B, and C i
3(a). This simple relation can be effectively used in the case of a small deformation state bu
underestimate the energy absorption capacity represented by the area of the stress-strain curve as th
deformation increases. Moreover, the hysteretic curve was obtained from the cyclic loading 
concrete panels reinforced with the steel bars. This means that the influence of the ste
indirectly affects the hysteretic curve. The experimental data representing the relation be
concrete stress and corresponding crack width in an uniaxial member subject to cyclic lo
(CEB 1996) also show that the concrete stiffness changes in a gradual manner from zero to
the maximum initial stiffness when the crack is fully closed, as the crack status changes
opened to closed.

These features make it possible to define the unloading-reloading braches by the following Eq. (5
inferred from the hysteretic curve of steel (Pinto model, Menegotto and Pinto 1973), an
application is limited in the regions from the stress reversal point to the crack closing point 
point A(ε t

un, σ t
un) to point C(0.15 /Ec, 0.15 ) in Fig. 3(a) and from point D(εc

un, σc
un) to point

A(ε t
un, σ t

un) in Fig. 3(b)) at which the unloading or reloading curve meets the monotonic enve
curve.

(5)

where εc* = (0.l5 Ec−εc)/0.15 Ec, σc
* =(0.l5 −σc)/0.08  for the unloading branch � in Fig. 3.

Eq. (5) represents a curved transition of two straight line asymptotes composed by conn
three boundary points of A(ε t

un, σ t
un), B(0, 0.07 ), and C(0.15 /Ec, 0.15 ) for the unloading

branch �. For the reloading branch �, a curved transition from a straight line asympto
connecting two points of D(εc

un, σc
un) and E(− /Ec, − ) to another asymptote connecting tw

points of the origin and point A(ε t
un, σ t

un) at which the unloading was started at the previo
loading step. A progressive stiffness degradation according to an increase of deformation, induced
by concrete cracking, also has been expressed by Eq. (5) because the straight line asymptotes
for the unloading and reloading branches always cross the common points of B(0, 0.07
E(− /Ec, − ) regardless of the magnitude of deformation, respectively, where the imag
point E(− /Ec, − ) is determined from the experimental data by Karsan and Jirsa (1969).

Unlike the steel model where the hardening parameter has a fixed value, the hardening pa
b in Eq. (5) changes with the loading history. It can be assumed to have a ratio between the
of the two straight asymptotes describing the unloading and reloading branches at each load 
because an already cracked concrete panel cannot sustain the same magnitude of stress
uncracked concrete panel due to the presence of open cracks. The points A(ε t

un, σ t
un) and

D(εc
un, σc

un) will be updated after each stress reversal. On the other hand, the R value in Eq. (5)
cannot be determined easily because the shape of the transition curve depends on many v
affecting to the stress-strain relation of concrete. However, for computational convenien
constant value of R=5 is assumed in this paper on the basis of correlation studies bet
numerical results and experimental studies, because it influences the shape of the transitio
even though the R value itself may have an immaterial effect in the structural behavior of 
panels.

f ′c f ′c

σc
* bεc

*
1 b–( )εc

*

1 εc
*R+( )1 R⁄

----------------------------+=

f ′c f ′c f ′c f ′c

f ′c f ′c f ′c

f ′c f ′c

f ′c
f ′c f ′c

f ′c f ′c
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Region 3 (linear region of � ranging from point C to point D in Fig. 3): the second branch of 
unloading curve in the compression region describes the behavior after crack closure up 
maximum compressive strain experienced at the previous loading step. Since relatively
deformation exceeding the peak strain corresponding to the compressive strength oc
microcracks do not disappear after crack closure and cause the stiffness degradation. Th
different unloading path from that of the monotonic envelope curve will be followed. The struc
behavior in this region represents the proportional increment of the load carrying capacity
hence the stress-strain curve is assumed with a linear relation.

2.2. Steel

2.2.1. Monotonic envelope

Reinforcing steel is usually modeled as a linear elastic, linear strain hardening material with
stress fy. However, when reinforcing bars are surrounded by concrete as in membrane elemen
average behavior of the stress-strain relation is quite different, as shown in Fig. 4. The
different feature is the lowering of the yield stress below fy.

Yielding of a reinforced concrete panel occurs when the steel stress at the cracked section 
the yield strength of the bare bar. However, the average steel stress at a cracked elem
maintains an elastic stress less than the yield strength because the concrete matrix located 
cracks is still partially capable of resisting tensile forces due to the bond between the concrete and
reinforcement. Determination of the element stiffness on the basis of the yielding of stee
cracked section at which a local stress concentration appears in the steel may ca
overestimation of the structural response at the post-yielding range. Since this phenome
accelerated with an increase of the deformation, the analysis of RC panels subject to cyclic loading
accompanying relatively large deformations requires the use of average stress-strain re
(Belarbi and Hsu 1994, Stevens, et al. 1991).

Accordingly, to trace the cracking behavior of RC panels up to the ultimate limit state by 
the smeared crack model in which the local displacement discontinuities at cracks are dist

Fig. 4 Average stress-strain relation of steel
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over some tributary area within the finite element and the behavior of cracked concre
represented by average stress-strain relations (Kwak and Song 2002), the average stre
relation of steel needs to be defined. Considering these factors, the following linearized average
stress-strain relation, which was introduced by Belarbi and Hsu (1994) from the experimenta
is used in this paper to revise the monotonic envelop curve of steel.

(6)

(7)

where, σs and εs represent the average stress and strain respectively, and fy and εy are the yield stress
and the corresponding yield strain of a bare steel bar. As shown in Eq. (7), the average stresσs is a
linear function of the parameter B=( /fy)1.5/ρ limited by the boundary strain εn=εy(0.93−2B) for
the yielding of steel, where ρ is the percentage of the steel ratio and must be greater than 0
More details for the average stress-strain relation of steel can be found elsewhere (Belarbi a
1994).

2.2.2. Cyclic envelope

At load reversals, as shown in Fig. 5, the unloading stiffness is assumed to be the same
initial stiffness. When loading continues in the opposite direction, the stress-strain curve exhib
Bauschinger effect, which causes nonlinear stress-strain relation and softening of the stres
curve before the stress reaches the yield stress in the opposite direction. Among a number of
developed to describe the cyclic stress-strain curve of reinforcing steel (CEB 1996), the

σs Es εs⋅  εs εn≤,=

σs fy 0.91 2B–( ) 0.02 0.25B
εs

εy

-----+ 
 +   εs εn≥,=

f ′t

Fig. 5 A hysteretic stress-strain relation of steel
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broadly used one is the Giuffré-Menegotto-Pinto (G-M-P) model introduced by Menegotto a
Pinto (1973); this model is also adopted in this paper. The stress-strain relation can be exp
by

(8)

where ε* =(ε −εr)/(ε0−εr), σ*=(σ −σr)/(σ0−σr). Eq. (8) represents a curved transition from a straig
line with slope E0 to another asymptote with slope E1 as represented by lines (a) and (b) in Fig. 
The parameter b is the strain-hardening ratio between E0 and E1; ε0 and σ0 are the coordinates of
the point where the asymptotes of the branch under consideration meet; and εr and σr are the stress
and strain of the point where the last strain reversal having stress of the same sign of σ0 took place.
ε0, σ0, εr, and σr are updated at each strain reversal. R is the parameter that controls the shape of 
transition curve and allows the representation of the Bauschinger effect. The expression for R is as
follows:

(9)

where R is a decreasing function of ξ, which is the strain difference between the current asymp
intersection point (ε0, σ0) and the previous load reversal point with maximum or minimum str
depending on whether the corresponding steel stress at reversal is positive or negative (εr, σr), as
shown in Fig. 5. ξ is updated following a strain reversal. R0, a1, and a2 are experimentally
determined parameters. In this paper, it is assumed that R0=20, a1=18.5, and a2=0.15.

The original G-M-P model allows a good representation of complete stress-strain cycles 
problematic in terms of representing the isotropic strain hardening effect in the case of partial
loading. To improve the applicability of the original G-M-P model, therefore, Filippou, et al. (1983)
proposed a set of rules to shift the asymptote representing the yielding of steel. By horizo
moving the asymptote by σst before the asymptote intersection point (σ0, ε0) is newly calculated, the
isotropic hardening effect can be considered. The shifting stress σst is calculated by

(10)

where εmax is the absolute maximum strain at strain reversal, and εy and fy represent the yielding
strain and stress, respectively. a3 and a4 are experimentally determined parameters and the sa
values of a3=0.01 and a4=7.0 used by Filippou, et al. (1983) are assumed.

As well known through experimental study, for beams with a shorter span or with a h
nominal shearing stress, it takes fewer cycles to reach failure and the recorded load-def
hysteretic loops exhibit a progressive pinching of loops due to shear deformations (CEB 1
This in turn leads to a reduction in the energy absorption capacity of the beam. Roufaiel and Meyer
(1987) proposed a modification of the reloading branch in a hysteretic moment-curvature relat
the basis of empirical results to take into account the pinching effect according to the shea
length. Because of its simplicity in application and computational convenience, this mode
frequently adopted in the numerical analyses of RC beams.

σ* bε* 1 b–( )ε*

1 ε*R
+( )

1
R
---

------------------------+=

R R0

a1ξ
a2 ξ+
----------------–=

σst

fy

-------- a3

εmax

εy

--------- a4– 
 =
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In the case of RC shear walls, however, the pinching effect due to the shear deformation 
be implemented into the moment-curvature relation as in a RC beam. When a fixed crack m
adopted to describe the cracking behavior of RC walls, the use of a hysteretic shear str
relation is usually accompanied to reflect the principal strain variation in the principal stress a
On the other hand, a rotating crack model, which simulates more exact cracking behavior 
fixed crack model, makes it rather difficult to use a hysteretic loop for the shear deform
because the principal axis is assumed to be changed and directed to the maximum principa
axis normal to the crack surface. In this direction, the relative shear deformation does not a
meaning that the introduction of a hysteretic loop for shear deformation may be problematic 
case of analyzing RC shear walls using a rotating crack model.

To solve these problems and to consider the shear effect, a direct modification of the stres
relation of steel is introduced in this paper. The basic idea was inferred from consideration of shea
effect in a RC beam. When a RC wall is subjected to cyclic loading, the unloading and reload
each material will be repeated according to the loading history. If it is assumed that a relo
starts at point B in Fig. 6 after a few repeated loading cycles, the region between the two bo
points of B and F corresponds to the cracked state of a RC wall accompanying the st
degradation due to the bond-slip between the concrete matrix and reinforcing steel; the pi
phenomenon according to the shear deformation will also be concentrated in this region. Ho
since all the cracks are still open in this region, the shear effect due to the aggregate interlockin
seems to be negligibly small. This means that the unloading and reloading behaviors of RC
accompanying shear effect are wholly governed by the material properties of steel. Upon
considerations, the stress-strain relation of steel is revised in this paper to take into acco
shear effect according to the shear span length.

As shown in Fig. 6, after determining a new straight line asymptote connecting two poin
E( , ) and A(ε1, σ1), instead of the original straight line asymptote connecting two points
D(ε0, σ0) and A(ε1, σ1), the hysteretic curve of steel, referred to as the “G-M-P model”, can
defined with the two changed straight line asymptotes. That is, the common point where th

ε ′0 σ ′0

Fig. 6 Stress-strain relation of steel modified for shear effect
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asymptotes of the branch under consideration meet is changed from point D(ε0, σ0) to point E( ,
) according to the shear span ratio. Determination of the characteristic point E( , ) fo

the same criteria with those proposed by Roufaiel and Meyer (1987) on the basis of the em
results.

(11)

where α=0 for h/l<1.5, α=0.4(h/l)−0.6 for 1.5<h/l<4.0, α=1 for h/l>4.0, h and l represent the
height and width of the shear wall, and (εn,  fn) are the average yielding strain and stress in Fig. 4

3. Solution procedure

The reinforced concrete membrane is modeled with a single four-node isoparametric eleme

ε ′0
σ ′0 ε ′0 σ′0

ε ′0 ε3 α εn⋅+  σ ′0 σ3 α fn⋅+=,=

Fig. 7 Solution algorithm for cyclic loading
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 integration points. A perfect bond between steel and concrete is assumed, and the bo
effect is indirectly taken into account through the tension-stiffening model. Considering
nonlinear analysis of structures subject to cyclic loadings by the finite element method
difficulties arise. The exact prediction of the unloading and reloading points after yielding of 
takes place and the stability of solution procedure are the basic concerns in predicting the hystere
behavior of a RC structure.

A significant amount of research effort has been concentrated on these issues (CEB
Crisfield 1991), and the arc-length method has recently been adopted as a solution scheme for the
material nonlinear analysis of RC structures representing the strength degradation after yield
steel. By adopting the arc-length method (Crisfield 1991), the complete load-displacement re
can be traced including local limit points. As a convergence criterion for the iteration process, the
Euclidean norm for displacements was adopted.

(16)

where rm is the nodal displacement vector at the m-th load step and the convergence tolerance
assumed to be TOL=10−3. All the remaining procedures, from construction of the element stiffn
matrix to the convergence check, follow those used in classical non-linear analysis of RC stru
Fig. 7 shows an outline of the solution algorithm adopted in this paper, and more details f
solution procedure can be found elsewhere (CEB 1996, Crisfield 1991).

4. Numerical example

4.1. RC shear panels

4.1.1. Monotonic loading case

The experimental results from reinforced concrete panels tested by Vecchio and Collins (1982) are

2 2×

n ∆r n{ }
T

∆r n{ } r m{ }T r m{ }⁄ TOL≤=

Fig. 8 Configuration and finite element idealization of panel PV series
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used to validate the analytical models for RC membrane element. These panels were ortho
reinforced, and had identical dimensions of 890 mm×890 mm×70 mm. The panels were loaded b
monotonically increasing forces applied to shear-keys anchored to the perimeters of the spe
Fig. 8 shows the configuration of the test specimen and the finite element grid used. The loading
conditions and the material properties of the panels analyzed herein are given in Table 1, an
assumed material properties were as follows: Poisson’s ratio ν=0.2, the tensile strength of concrete

=  MPa, and the elastic modulus of steel Es1=200,000 MPa, Es2=0.01Es1 in Fig. 4.
Results of the analyses are compared with the test results in Figs. 9 and 10. Each figure i

f ′t 0.33 f ′c( )1 2⁄⋅

Table 1 Loading conditions and material properties of shear panels

Specimen
Loading

Longitudinal
(x direction)

Transverse
(y direction)

Concrete

τxy σx=σy ρx f yl
* ρy fyt

* εc fc
*

PV19 Monotonic 0 0.01785 458 0.00710 299 -0.00215 -19.0
PV22 Monotonic 0 0.01785 458 0.01524 420 -0.00200 -19.6
SE8 Cyclic 0 0.02930 492 0.00980 479 -0.00260 -37.0
SE9 Cyclic 0 0.02930 422 0.02930 422 -0.00265 -44.2

* unit: MPa

′

Fig. 9 Comparison of test results and analytical predictions for panel PV19; Solution A: With reductif
compressive strength, Solution B: Without reduction of compressive strength
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composed of four results representing the relations of principal tensile stress versus principal
strain with that of Vecchio’s model curve, the orientations of principal stress and strain axes 
shear strain, shear stress versus shear strain, and principal compressive stress versus 
compressive strain with and without reduction of compressive strength.

Panel PV19 in Fig. 9 is a typical specimen having a large difference in the amount of steel
two directions, causing the collapse mode of concrete shear failure after the yielding o
reinforcement layer. The predicted angle in this study is maintained between the two experi
values, namely, the change in the direction of the principal strains and that of the principal st
Since the analysis without reduction of compressive strength leads the panel to failure b
yielding of both reinforcement layers before concrete crushing, this analytical result gives a 
overestimation of ultimate shear capacity and incorrect failure mode.

The calculated response of panel PV22 involves little change in the direction of the prin
strains because this panel was heavily and identically reinforced in both directions. As shown in
Fig. 10, the analytical solution without reduction of compressive strength indicates that failu
associated with the yielding of both sets of reinforcement, while the experimental results an
analytical solution with compression softening involve concrete shear failure prior to any steel
yielding. Accordingly, the analysis without consideration of the compressive strength redu
significantly overestimates the ultimate load capacity.

Based on the rotating crack model, consideration of both tension stiffening and compr
strength reduction gives enhanced analytical results close to the real solution. In addition, for 

Fig. 10 Comparison of test results and analytical predictions for panel PV22; Solution A: with reductif
compressive strength, Solution B: without reduction of compressive strength
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whose load capacities are governed by crushing of concrete, reduction of compressive strength
to tensile cracking should be considered.

4.1.2. Cyclic loading case

In order to establish the applicability of the proposed hysteretic curves, two RC shear pane
subject to pure shearing stress are investigated and discussed. Among many experimenta
available in the related literature, these two RC panels tested by Stevens, et al. (1991) represent
typical structural behaviors according to various effects in the stress-strain relation of each m
when a severe lateral load such as a seismic load or wind load acts on a shear wall structu
geometry and cross-section dimensions of the test specimens are presented in Fig. 11(a). S
same stress state appears over the entire region in an element, only one element is used to 
structural response according to the loading history (see Fig. 11(b)). The material proper
concrete and reinforcing steel in the panels are given in Table 1, and other assumed m
properties not mentioned are the same with those used in the monotonic loading case.

Results of the analyses are compared with the experimental results in Figs. 12 and 13. Si
specimen SE8 is subjected to shear failure after yielding of reinforcing steel in the tran
direction, the experimental result in Fig. 12 shows the yielding behavior of reinforcing stee
represents the ultimate shear resistance converged to about 6 MPa. Hence the structural be
directly affected by the yielding strength of steel. Fig. 12(a) shows an analytical result obtained
when the stress-strain relation of steel defined in Eqs. (2) and (3) is used; Fig. 12(b) illustrates
the original stress-strain relation of bare steel is used without any modification. It is clear fr
comparison of these results with the experimental data shown by the solid line that the modif
of the yielding strength of steel gives a very satisfactory agreement of the model with real behavior.
When the average yielding strength of steel is not used, the ultimate shear resistance of a R

Fig. 11 Configuration and finite element idealization of panel SE series
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subject to cyclic loadings is overestimated, and an incorrect failure mode may result in a RC
identically reinforced in both directions.

Unlike RC panel SE8, the structural behavior of specimen SE9 is deeply governed by the m
property of concrete because of the over-reinforced steel. Fig. 13(a) compares the shear stre
relations obtained by the proposed model with the experimental results. Very satisfactory agreement
between analysis and experiment is observed. In particular, the pinching phenomenon, cause
bond-slip between the reinforcing bar and concrete matrix and expressed by the curved un
and reloading branches with residual deformation in the stress-strain relation of concre
effectively simulated in the proposed model, where the residual deformation means the existe
non-zero strains at the zero stresses. This implies that the unloading and reloading branche
stress-strain relation of concrete do not pass through the origin (see Fig. 3). Otherwise, its ex

Fig. 12 Shear stress-strain relation for shear panel SE8

Fig. 13 Shear stress-strain relation for shear panel SE9
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may lead to an underestimation of the energy absorption capacity of the structure, as shown
13(b), and may cause a numerical instability in the analysis of the RC panels as the deformation
increases. From Figs. 12 and 13, it is clear that both the effects of the average yielding stre
steel and the residual deformation in concrete must be taken into account to yield a very satis
agreement of the numerical model with reality in the case of RC panels subject to cyclic loadi

4.2. RC shear walls

4.2.1. Monotonic loading case

The proposed analytical model is also applied to the reinforced concrete shear wall tes
Lefas, et al. (1990). Two types of walls were tested: Type I, 750 mm wide×750 mm high×70 mm
thick (h/ l=1), and Type II, 650 mm wide×1300 mm high×65 mm thick (h/ l=2). Among the tested
walls, specimens SW13 and SW16 of Type I and specimens SW22, SW24, and SW25 of T
were analyzed in this study. As shown in Fig. 14, the walls were monolithically connected to an
upper and a lower beam. The upper beam provides anchorage for vertical reinforcement a
lower beam provides a rigid base.

Fig. 14 also shows the nominal dimensions of test specimens together with the arrangem
vertical and horizontal reinforcement, deformed steel bars of 8 mm and 6.25 mm diam
respectively. Additional horizontal reinforcement in the form of stirrups confined the wall edges

The shear wall specimens were subjected to the combined action of a uniformly distributed
load and a horizontal load at the upper beam. The axial load remained constant during lo

Fig. 14 Geometries and reinforcement details for shear walls
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while the lateral load varied monotonically up to failure. The uniformly distributed gravity l
corresponded to 0.1 and 0.2 of the uniaxial compressive strength of the wall cross-section is
to 0.85fcubl, where fcu is the cube strength of concrete, b is the thickness and l is the width of the
wall. Table 2 includes the material properties and the loading conditions. The material propert
listed in Table 2 are as follows: the uniaxial compressive strength of concrete, =0.85fcu; the
tensile strength of concrete, = ; and the yield strength of the vertical and horiz
reinforcements were 470 MPa and 520 MPa, respectively. All these values except  are fro
experimental data of Lefas and Kosovos (1990).

As shown in Fig. 15, 208 and 320 four-node rectangular elements were used for the ana
discretization of Type I and II specimens, respectively. Fig. 16 shows the analytical load-defl
curves of specimens with the experimental results. As shown in Fig 16, the lateral stiffnes
ultimate load capacity of RC shear walls are significantly affected by the level of axial force,

f ′c
f ′t 0.33 f ′c( )1 2⁄⋅

f ′t

Table 2 Loading conditions and material properties of shear walls

Wall Specimen
Axial
load
(kN)

fc

(MPa)

Reinforcement ratios (%)

Top slab Base bock Panel Ribs

ρx ρy ρx ρy ρx ρy ρx ρy

Type I
SW13 355 -34.5

0.82 0.97 1.68 1.05 1.10 2.40 1.55 3.10
SW16 460 -43.9

Type II

SW22 182 -43.0

0.82 0.95 1.68 1.02 0.82 2.50 1.12 3.30SW24 0 -41.1

SW25 325 -38.3

′

Fig. 15 Finite element mesh configuration used



Cracking behavior of RC shear walls subject to cyclic loadings 95

estressed
d load-
on of
This is
nalysis
ct.

at the
he

node
vertical
ection.
sverse
with the

 wall
ental
his is

h are
ion of
e. The
those

arked
essentially because the applied compressive stress reduces the tensile stress as in a pr
concrete structure (i.e., the confinement effect). For specimens SW22 and SW25, the predicte
displacement curves agree very well with the experimental results. The analytical soluti
specimen SW25 shows more enhanced ultimate load capacity than that of the experiment. 
because of the premature experimental failure of specimen SW25. For specimen SW24, the a
underestimates deflections at the beginning of the loading due to a highly evaluated bond effe

4.2.2. Cyclic loading case

The proposed analytical model is also applied to the reinforced concrete wall B1 tested 
Portland Cement Association (Oesterle, et al. 1976). Wall dimensions are shown in Fig. 17, and t
material properties and the reinforcement ratio are listed in Table 3. In advance, the finite element
idealization of the wall is also shown in Fig. 18. The structure is modeled with 96 four-
elements, and nodes at the base of the wall are fully restrained against horizontal and 
translations. The top slab is considered to be rigid to distribute the load to the entire cross s
The cyclic loadings applied are assumed to act at the center point in terms of the tran
displacements increased or decreased by 25 mm at each load level, and displacements 
same magnitude are applied three times repeatedly at each load level.

Figs. 19(a) to 19(c) show the experimental and the analytical load-deflection relations. This
was analytically studied previously by Sittipunt and Wood (1995) (see Fig. 19(d)). The experim
load-deflection relations show pinched hysteretic loops indicating shear dominant behavior. T
primarily because the shear behavior of a RC structure is mainly governed by the bond-slip between
the concrete matrix and reinforcing bar. In advance, the numerical results in Fig. 19(b), whic
obtained by considering the shear effect through the modification of the stress-strain relat
steel, show an excellent agreement with experimental results through the entire respons
numerical model introduced in this paper gives more improved numerical results than 
obtained with the previous numerical models.

If the shear effect is not taken into account in the numerical model, however, there is a m

Fig. 16 Comparison of test values and analytical predictions for shear walls
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walls
difference between the analytical results and the experimental results, and this difference will be
larger as the deformation increases. Fig. 19(c) illustrates the influences of the shear effect 
structural behavior. The numerical results ignoring the shear effect represent an overest
energy absorption capacity and indirectly illustrate why the previous numerical models, w
cannot consider the shear effect, may have some difficulties in the modeling of RC 
dominantly affected by the shear force.

Fig. 17 Details of wall B1

Table 3 Material properties for wall B1

Properties Wall B1

Cross section shape Barbell

fc (MPa) 53.0

Yield strength,
fy (MPa)

Boundary element 449.5

Vertical web 520.6

Horizontal web 520.6

Reinforcement ratio,
ρ (%)

Boundary element 1.11

Vertical web 0.29

Horizontal web 0.31

′
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5. Conclusions

A constitutive model for the analysis of reinforced concrete shear walls subject to general re
cyclic loadings is introduced. This model describes the most representative characteristic features
effect of cyclic shear. With adoption of the rotating crack approach, which can effectively describ
concrete cracking under cyclic loadings, simple hysteretic rules defining the cyclic stress-strain re
of concrete and steel are designed on the basis of the theoretical background for the
dominant structural behavior.

In contrast to a linearized simple hysteretic stress-strain curve of concrete, the use of 
unloading and reloading branches inferred from the stress-strain relation of steel consideri
Bauschinger effect gives more improved structural responses. A modification of the stress
relation of steel is also introduced to take into account the stiffness degradation and pinching eff
on the basis of the criteria adopted in the moment-curvature relation of a RC beam.
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