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Abstract.  With the increasing demand for the development of human pose estimation, such as human-

computer interaction and human activity recognition, there have been numerous approaches to detect the 2D 

poses of people in images more efficiently. Despite many years of human pose estimation research, the 

estimation of human poses with images remains difficult to produce satisfactory results. In this study, we 

propose a robust 2D human body pose estimation method using an RGB camera sensor. Our pose estimation 

method is efficient and cost-effective since the use of RGB camera sensor is economically beneficial 

compared to more commonly used high-priced sensors. For the estimation of upper-body joint positions, 

semantic segmentation with a fully convolutional network was exploited. From acquired RGB images, joint 

heatmaps accurately estimate the coordinates of the location of each joint. The network architecture was 

designed to learn and detect the locations of joints via the sequential prediction processing method. Our 

proposed method was tested and validated for efficient estimation of the human upper-body pose. The 

obtained results reveal the potential of a simple RGB camera sensor for human pose estimation applications. 
 

Keywords:  human pose estimation; skeleton extraction; fully convolutional network; semantic 

segmentation; upper-body joint segmentation 

 
 
1. Introduction 
 

Human body pose estimation is one of the most important techniques that has been studied for 

decades. There have been extensive efforts to efficiently estimate human body poses along with 

reliable skeleton extraction results. Such technology allows a higher level of human-computer 

interaction and the recognition of human activities for various applications (Aggarwal et al. 1997, 

Moeslund et al. 2006). Pose estimation is mainly aimed at recognizing the gestures of humans in 

action; the recognition of human gestures may be adapted for the development of body language or 

                                                      

Corresponding author, Professor, E-mail: hmyung@kaist.ac.kr 
a
Ph.D. Student, E-mail: seunghee.lee@kaist.ac.kr 

b
Ph.D. Student, E-mail: jungmokoo@kaist.ac.kr 

c
Master Student, E-mail: rlawlsrl@kaist.ac.kr 



 

 

 

 

 

 

Seunghee Lee, Jungmo Koo, Jinki Kim and Hyun Myung 

sign language applications. Also, human pose estimation techniques can be useful for sports 

activities, surveillance systems, and the development of clinical analysis of gait pathologies. 

Despite numerous applications of human pose estimation techniques, these techniques still 

require further investigation because of their poor accuracy and accessibility due to the necessity 

of using expensive sensors such as motion tracking system.  

Automated human body pose estimation methods are categorized into two approaches: graph-

based methods and machine learning-based methods. The graph-based human body pose 

estimation methods use geodesic distance for pose estimation by measuring the geodesic distances 

between the different points of body parts (Roweis et al. 2000). Attempts have been made to 

develop pose estimation techniques using geodesic distances, such as using anatomical landmarks 

in a depth geodesic graph and inverse kinematics (Schwarz et al. 2012), and using a skeletal tree-

like graph to represent the human body (Straka et al. 2011). However, inevitable variations in 

images, e.g., variations in body profiles, clothes, and human joint movements, make pose 

estimation difficult using the geodesic distance method. Self-articulation-induced partial 

occlusions, for instance, covering the face with hands or parts of the body, or occlusions by 

external objects may cause uncertainties in body pose estimation, which may produce insufficient 

outcomes (Droeschel et al. 2011). Compared with the graph-based methods, machine learning-

based methods may produce better results by training the system in such various situations.  

Moreover, whereas graph-based methods require a calibration procedure for joint detection, 

machine learning-based pose estimation methods can be applied without a calibration procedure, 

which makes them suitable for real-time applications (Kim et al. 2015). Shotton et al. (2013) 

tested a per-pixel classification of joints and estimated the positions of joints using a random forest 

algorithm. Hernández-Vela et al. (2012) used a graph-cut optimization for image segmentation in 

depth maps.  

The main contributions of this paper are three-fold. Firstly, the proposed human joint 

estimation algorithm improves upper-body part detection by learning and inferencing the image at 

pixel-unit and considering adjacent joints using heatmaps. Our method is better than state-of-the-

art with respect to accuracy and frame rate. Secondly, the proposed human joint estimation 

algorithm is suitable to be operated on mobile robots. In order to understand the circumstances and 

the environment for human-robot interaction, the robot should be able to perceive human beings. 

Most robots interacting with humans perceive the human closely, which means the robots usually 

observe the person’s upper-body, not a full body. Therefore, in this study, we specifically focus on 

the development of a human upper-body pose estimation method using an RGB camera sensor. 

Finally, we made our own segmentation-training datasets for the upper-body, which include 

various camera views and occlusions of body parts in 12 different scenarios with four different 

persons. Our datasets can be downloaded from the following website: 

https://github.com/handale88/Urobot_segmentation_DB.  

 

 

2. Related research 
 

2.1 Human pose estimation using depth information 
 

Depth-based automatic human pose estimation systems have attracted much attention following 

the development of Microsoft’s Kinect system (Jain et al. 2011). Images acquired from the Kinect 

camera provide depth information. There have been extensive studies that used geometric 
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information to detect joints. Haritaoglu et al. (1998) divided the blob with geometric information 

to distinguish body parts such as the head, hands, and feet. Then, Fujiyoshi et al. (2004) predicted 

the blob of a head, hands, and feet without any template model. Similarly, Guo et al. (1994) 

evaluated the location of full body points using the distance as a fitting parameter. To acquire 

complete positions of the joints of person, genetic algorithms (Takahashi et al. 2000) and neural 

networks (Ohya et al. 1994) have also been used. 

The recent study by Shotton et al. (2013) evaluated the Kinect sensor’s performance to classify 

20 joints for every pixel image from the sensor in every single image. For the pixel classification 

procedure, a randomized decision forest was used, which was implemented by building decision 

trees for training the system and providing the output sources for the classes of body parts. The 

generation of 3D joint positions was achieved by a weighted Gaussian kernel with a mean shift. 

The classifier was trained by a massive amount of data for diverse motions and body shapes of 

large numbers of people.  

The OpenNI library is also a widely used tool for the estimation of the skeleton. With a depth-

edge counting local descriptors, 15 skeleton joints were estimated by Presti et al. (2016). The 

Canny edge detector was used to extract the depth edge information from the depth map, and static 

information at edge pixels was evaluated in each patch. Then, the location of skeletal joints was 

found using an approximate nearest neighbor (ANN) algorithm to match the patch descriptors. 

Consequently, the patch descriptors were compared to determine the body joint locations. 

 

2.2 Human pose estimation using RGB image information 
 

It was not satisfactory to use only RGB image data for detecting skeletons with changing colors 

and human body shapes (Wei et al. 2016). Recently, to resolve this problem, researchers tried to 

use GPUs (graphics processing units) to train deep neural networks using a huge number of 

images. There have been many suggestions for skeleton extraction methods that use GPUs to 

increase the robustness and frame rates (Droeschel et al. 2011, Ganapathi et al. 2010, Shotton et 

al. 2013, Zhang et al. 2013)  

Recently, RGB image-based deep convolutional neural networks (DCNNs) have achieved 

outstanding performance for the estimation of human pose (Yang et al. 2016). Toshev et al. (2014) 

used the DeepPose regression learning system for body joint detection with a convolutional 

network. Chen et al. (2014) suggested a convolutional network dependent on pairwise joint 

relationships. Tompson et al. (2015) used multi-resolution DCNN to accurately detect joints by 

reducing the pooling effect. These methods perform much better than the conventional methods, 

but the inaccuracy of estimating joints is still high especially when there are occlusions. Wei et al. 

(2016) proposed a convolutional pose machine (CPM) consisting of six stages using a cascaded 

regression-based method and achieved state-of-the-art accuracy. However, occluded joints from 

various human poses are still a challenging problem for this method.  

There has been a recent flow of interest in segmentation-based learning for joint estimation. 

Segmentation-type approaches are simple and fast, and they give a more accurate inference on 

image at pixel level. Ladicky et al. (2013) suggested a joint pixel-wise and part-wise 

segmentation-based pose estimation using HOG feature component, but it cannot deal with images 

with large pose variations and some occlusions due to the limitation of the features it uses. Xia et 

al. (2017) suggested to fuse initial joint score maps and part segment score maps through two 

stages to yield better estimation results. However, inference frame rate of this method is less than 

8Hz because of many—more than 101—layers in each stage. In contrast, our model has only one 
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stage consisting of 8 layers, and it combines FCNs with consideration of adjacent joints’ 

confidence maps. It greatly boosts the accuracy and the speed of handling pose variations 

especially for the upper-body joints. In this work, we present a fast and accurate estimation method 

for upper-body joints using segmentation-based learning. 

The performance of the pose estimation methods is mostly evaluated with pose estimation 

datasets that are open to public. There are several benchmark datasets for the skeleton estimation 

test. Popular upper-body images obtained from Hollywood movies are the Frames Labeled in 

Cinema (FLIC) dataset, consisting of 4,000 training images and 1,000 test images (Sapp et al. 

2013). The Leeds Sports Poses (LSP) dataset is another well-known dataset consisting of various 

sports postures with 14 body joints, containing 11,000 training images and 1,000 testing images 

(Johnson et al. 2010). The MPII Human Pose Dataset (Andriluka et al. 2014), the Image Parse 

(PARSE) dataset (Ramanan 2007), the Buffy dataset (Ferrari et al. 2008) are also frequently used 

for the evaluation of human pose estimation methods. All those datasets only offer RGB images 

and joint locations. Unfortunately, there are no upper-body segmentation datasets among those 

open datasets. It is required to acquire segmentation dataset to train segmentation-based network. 

For this reason, we produced our own upper-body dataset consisting of RGB and segmentation 

image pairs.    

 

 

3. Human upper-body pose estimation method 
 

We introduce our human upper-body pose estimation method using a segmentation-based 

learning classifier. Semantic segmentation understands an image at pixel level, such that they look 

at human pose more precisely. It takes an RGB image as input and generates a list of joint 

coordinates. There are seven joints in total: head, left shoulder, left elbow, left hand, right 

shoulder, right elbow, and right hand.  

  

3.1 Segmentation-based learning using fully convolutional network 
 

Except the output layer configuration, our method is similar to the segmentation network of 

Long et al. (2015), which was the first attempt that used deep segmentation network adapted from 

deep classification network. Long et al. (2015) adopted Alexnet (Krizhevsky et al. 2012) deep 

classification networks and extended it to fully convolutional networks (FCN) and fine-tuned 

(Donahue et al. 2014) it for the segmentation problem by transferring learned representations from 

whole image inputs. End-to-end training and pixel-wise segmentation predictions were performed 

in the FCN. Both learning and inference on the whole image at one time were possible by dense 

feedforward computation and backpropagation.  

Fig. 1 illustrates the detailed configuration of the proposed network. It is trained by our upper-

body posture dataset to be more specialized in human upper-body pose estimation. There are eight 

convolutional layers. The first layer has a size equal to the number of pixels times three color 

channels. Learnable parameters are contained only in convolutional layers and fully connected 

layers. The filter sizes of the first and second convolutional  layers are 11×11 and 5×5, 

respectively, and the other three have 3×3 filters. After five convolution layers, we put fully 

connected layers to generate dense pixel-wise prediction map for each class. The difference to 

FCN-Alexnet (Long et al. 2015) is the outputs of our network. Instead of using confidence maps 

as outputs, we added element-wise (eltwise) layers for more accurate joint estimation. The eltwise  
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Fig. 1 The overall architecture of our segmentation network. Conv denotes a convolutional layer, Norm a 

local response normalization layer, Pooling a pooling layer, and FC a fully connected layer. The output of 

each heatmap represents the probability of each joint 
 

 

layers perform the element-wise summation of different images. By using these layers, adjacent 

joints are considered when estimating positions of joints. The details of the network parameters 

and training procedure are elaborated in Section 4.  

 

3.2 Pose estimation using joint confidence map 
 

For pose estimation, the 2D coordinate of each joint is calculated from the 2D confidence map 

of each joint. Each confidence map represents the likelihood of the position of the body joints.  

Upon generation of heatmap images at the end of segmentation network, the central moment of 

each region is used as the position of each joint (Lee et al. 2017). However, this central moment 

may not be the exact location of each joint since it is not robust enough in occlusions. Instead, 

after the heatmap of each joint is generated, the position of each joint is estimated by considering 

an adjacent joint’s confidence map using eltwise layer. Fig. 2 describes the steps for joint 

prediction with an example of left shoulder area. The adjacent joints of the left shoulder are the 

head and the left elbow (Fig. 2(a)). The confidence maps of those joints are combined into an 

image, and this combined image results in high probability in the area near the head or the left 

elbow (Fig. 2(b)). In this case, the area near the left elbow has the maximum probability. Whereas 

the joint confidence map is expected to have the maximum probability at one point, it sometimes  
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(a) (b) 

  
(c) (d) 

Fig. 2 Example of detecting left shoulder. (a) Confidence maps of head and left elbow. (b) Confidence 

map of left shoulder. (c) The resulting confidence map combining head and left elbow. (d) Comparing the 

distance between the maximum probability point and the candidates of left shoulder. Finally, Region 2 is 

selected because Dist.2 is shorter than Dist 1 

 

 

shows multiple local maxima in probability distribution which may produce ambiguity. In this 

case, the distances from the body parts to the coordinate of the maximum probability in the 

combined image are compared, and the joint with shorter distance from the maximum probability 

point is selected (Fig. 2(d)). Therefore, the left elbow joint is finally selected in this example. 

 

 

4. Experiments 
 

4.1 Datasets for training and testing 
 

Since there is no dataset available that provides pairs of RGB and segmentation images of the 

human upper-body, we supplemented ourselves with a new dataset. Our dataset consists of RGB 

and segmentation images that depict 12 different scenarios, such as cleaning the table, preparing 

cereal in a bowl, reading a book, etc., with four different persons. For each new scenario, a new 

camera location is randomly sampled at the probable place where the camera of the humanoid 

robot called Mybot (Kim et al. 2017) is likely to be located.  

There are a total of 433 images for training and 58 images for evaluation with a 640×480 pixel 

resolution. All the samples had full annotation of seven joints; head, left shoulder, left elbow, left 

hand, right shoulder, right elbow, and right hand. A sample of the dataset is shown in Fig. 3.  

 

4.2 Training and testing method  
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Fig. 3 An exemplary scene of our segmented image dataset with seven classes; head, left shoulder, left 

elbow, left hand, right shoulder, right elbow and right hand 

 

 
(a) Original image (b) Head (c) Right shoulder (d) Right elbow 

 
(e) Right hand (f) Left shoulder (g) Left elbow (h) Left hand 

Fig. 4 An example of heatmap results on each joint. The more reddish in the map is, the higher the 

confidence of existence is. The bluer in the map is, the lower the confidence of existence is 

 

 

For constructing the human upper-body pose dataset, RGB images from ASUS Xtion pro 

(Asus, 2018) was used. The position of this camera was fixed at the height of Mybot’s camera, and 

the movement of the camera is set approximately ±15 degrees up and down. The training and 

testing of the network were conducted using a laptop computer with one GTX1080 GPU 

(NVIDIA, 2018a). The Caffe (Jia et al. 2014) libraries and DIGITS (NVIDIA 2018b) for deep 

learning were used to define and implement our model.  

To train the network for upper-body joint segmentation, a batch size was set to one for on-line 

learning and the Adam solver (Kingma et al. 2014) was used for the optimization. The network 

architecture was first initialized with the weights of FCN-AlexNet and fine-tuned with a pre-

trained model by PASCAL-VOC dataset (Everingham et al. 2015). The learning rate was set to 1.0 

×10
-4

, and sigmoid decay was used for the learning rate policy. 
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Fig. 5 Examples of upper-body joint estimation results for different persons and environments. Each color 

represents a different joint 

 

 

Fig. 6 Boxplots for joint estimation pixel error using the proposed and CPM algorithms (p < 0.001 in a 

paired t-test ) 

 
Table 1 The average joint estimation pixel errors for the proposed and CPM algorithms (unit: pixel) 

 Head 
Right 

shoulder 

Right 

elbow 

Right 

hand 

Left 

shoulder 

Left 

elbow 

Left 

hand 

Total 

average 

Proposed 

method 
13.05 7.08 11.76 19.32 6.44 13.18 29.18 14.29 

CPM 24.46 12.29 31.20 42.55 16.43 38.06 50.36 30.76 

 
Table 2 Average frame rates of joint estimation (unit: frame per second) 

 Proposed method CPM 

Frame rate (Hz) 19.2433 14.5134 
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4.3 Experimental results  
 

In this section, numerical results are presented with our datasets. We trained the network for 30 

epochs, which took an average of 0.5 hours with NVIDIA DIGITS running on a GTX1080 GPU.  

Fig. 4 shows the results of the upper-body image estimation. Each heatmap provides the 

confidence map of each joint, which gives the existence likelihood of each joint. The red color 

represents the highest confidence of existence, while the blue color represents the lowest 

confidence of existence. We obtained the final pose estimation results with the segmentation 

results from the joint heatmaps as described in Fig. 5. It presents 18 examples of joint estimation 

results with 10 different environments, 14 different views, and 4 different persons. All the 

estimated joint locations are overlaid on the original RGB images. Each color represents a 

different joint. 

To evaluate the performance of our proposed method, the average of joint distance errors of the 

proposed algorithm are compared. We manually provided the ground truth for the random test 

images because there is no ground truth dataset. Fig. 6 shows the comparison results between the 

proposed joint estimation algorithm and the CPM algorithm (Wei et al. 2016). Median and the 

third quartile of the proposed algorithm are all smaller than those of the CPM algorithm. We 

performed a hypothesis testing using a paired t-test to determine whether there is a statistically 

significant difference between the proposed algorithm and CPM method. We found that the p-

value is 1.5891 × 10
-10

 (< 0.001), and we can ensure the superiority of our proposed method. 40% 

of outliers in the proposed method are caused by left hand. Also, 25% and 24% of outliers in CPM 

method are caused by left and right hands, respectively. This can be also seen in Table 1. The 

highest errors in both methods were resulted from the left hand. This is due to many datasets 

having occluded hands holding something. The average error for all joints using the proposed 

algorithm is approximately 13 pixels. Table 2 shows the average frame rates of joint estimation for 

the proposed method and CPM while testing with the test datasets. The proposed method is 1.33 

times faster than CPM on average.  

 

 

5. Conclusions 
 

This paper proposed a method to estimate the human pose using segmentation-based skeleton 

extraction for upper-body RGB images. We built our own upper-body image dataset, which mostly 

consists of working and cleaning scenarios on a table similar view of working robots. We trained 

an FCN with the joint features for getting a joint confidence map and inferred the articulated pose 

with the consideration of adjacent joints’ confidence maps. We have evaluated our method through 

several experiments. Our method outperforms the state-of-the-art method in accuracy and frame 

rate suggesting that it is applicable to a real robot.  

However, our proposed method still has a few limitations. The performance of the proposed 

algorithm can vary when there are occlusions and radical changes in human orientation. In 

addition, the current training data are generated manually and it takes a long time due to the time 

required for segmenting the images with pixel-unit. 

As a future work, dealing with the following topics can improve our current method. Firstly, 

considering the arrangement of their limbs and recognizing face in the network can improve the 

performance with radical changes in human orientation. Secondly, auxiliary information such as 

depth, texture, and thermal data can be used for human pose estimation. Lastly, adding a great 
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amount of various upper-body training datasets for training the network will greatly increase the 

performance in occlusions especially for hands. 
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