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Abstract.  In this paper, three precision poses geometric synthesis problem of 3R serial manipulators is 
solved using a polynomial continuation method. Denavit-Hartenberg parameters and a new formulation 
using dual quaternions are used to formulate the problem and obtain the design equations. Upon choosing 
six of the design parameters arbitrarily, a system of thirteen polynomials in thirteen unknowns is derived.  
Four new types for selecting the free choices are introduced and their design equations are solved using 
polynomial homotopy continuation method. Numerical example is included in which the multi-
homogeneous bounds for the solutions paths for the first type is 1152 and for the others are 9216. 
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1. Introduction 
 

Calculation of the geometric parameters of a mechanism so that it guides a rigid body in a 
number of prescribed spatial locations or precision poses is known as the Rigid Body Guidance 
synthesis Problem. A precision pose is given by six parameters; three for position and another 
three for orientation. This problem has been studied extensively for 4-bar linkages and has recently 
drawn much attention to researchers for spatial manipulators (Mavroidis et al. 2001, Huang and 
Lai 2012). Solution techniques for this problem can be classified into two categories; namely, 
exact and approximate synthesis methods. Exact synthesis method result in mechanisms or 
manipulators, which guides a rigid body exactly through the precision poses. If this is the case, 
solutions exist only if the number of independent design equations obtained by the precision poses 
does not exceed the number of the design parameters. For each mechanism only for a limited 
number of precision poses the design problem leads to a finite number of exact solutions (Tsai 
1972, Roth 1986). While approximate synthesis is mainly used in over-determined systems where 
more precision poses are given than the design parameters, no exact solution exists in general.  

The geometric design problem usually leads to a set of highly nonlinear multivariate 
polynomial equations (Dhingra et al. 1994, Lee and Mavroidis 2003). Numerical continuation and  
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algebraic methods can be used to solve these systems of polynomial equations (Raghavan and 

Roth 1995). The latter method solves the polynomial system by eliminating all but one variable 

that leads to a univariate polynomial. All the solutions are then calculated by finding the roots of 

this polynomial. However finding the univariate polynomial is either tedious and/or 

mathematically complex. Therefore, one has to resort to numerical techniques to solve such a 

system. Polynomial continuation method computes the solutions of a system of polynomials by 

tracing continuously solution paths from a polynomial start system to the final one (Varedi et al. 

2009, Wu 2006). 

The objective of the present work is to design a 3R serial manipulator so that it guides a rigid 

body through three precision poses. For three prescribed poses the problem leads to 18 closure 

equations, while we have 24 parameters including Denavit-Hartenberg (DH) parameters of the 

manipulator (Lee and Mavroidis 2001). Therefore, to solve the exact synthesis problem, six of the 

design parameters are set as free choices and their values are selected arbitrarily. 

Throughout the development of kinematics, numerous mathematic theories and tools have been 

introduced. Dual quaternion is a powerful mathematical tool for spatial analysis and synthesis of 

rigid body motions (Yang and Freudenstein 1964, Bottema and Roth 1979, McCarthy 1990). It is 

perhaps the most compact and efficient tool to express the general rigid body motion known as 

screw motion (Funda and Paul 1990, Funda et al. 1990, Gouasmi et al. 2012, Mohammadi Daniali 

et al. 1995, Gan et al. 2008). In this paper, we use dual quaternions to formulate the problem. 

Using this powerful tool, we derived different formulations, in terms of DH parameters and the 

pose of the end-effector, than those reported by Lee and Mavroidis (Lee and Mavroidis 2001). 

Upon selecting the values of six design parameters, we reduce the closure equations to five 

equations in eleven unknowns for one precision pose. It is noteworthy that each additional 

precision pose adds four equations, while only introduces one new variable to the system. 

Therefore, the three precision poses leads to thirteen design equations in thirteen unknowns. Four 

different cases for selecting the free choices are considered and their design equations are solved 

using Bertini software (Sommese et al. 2006). It is noteworthy that the types introduced here are 

different than those reported by Lee and Mavroidis (Lee and Mavroidis 2001). Moreover, we 

include a numerical example in which the multi-homogeneous bounds for the solutions paths for 

the first type is 1152 and the bounds for the rest is 9216, while only 60 (384; 416; 296) paths 

converge to the finite solutions for type 1 (type2; type3; type4) formulation.  

 

 

2. Polynomial continuation 
 

Polynomial systems are found in many scientific fields. When dealing with any numerical 

problem, e.g., the Newton-Raphson method, there are two troublesome questions. One is that good 

initial guesses are not easy to detect and another is related to whether the method will converge to 

useful solutions. Homotopy continuation method can eliminate these shortcomings (Wu 2006). 

This method involves following paths from the solutions of a simpler system to the solutions of the 

target system (Morgan et al. 1990). 
 

To find the solution in a system of nonlinear equations, a new simple start system, called 

auxiliary homotopy function is chosen, as 

G(X)=0                                                                       (3) 

G(X) must be known or controllable and easy to solve. Then, the homotopy continuation 
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function is as follows: 

H(X, t)≡tF(X)+(1-t)G(X)=0                                                   (4) 

In which t is an arbitrary parameter and changes from 0 to 1, i.e., t∈[0, 1]. Thus, we have the 

following two boundary conditions 

H(X, 0)=G(X),      H(X, 1)=F(X)                                                (5) 

The purpose is to solve the H(X, t)=0 instead of F(X)=0 by varying parameter t from 0 to 1 and 

avoid divergence. To this end, (Wu 2006) suggested some useful auxiliary homotopy functions. 

They are polynomial, harmonic, exponential or any combinations of them. By appropriate 

choosing/adjusting the auxiliary homotopy function, we can obtain the solutions of the system. 
Moreover, a comprehensive reference on the numerical solution of systems of polynomials 

and homotopy continuation can be found in (Sommese and Wampler 2005). 
 

 
3. Dual quaternions 

 

Here, we give an overview on dual quaternions and how they can be used to represent screw 

motion. 
Unit Quaternions: Unit quaternion q is a rotation operator. The word quaternion is derived 

from Latin word quaterni and means a set of four. It is a linear combination of four quaternion 

units, 1, i, j, and k, namely,  

q=d+ai+bj+ck 

With the definitions, 

i
2
=j

2
=k

2
=−1 

ij=k, jk=i, ki=j 

Moreover, d, a, b, and c are all real numbers. The three quaternion units i, j, and k can be 

considered as orthogonal unit vectors with respect to the scalar product. A unit quaternion is a 

quaternion whose norm is unit takes on the general form 

Norm of a quaternion=√𝑑2 + 𝑎2 + 𝑏2 + 𝑐2 (1) 

𝑞 = 𝑐𝑜𝑠 (
𝜃

2
) + q 𝑠𝑖𝑛 (

𝜃

2
) (2) 

in which, q is the direction of rotation and θ is the angle of rotation. This operator is able to rotate 

a unit vector as depicted in Fig. 1, i.e., 

w = 𝑞 v 𝑘(𝑞) (3) 

in which k(q) is the conjugate of 𝑞 and is defined as 

𝑘(𝑞) = 𝑐𝑜𝑠 (
𝜃

2
) − q 𝑠𝑖𝑛 (

𝜃

2
) (4) 
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Fig. 1 Unit quaternion as a rotation operator 

 

 

Lines: A dual vector â is defined as the sum of a real part and a dual part. Moreover, a line can 

be specified by a unit dual vector; namely 

â = a + 𝜖a𝟎        a.a = 1            a𝟎 =  p × a (5) 

in which the six real coefficients in a and a0 are the Pluker coordinates of the line and p is the 

position vector of a point on the line. Note that 𝜖 denotes the dual unit, which is a quasi-imaginary 

unit with two properties, namely 

𝜖 ≠ 0 ,               𝜖2 = 0 (6) 

Unit Dual Quaternions: A unit dual quaternion is a unit quaternion with dual quantities, i.e. 

𝑝̂ = 𝑐𝑜𝑠(𝜃/2) + 𝑠𝑖𝑛(𝜃/2)ŝ (7) 

𝜃 = 𝜃 + 𝜖 𝑠 (8) 

in which 𝐬̂ is the line of the dual quaternion. It can be used as an operator to transform any line in 

3-dimensional space in a similar way to how quaternions operate vectors, i.e. 

𝒘̂ = 𝑞̂ 𝒗̂ 𝑘(𝑞̂) (9) 

 

 
4. Problem formulation 

 
In this work, the relative positions of links and joints are described using DH parameters. This 

convention allows one to write the kinematic equations with dual quaternions. 
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Fig. 2 DH parameters in three successive coordinate frames 

 

 
This mathematical tool is perhaps the best which offers an elegant geometric insight of the 

screw motions involved in the DH parameters. As depicted in Fig. 2, by two successive screw 

motions, frame 𝑖 can be transformed to frame i+1. In the first motion, the axis of the screw is ẑ𝒊 

and the associated dual angle is 𝜃𝑖, i.e. 

𝑞̂𝑖 = 𝑐𝑜𝑠(𝜃𝑖/2) + 𝑠𝑖𝑛(𝜃𝑖/2) 𝑧̂𝑖 (10) 

𝜃𝑖 = 𝜃𝑖 + 𝜖 𝑏𝑖  ,  𝑧̂𝑖 = [
0
0
1

] + 𝜖 [
0
0
0

] (11) 

where bi and θi are the twist angle and the distance between x̂𝒊  and x̂𝒊+𝟏, respectively.  

The axis of the second screw is x̂𝒊+𝟏 and the dual angle is 𝛼̂𝑖 

𝑝̂𝑖 = 𝑐𝑜𝑠(𝛼̂𝑖/2) + 𝑠𝑖𝑛(𝛼̂𝑖/2) 𝑥𝑖+1 (12) 

𝛼̂𝑖 = 𝛼𝑖 + 𝜖 𝑎𝑖  ,  𝑥𝑖+1 = [
1
0
0

] + 𝜖 [
0
0
0

] (13) 

in which ai and αi are the twist angle and the distance between Ẑ𝒊  and Ẑ𝒊+𝟏, respectively.  

Here we consider 3R spatial manipulator studied by Lee and Mavroidis [10], as its kinematic 

model is depicted in Fig. 3. A reference frame {o} and a moving frame {e} attached to the base 

and the end-effector, respectively. The latter frame is given in three distinct spatial poses.  

Therefore, the kinematic equations using unit dual quaternions can be written as 

𝑞̂0 𝑝̂0 𝑞̂1 𝑝̂1𝑞̂2𝑝̂2 𝑞̂3 𝑝̂3 𝑞̂𝑒 =  𝑟̂ (14) 

in which, 𝑞̂𝑒 is a unit dual quaternion to transform frame {4} to the frame {e} 

𝑞̂𝑒 = 𝑐𝑜𝑠(∅̂/2) + 𝑠𝑖𝑛(∅̂/2) 𝑧̂4 (15) 
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Fig. 3 The kinematic model of 3R spatial manipulator 

 

 

∅̂ = ∅ + 𝜖 𝑑  ,  𝑧̂4 = [
1
0
0

] + 𝜖 [
0
0
0

] (16) 

where 𝑑 and Ø  are the twist angle and the distance between x̂𝟒  and x̂𝒆, respectively. Moreover, 𝑟̂ is 

a unit dual quaternion which relates frame {o} to frame {e} and is known for each precision pose. 

 

 
5. Design equations at each precision pose  

 
The loop closure Eq. (13), leads to eight scalar design equations in the unknowns, namely; the 

structural parameters of the manipulator and the joint variables θ1, θ2 and θ3. To simplify the 

solution process, we eliminate two joint variables θ1, θ2 from the design equations. To this end, we 

rewrite Eq. (13) as  

𝑝̂0 𝑞̂1 𝑝̂1 𝑞̂2 𝑝̂2  =  𝑘(𝑞̂0) 𝑟̂  𝑘(𝑞̂𝑒) 𝑘(𝑝̂3) 𝑘(𝑞̂3) (17) 

which can be expressed as 

(𝐿𝑟1
+ [

𝐿𝑟2

𝐿𝑟3

𝐿𝑟4

]) + 𝜖 (𝐿𝑑1
+ [

𝐿𝑑2

𝐿𝑑3

𝐿𝑑4

]) = (𝑅𝑟1
+ [

𝑅𝑟2

𝑅𝑟3

𝑅𝑟4

]) + 𝜖 (𝑅𝑑1
+ [

𝑅𝑑2

𝑅𝑑3

𝑅𝑑4

]) (18) 

where those terms with subscripts r and d are related to the real part and the dual part, respectively. 

Moreover, capital letters L and R stand for the left and the right hand sides of the equation, 

respectively. 

Four scalar equations of the real part only include rotations, while those four scalar equations 

related to the dual part include both rotations and translations. Let consider the trigonometric 

expression containing θ1 and θ2 in the left hand side of Eq. (17) i.e., Lri and Ldi for i=1,2,3,4 as 
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𝑉1 = 𝑐𝜃1 𝑐𝜃2,     𝑉2 = 𝑠𝜃1 𝑠𝜃2 

𝑉3 = 𝑠𝜃1 𝑐𝜃2,     𝑉4 = 𝑐𝜃1 𝑠𝜃2 
(19) 

Then, substituting Vi, for i=1,2,3,4 from real part Lri into the dual part Ldi and simplifying them, 

leads to the following equations free from θ1 and θ2, i.e., 

𝑅𝑟1

𝑎1 𝑐𝛼1 − 𝑎1 𝑐(𝛼0 + 𝛼2)

2 𝑠𝛼1
− 𝑅𝑟2

𝑎0 𝑠𝛼1 + 𝑎2 𝑠𝛼1 + 𝑎1 𝑠(𝛼0 + 𝛼2)

2 𝑠𝛼1

+ 𝑅𝑟3

𝑏2 𝑐(𝛼1 + 𝛼2) − 𝑏2 𝑐(𝛼1 − 𝛼2) − 𝑏1 𝑐(𝛼0 + 𝛼1) + 𝑏1 𝑐(𝛼1 − 𝛼0)

4 𝑠𝛼1

− 𝑅𝑟4

𝑏2 𝑠(𝛼1 + 𝛼2) + 𝑏2 𝑠(𝛼1 − 𝛼2) + 𝑏1 𝑠(𝛼0 + 𝛼1) + 𝑏1 𝑠(𝛼1 − 𝛼0)

4 𝑠𝛼1

= 𝑅𝑑1
 

(20) 

𝑅𝑟2

𝑎1 𝑐𝛼1 + 𝑎1 𝑐(𝛼0 + 𝛼2)

2 𝑠𝛼1
+ 𝑅𝑟1

𝑎0 𝑠𝛼1 + 𝑎2 𝑠𝛼1 − 𝑎1 𝑠(𝛼0 + 𝛼2)

2 𝑠𝛼1

+ 𝑅𝑟4

𝑏2 𝑐(𝛼1 + 𝛼2) − 𝑏2 𝑐(𝛼1 − 𝛼2) + 𝑏1 𝑐(𝛼0 + 𝛼1) − 𝑏1 𝑐(𝛼1 − 𝛼0)

4 𝑠𝛼1

+ 𝑅𝑟3

𝑏2 𝑠(𝛼1 + 𝛼2) + 𝑏2 𝑠(𝛼1 − 𝛼2) − 𝑏1 𝑠(𝛼0 + 𝛼1) − 𝑏1 𝑠(𝛼1 − 𝛼0)

4 𝑠𝛼1

= 𝑅𝑑2
 

𝑅𝑟3

𝑎1 𝑐𝛼1 + 𝑎1 𝑐(𝛼2 − 𝛼0)

2 𝑠𝛼1
+ 𝑅𝑟4

𝑎2 𝑠𝛼1 − 𝑎0 𝑠𝛼1 − 𝑎1 𝑠(𝛼2 − 𝛼0)

2 𝑠𝛼1

+ 𝑅𝑟1

𝑏2 𝑐(𝛼1 − 𝛼2) − 𝑏2 𝑐(𝛼1 + 𝛼2) + 𝑏1 𝑐(𝛼0 + 𝛼1) − 𝑏1 𝑐(𝛼1 − 𝛼0)

4 𝑠𝛼1

+ 𝑅𝑟2

𝑏1 𝑠(𝛼0 + 𝛼1) + 𝑏1 𝑠(𝛼1 − 𝛼0) − 𝑏2 𝑠(𝛼1 + 𝛼2) − 𝑏2 𝑠(𝛼1 − 𝛼2)

4 𝑠𝛼1

= 𝑅𝑑3
 

𝑅𝑟4

𝑎1 𝑐𝛼1 − 𝑎1 𝑐(𝛼2 − 𝛼0)

2 𝑠𝛼1
+ 𝑅𝑟3

𝑎0 𝑠𝛼1 − 𝑎2 𝑠𝛼1 − 𝑎1 𝑠(𝛼2 − 𝛼0)

2 𝑠𝛼1

+ 𝑅𝑟2

𝑏2 𝑐(𝛼1 − 𝛼2) − 𝑏2 𝑐(𝛼1 + 𝛼2) + 𝑏1 𝑐(𝛼1 − 𝛼0) − 𝑏1 𝑐(𝛼1 + 𝛼0)

4 𝑠𝛼1

+ 𝑅𝑟1

𝑏1 𝑠(𝛼0 + 𝛼1) + 𝑏1 𝑠(𝛼1 − 𝛼0) + 𝑏2 𝑠(𝛼1 + 𝛼2) + 𝑏2 𝑠(𝛼1 − 𝛼2)

4 𝑠𝛼1

= 𝑅𝑑4
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As mentioned earlier, for three precision poses, six of the design parameters are set as free 

choices and their values are selected arbitrarily. We choose θ0, Ø  as two of these six free choices. 

Then, Rri and Rdi for i=1,2,3,4 can be expressed as, 

𝑅𝑟𝑖
= 𝐴𝑖  𝑐𝜃3 𝑐𝛼3 +  𝐵𝑖 𝑠𝜃3 𝑠𝛼3 +  𝐷𝑖 𝑐𝜃3 𝑠𝛼3 + 𝐸𝑖  𝑠𝜃3 𝑐𝛼3 (21) 

𝑅𝑑𝑖
= 𝐿𝑖 𝑐𝜃3 𝑐𝛼3 +  𝑀𝑖 𝑠𝜃3 𝑠𝛼3 +  𝑁𝑖  𝑐𝜃3 𝑠𝛼3 + 𝐻𝑖 𝑠𝜃3 𝑐𝛼3 (22) 

where cα3=cos(α3/2), sα3=sin(α3/2), cθ3=cos(θ3/2) and sθ3=sin(θ3/2). Moreover, Ai, Bi, Di, and Ei 

depend only on the free selected parameters and the EE pose, while Li, Mi, Ni, Hi are given as 

𝐿𝑖 =  𝑙𝑖1 𝑎3 + 𝑙𝑖2 𝑏0 + 𝑙𝑖3 𝑏3 +  𝑙𝑖4 𝑑 +  𝑙𝑖5 

𝑀𝑖 = 𝑚𝑖1 𝑎3 + 𝑚𝑖2 𝑏0 + 𝑚𝑖3 𝑏3 + 𝑚𝑖4 𝑑 +  𝑚𝑖5 

𝑁𝑖 = 𝑛𝑖1 𝑎3 +  𝑛𝑖2 𝑏0 +  𝑛𝑖3 𝑏3 +  𝑛𝑖4 𝑑 +  𝑛𝑖5 

𝐻𝑖 = ℎ𝑖1 𝑎3 +  ℎ𝑖2 𝑏0 +  ℎ𝑖3 𝑏3 +  ℎ𝑖4 𝑑 +  ℎ𝑖5 

(23) 

where the coefficients lij, mij, nij, hij, for i=1,2,3,4 and j=1,…,5 depend only on the data. Here, we 

choose a1, α1, α2 and α3 as four other free choices. Then, dividing Eqs. (19) by (cθ3) leads to 

[𝑀]4×16[𝑣]16×1 = [𝑁]4×2[𝑤]2×1 (24) 

where matrix M depends on the data, the elements of matrix N depends linearly on the translational 

variables of the right hand sides of Eq. 0(19); v and w can be expressed as 

𝑣 = [𝑎0 𝑎2 𝑏2 𝑠𝛼0 𝑐𝛼0 𝑏1𝑠𝛼0 𝑏1𝑐𝛼0 𝑇𝜃3
𝑇𝜃3

𝑎0 𝑇𝜃3
𝑎2 𝑇𝜃3

𝑏2 𝑇𝜃3
𝑠𝛼0 𝑇𝜃3

𝑐𝛼0 
𝑇𝜃3

𝑏1𝑠𝛼0 𝑇𝜃3
𝑏1𝑐𝛼0 1]𝑇  

𝑤 = [𝑇𝜃3
1]𝑇 (25) 

In which Tθ3=tan (θ3/2). It is noteworthy that each additional precision pose adds four equations 

to the system, while only introduces one new variable. Therefore, the three precision poses lead to 

12 equations in 13 unknowns. Moreover, since cα0 and sα0 are regarded as independent variables 

there is a constraint equation sα0
2
+cα0

2
−1=0. Therefore, the new system is a multivariate 

polynomial system with 13 equations in 13 unknowns. This type is summarized in Table 1. 

Alternatively, one can choose θ0, Ø  α1, α2, a1 as five of the six free choices. Then, dividing Eqs. 

(19) by (cθ3cα3) leads to 

[𝑀]4×16[𝑣]16×1 = [𝐷]4×4[𝑢]4×1 (26) 

where the elements of D depend linearly on the translational variables of the right hand sides of 

Eq. (19) and u can be expressed as 

𝑢 = [𝑇𝜃3
𝑇𝛼3

𝑇𝜃3
𝑇𝛼3

1]𝑇 (27) 

In which Tα3=tan(α3/2). Similarly, the problem leads to 12 equations in 14 unknowns. Again, 

there is an additional constraint equation, namely; sα0
2
+cα0

2
−1=0. Thus, by incorporating this 

constraint equation the number of equation in the system will be 13. Finally, choosing any of three 

translational variables {a0, a2, b0} as the free choices, reduces the number of variables to 13. 

Therefore, the new system will be a multivariate polynomial system with 13 equations in 13 

unknowns. These types are summarized in Table 1. 
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Table 1 4 types of selecting free choices 

type free choices 

type 1 𝛼1, 𝛼2, 𝜃0, ∅, 𝑎1, 𝛼3 

type 2 𝛼1, 𝛼2, 𝜃0, ∅, 𝑎1, 𝑎2 

type 3 𝛼1, 𝛼2, 𝜃0, ∅, 𝑎1, 𝑏0 

type 4 𝛼1, 𝛼2, 𝜃0, ∅, 𝑎1, 𝑎0 

 

 

6. Solution procedure using polynomial continuation 

 
In this section we design a 3R serial manipulator so that it guides a rigid body through three 

precision poses. Therefore, the foregoing types for selecting the free choices have been considered 

for three prescribed precision poses. We include a numerical example in which the system of each 

type is solved by the homotopy continuation method. The computation is carried out using Bertini 

software. This software is a general-purpose solver, written in C language by Sommese et al. 

(2006) and is publicly available (Sommese et al. 2006). The three poses are given as 

𝑟̂(𝑝𝑜𝑠𝑒1) = (0.439711915724543 + [
−0.688882686479297
−0.524932267602671
 0.237781811475222

]) 

+𝜖 (1.69137689287664 + [
1.16951408702047

−0.0657019883633454
   0.115443390960603

]) 

(28) 

𝑟̂(𝑝𝑜𝑠𝑒2) = (0.24712940823383 + [
−0.181838058062701  

0.893649179757841
0.327495220948523

]) 

+𝜖 (−1.03107518555242 + [
 0.167458074920762

−0.181477473236855 
  1.36623809473432

]) 

𝑟̂(𝑝𝑜𝑠𝑒3) = (0.903660574694749 + [
 −0.321264889057329
   0.277881763353437 
−0.0544808443117538

]) 

+𝜖 (  0.312856119053275 + [
0.793200496856447

   0.153665765812824
   1.29566980065216

]) 

It is noteworthy that, in the present study the angular parameters are given in degrees while the 

lengths can be considered in any system.  

Types 1: We solve a numerical example for the data given in Table 2. Using a 5-partitions 

G1={Tθ3(pose1)}, G2={Tθ3(pose2)}, G3={Tθ3(pose3)}, G4={sα0,cα0} and G5={a0,a2,a3,b0,b1,b3,d}, 

the multi-homogeneous bound is found to be 1152. 

A homotopy continuation method based on this 5-homogeneous number is employed and the 

numerical values of the variables are computed. Finally, the DH parameters of the design solutions 

are computed using a back-substitution procedure, which is outlined in the Appendix.  
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Table 2 The data for the free choices of type 1  

type 1 

𝛼1 166.1577605879387 

𝛼2 80.21409131831524 

𝜃0 22.91831180523293 

∅ 45.83662361046586 

𝑎1 1.3 

𝛼3 126.0507149287811 

 
Table 3 DH parameters of 3R manipulators for type 1 

 #1 #2 #3 #4 #5 #6 

𝜃1(𝑝𝑜𝑠𝑒1) 111.779 104.849 64.876 63.5257 101.591 68.7549 

𝜃2(𝑝𝑜𝑠𝑒1) 210.365 203.044 162.336 161.007 199.612 166.158 

𝜃3(𝑝𝑜𝑠𝑒1) 155.05 151.096 157.412 158.445 149.714 154.699 

𝜃1(𝑝𝑜𝑠𝑒2) 171.201 -32.4075 156.756 157.896 158.455 -22.9183 

𝜃2(𝑝𝑜𝑠𝑒2) 105.247 265.056 89.1582 90.4499 91.0823 -85.9437 

𝜃3(𝑝𝑜𝑠𝑒2) -159.912 177.795 -151.229 -151.917 -152.254 -177.617 

𝜃1(𝑝𝑜𝑠𝑒3) 222.663 119.009 104.959 263.741 109.538 97.4028 

𝜃2(𝑝𝑜𝑠𝑒3) 34.2935 -64.095 -78.2367 75.1275 -73.5987 -85.9437 

𝜃3(𝑝𝑜𝑠𝑒3) -96.8133 -118.646 -119.955 -92.2768 -119.616 -120.321 

𝛼0 63.8072 69.3796 72.6403 71.9054 71.547 74.4845 

𝑎0 3.11736 2.73325 6.79542 2.1685 10.0882 2.4 

𝑎2 -0.03322 1.91247 3.60981 -1.3113 2.97305 1.7 

𝑎3 -0.19502 0.80705 0.052769 -0.17737 0.079982 0.9 

𝑏0 -0.4141 1.60622 3.54975 0.705258 7.36523 1.5 

𝑏1 10.731 2.54292 -20.1835 12.638 -37.9413 1.1 

𝑏2 9.46586 1.97369 -23.0594 11.7259 -40.2759 0.75 

𝑏3 0.77594 2.4106 5.72664 0.242614 7.40174 2.1 

𝑑 2.58963 1.95359 6.06777 2.8846 5.74016 1.8 

 
Table 4 The data for the free choices of types 2, 3 and 4 

type 2 type 3 type 4 

𝛼1 166.1577605879387 𝛼1 166.1577605879387 𝛼1 166.1577605879387 

𝛼2 80.21409131831524 𝛼2 80.21409131831524 𝛼2 80.21409131831524 

𝜃0 22.91831180523293 𝜃0 22.91831180523293 𝜃0 22.91831180523293 

∅ 45.83662361046586 ∅ 45.83662361046586 ∅ 45.83662361046586 

𝑎1 1.3 𝑎1 1.3 𝑎1 1.3 

𝑎2 1.7 𝑏0 1.5 𝑎0 2.4 

 

 

It is found that out of 1152 paths, only 60 paths converge to the true solutions, which only 6 of 

them are real. These solutions are all numerically distinct. The real distinct solutions for this type 

are given in Table 3. 
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Types 2 to 4: In these types the multi-homogeneous bound is found to be 9216. In the 

formulations we used a 6-partitions G1=Tθ3(pose1)}, G2={Tθ3(pose2)}, G3={Tθ3(pose3)}, 

G4={Tα3}, G5={sα0,cα0} and G6={a0,a3,d,b0,b1,b2,b3} for type 2; another 6-partitions 

G1={Tθ3(pose1)}, G2={Tθ3(pose2)}, G3={Tθ3(pose3)}, G4={Tα3}, G5={sα0,cα0} and 

G6={a0,a2,a3,b1,b2,b3,d} for type 3; and finally 6-partitions G1={Tθ3(pose1)}, G2={Tθ3(pose2)}, 

G3={Tθ3(pose3)}, G4={Tα3}, G5={sα0,cα0} and G6={a2,a3,b0,b1,b2,b3,d} for type 4. Now, we solve 

the numerical example for the data given in Table 4. 

A homotopy continuation method based on these 6-homogeneous numbers is employed and the 

numerical values of the variables are computed. The DH parameters of the design solutions are 

computed using a back-substitution procedure, which are outlined in the Appendix. It is found that 

out of 9216 paths, only 384 paths for type2; 416 paths for type 3; and 296 paths for type 5 

converge to the true solutions. These solutions are all numerically distinct, which only 12 in type 

2, 24 in type 3, and 20 in type 4 are real. Although these solutions are all numerically different, 

they are not geometrically distinct. It is noteworthy that each geometrically distinct solution has 

two equivalent representations in terms of the DH parameters. Thus, despite of existing 12 

numerically distinct solutions in type 2, there are only 6 distinct manipulators for the three 

precision poses problem. This is true for types 3 and 4, as well. Consequently, there are 12 distinct 

manipulators in type 3, and 10 distinct manipulators in type 4. These real geometrically distinct 

solutions for types 2 to 4 are given in Tables 5, 6 and 7, respectively. 

To give a better view toward the solutions, solution 2 of type 1 is modeled in Fig. 4. 

SolidWorks is used to model the manipulator which is designed to be able to pass through three 

 

 
Table 5 DH parameters of 3R manipulators for type 2 

 #1 #2 #3 #4 #5 #6 

𝜃1(𝑝𝑜𝑠𝑒1) 68.7549 -295.807 -2.05139 -227.982 -35.9564 -332.187 

𝜃2(𝑝𝑜𝑠𝑒1) 166.158 28.0318 256.786 -127.226 223.653 -7.45762 

𝜃3(𝑝𝑜𝑠𝑒1) 154.699 101.349 -164.753 145.898 -146.781 94.1494 

𝜃1(𝑝𝑜𝑠𝑒2) -22.9183 142.143 257.35 145.123 315.644 180.867 

𝜃2(𝑝𝑜𝑠𝑒2) -85.9437 -191.64 -31.5563 76.8086 26.2611 -151.506 

𝜃3(𝑝𝑜𝑠𝑒2) -177.617 -115.075 154.802 -154.637 155.237 -125.289 

𝜃1(𝑝𝑜𝑠𝑒3) 97.4028 -252.112 239.247 130.994 -45.7989 -265.418 

𝜃2(𝑝𝑜𝑠𝑒3) -85.9437 39.5345 73.6227 -56.7481 -213.953 26.4164 

𝜃3(𝑝𝑜𝑠𝑒3) -120.321 -7.81622 117.596 -116.47 115.74 -8.65379 

𝛼0 74.4845 156.377 -105.434 68.9967 -91.0788 158.436 

𝛼3 126.051 -111.658 -65.4076 121.476 -60.9219 -110.65 

𝑎0 2.4 0.89083 4.47878 25.1098 20.694 1.79041 

𝑎3 0.9 -0.40151 -0.12831 0.164309 0.169408 -0.60097 

𝑏0 1.5 -5.68828 0.838976 26.6801 -19.5853 -5.6515 

𝑏1 1.1 0.599541 11.339 -136.402 113.988 -1.10064 

𝑏2 0.75 7.44528 13.3312 -133.746 119.068 5.29345 

𝑏3 2.1 0.421248 -0.99876 6.26557 -1.4425 1.28482 

𝑑 1.8 0.297599 3.94855 4.11246 3.69679 0.316494 
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Table 6 DH parameters of 3R manipulators for type 3 

 #1 #2 #3 #4 #5 #6 

𝜃1(𝑝𝑜𝑠𝑒1) -212.914 -208.116 -211.122 -15.6233 -77.512 -50.6785 

𝜃2(𝑝𝑜𝑠𝑒1) -109.076 54.5779 -108.014 244.594 108.847 132.798 

𝜃3(𝑝𝑜𝑠𝑒1) 139.176 54.4674 143.789 -165.77 110.904 108.517 

𝜃1(𝑝𝑜𝑠𝑒2) 20.5826 18.3546 5.21997 234.232 -80.1357 -73.1612 

𝜃2(𝑝𝑜𝑠𝑒2) -44.8955 -222.831 301.602 -55.6475 -271.949 -261.218 

𝜃3(𝑝𝑜𝑠𝑒2) -174.064 -17.253 179.288 152.867 -47.5489 -48.8913 

𝜃1(𝑝𝑜𝑠𝑒3) 121.457 95.6099 141.651 238.262 233.874 -44.3937 

𝜃2(𝑝𝑜𝑠𝑒3) -71.1871 -256.169 -50.5811 69.1749 -30.4718 -309.411 

𝜃3(𝑝𝑜𝑠𝑒3) -117.562 -60.0691 -114.226 117.61 -144.546 -131.269 

𝛼0 73.5332 86.4019 68.7823 -107.389 131.666 135.988 

𝛼3 116.363 -37.4148 117.169 -61.8702 28.3607 32.0699 

𝑎0 0.84387 0.689601 2.37977 4.79421 6.72114 1.27025 

𝑎2 1.3 1.3 1.3 1.3 1.3 1.3 

𝑎3 4.3692 -3.86288 2.56661 2.46818 0.215365 -1.59165 

𝑏1 20.5323 16.3617 10.1625 11.5926 13.2506 -0.06897 

𝑏2 19.1837 15.7255 9.11092 13.7162 14.1788 -0.12519 

𝑏3 3.91331 -4.38383 3.20651 -1.89061 -0.00134 0.691464 

𝑑 2.02653 3.60838 1.87008 4.43541 -0.86229 -0.59959 

 #7 #8 #9 #10 #11 #12 

𝜃1(𝑝𝑜𝑠𝑒1) 26.0964 40.7761 -300.611 -33.6182 68.7549 -7.93319 

𝜃2(𝑝𝑜𝑠𝑒1) 298.488 139.293 -36.0618 -303.852 166.158 252.374 

𝜃3(𝑝𝑜𝑠𝑒1) 20.766 159.423 35.0703 -25.8681 154.699 -169.989 

𝜃1(𝑝𝑜𝑠𝑒2) 8.33404 139.626 121.072 -111.095 -22.9183 -6.49426 

𝜃2(𝑝𝑜𝑠𝑒2) -234.163 70.0688 -115.879 128.648 -85.9437 57.231 

𝜃3(𝑝𝑜𝑠𝑒2) -8.02836 -148.96 -39.1229 33.5235 -177.617 -179.676 

𝜃1(𝑝𝑜𝑠𝑒3) 147.514 -82.0838 244.99 -117.129 97.4028 219.294 

𝜃2(𝑝𝑜𝑠𝑒3) -204.97 -273.749 -98.4694 234.682 -85.9437 51.6393 

𝜃3(𝑝𝑜𝑠𝑒3) -66.3928 -91.7531 -87.9112 61.5212 -120.321 114.403 

𝛼0 77.9459 75.5247 86.4011 -98.0289 74.4845 -110.971 

𝛼3 -39.7117 122.584 -32.9262 141.808 126.051 -62.9789 

𝑎0 2.16062 1.18039 1.481 6.01159 2.4 2.16381 

𝑎2 1.3 1.3 1.3 1.3 1.3 1.3 

𝑎3 -0.5113 -2.83392 1.43826 -2.95442 1.7 0.495113 

𝑏1 0.294728 17.4061 12.8214 17.4979 1.1 0.147766 

𝑏2 -0.23541 16.3153 11.7047 20.0895 0.75 0.676289 

𝑏3 -2.57513 0.694187 -2.56114 3.74643 2.1 -1.71378 

𝑑 3.13918 3.18777 4.83479 6.8081 1.8 1.92263 

 

 

given poses. All solutions can be verified by using the well-known software in 3D modeling. 

However, because of lack of enough space, we showed just one of the solutions as an example. 
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Table 7 DH parameters of 3R manipulators for type 4 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

𝜃1(1) -218.135 86.1542 -248.121 68.7549 -241.539 -202.736 -18.7113 69.874 -211.425 283.901 

𝜃2(1) -116.927 264.948 14.9137 166.158 21.9291 63.9756 172.326 167.253 -108.378 20.0054 

𝜃3(1) 150.826 -111.861 39.7108 154.699 40.2173 47.5082 101.173 158.246 143.894 -34.9567 

𝜃1(2) 150.923 109.993 145.197 -22.9183 144.509 14.8694 -27.0203 162.253 4.55055 20.8275 

𝜃2(2) 83.822 -61.9234 -90.9055 -85.9437 -92.0305 -227.618 -219.721 95.2904 300.978 260.817 

𝜃3(2) -160.307 49.3681 -34.1096 -177.617 -33.2384 -10.1357 -54.3785 -153.207 179.138 9.62009 

𝜃1(3) 189.709 147.961 211.521 97.4028 205.592 139.265 277.746 258.517 141.799 -98.202 

𝜃2(3) -2.2346 49.5155 -131.515 -85.9437 -138.406 -214.019 12.3362 70.4314 -50.3372 247.216 

𝜃3(3) -103.257 145.225 -82.4943 -120.321 -81.0616 -64.6897 -143.451 -92.5853 -114.203 60.4675 

𝛼0 62.6146 -52.1906 78.6247 74.4845 77.6885 79.2002 141.292 70.637 68.7097 -97.5205 

𝛼3 120.439 -146.922 -31.1381 126.051 -31.9406 -40.3472 25.2583 126.684 117.274 148.937 

𝑎2 0.043791 -0.86479 0.22436 1.7 0.146155 -1.78986 -0.41 -0.97782 2.54221 -1.33475 

𝑎3 0.071447 -0.14862 -0.03273 0.9 -0.00945 0.449856 -0.03856 -0.19036 0.549558 0.689869 

𝑏0 -2.48144 2.71076 -0.23085 1.5 -0.47227 1.27758 4.56967 0.565449 1.50532 1.24966 

𝑏1 18.2559 0.895178 11.5886 1.1 12.0859 7.30547 8.11345 11.6441 9.97634 0.32946 

𝑏2 16.0763 1.61053 10.5948 0.75 11.0717 6.80806 6.02756 10.7518 8.93482 0.684882 

𝑏3 1.67737 -1.42557 -2.43606 2.1 -2.5268 -3.86784 2.6746 0.24352 3.1851 3.55405 

𝑑 2.45989 -0.59943 4.25738 1.8 4.17526 3.03341 -1.54456 2.80296 1.87011 3.52611 

 

 

 
Fig. 4 Type 1, solution 2 at three precision poses 
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7. Conclusions 
 
In this paper, the three precision poses geometric synthesis problem of serial manipulators with 

three revolute joints has been solved using a polynomial continuation method. We used dual 

quaternion to formulate the problem. This powerful mathematical tool and our novel elimination 

technique have led to some new types of 3R manipulators for the problem. Upon choosing six of 

the design parameters arbitrarily as the free choices, the problem led to a system of thirteen 

polynomials in thirteen unknowns.  We introduced four new types of formulations according to the 

set of the free choices and solved the system using polynomial homotopy continuation. Numerical 

example is included in which the multi-homogeneous bounds for the solutions paths for the first 

type is 1152 and for the remaining three types are 9216, while only 60 (384; 416; 296) paths 

converge to the finite solutions for type 1 (type2; type3; type4) formulation.  
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Appendix 
 

Once the numerical values of the variables are calculated using the polynomial continuation 

method, V1, V2, V3 and V4 in Eq. (18) can be found using back-substitution procedure. Moreover, 

one can calculate θ1 and θ2 as follows 

𝜃1 = 𝐴𝑟𝑐𝑡𝑎𝑛
𝑉3 + 𝑉4

𝑉1 − 𝑉2
+ 𝐴𝑟𝑐𝑡𝑎𝑛

𝑉3 − 𝑉4

𝑉1 + 𝑉2
 (29) 

𝜃2 = 𝐴𝑟𝑐𝑡𝑎𝑛
𝑉3 + 𝑉4

𝑉1 − 𝑉2
− 𝐴𝑟𝑐𝑡𝑎𝑛

𝑉3 − 𝑉4

𝑉1 + 𝑉2
 (30) 
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