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Abstract.    This work presents an IR-based system for parking assistance and obstacle detection in the 
automotive field that employs the Microsoft Kinect camera for fast 3D point cloud reconstruction. In 
contrast to previous research that attempts to explicitly identify obstacles, the proposed system aims to 
detect “reachable regions” of the environment, i.e., those regions where the vehicle can drive to from 
its current position. A user-friendly 2D traversability grid of cells is generated and used as a visual aid 
for parking assistance. Given a raw 3D point cloud, first each point is mapped into individual cells, 
then, the elevation information is used within a graph-based algorithm to label a given cell as 
traversable or non-traversable. Following this rationale, positive and negative obstacles, as well as 
unknown regions can be implicitly detected. Additionally, no flat-world assumption is required. 
Experimental results, obtained from the system in typical parking scenarios, are presented showing its 
effectiveness for scene interpretation and detection of several types of obstacle. 
 

Keywords:  parking assistance; kinect sensor; traversability map in urban environments, intelligent 
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1. Introduction 
 

Autonomous driving for ground vehicles in general, being they mobile robots or driverless cars, 
requires efficient characterization of the perceived scene to ensure safe navigation and perform 
basic tasks including path planning, obstacle avoidance and state estimation. A large body of 
research exists in the robotics community related to the development of robust algorithms for 
scene interpretation using LIDARs (Vandapel et al. 2004), stereo vision (Milella et al. 2006), and 
radars (Reina et al. 2012). The application examples have been diverse including off-road 
traversability analysis for planetary exploration (Gennery 1999), and off-road terrain classification 
in challenging vegetated areas (Reina and Milella 2012, Bellone et al. 2013). The last few years 
have also seen a lot of research towards addressing the safety issue in the automotive field through 
the implementation of various methods for road detection, lane departure, cruise control, precrash 
alarm, and pedestrian detection. As an example, in Reisman et al. (2004) a real-time system was 
presented, applied on a commercial car, able to detect moving crowd in a video sequence. The 
general trend is to equip all the newest car models with advanced systems to increase the level of  
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safety and comfort of driver and passengers. In this context, parking assistance systems may 

enhance the driver’s ability to survey the surrounding environment preventing collisions at low 

speed when the driver’s attention may be distracted. Many different sensor modalities have been 

employed for this task. For example, ultrasonic sensors were proposed by Hatano et al. (2007) and 

Spedicato et al. (2013). However, ultrasonic technology is not able to perform accurate 3D 

reconstruction of the environment and, for this reason, many researchers have investigated the 

possibility to apply visual sensors (Vestri et al. 2005, Lovegrove et al. 2011). As a further example, 

in Lalonde et al. (2012) an implementation of a 3D reconstruction algorithm was presented for the 

detection of static obstacles from a single rear-view parking camera. The most common visual 

sensors used for automotive applications are cameras, stereo-cameras and depth cameras. The 

Microsoft Kinect camera can be counted as a fusion between cameras and depth cameras, since it 

includes a RGB-camera and a depth sensor. The Kinect sensor can be used for the development of 

parking assistance systems. For example, Choi et al. (2012) used depth images for detecting 

obstacles in parking situations. However, by using both the camera and the depth sensor, it is 

possible to have RGB-D images. RGB-D images are composed by a set of distance information 

between the sensor and each point in the space, augmented with color information. By collecting a 

set of distances, it is possible to create a 3D map of the environment that can be converted into the 

vehicle’s reference frame, obtaining what is usually referred to as a “point cloud”. 3D point clouds 

are suitable for 3D representation of any kind of environment and scene segmentation (Marton et 

al. 2008).  

In this work, an IR-based parking assistance system is presented. Specifically, using the Kinect 

sensor for scene interpretation and 3D reconstruction, a new parking assistance system is detailed. 

Starting from a 3D point cloud, a 2D grid-based traversability map is obtained. The traversability 

map is designed to be simple and user-friendly for inexperienced drivers by a simple labeling 

between traversable and not traversable cells. Traversable cells are classified as “ground”, whereas 

non-traversable cells are classified as “non-ground”. Generally, non-traversable cells represent 

obstacles and for this reason, they are marked as non-ground. The searching algorithm uses an 

extension of the Breadth-First-Search (BFS) method. The BFS approach was already used in the 

automotive field in Chih et al. (2011); here, a modified version of the BFS approach is used for 

road analysis by a moving vehicle. The ability to differentiate between ground and non-ground 

portions of the scene is referred to as “ground segmentation”, and it is still an open research issue 

(Reina and Milella 2012). 

Extensive tests were performed in order to verify the effectiveness of the proposed approach. 

The acquired scenarios include the most common parking situations in underground parking and 

outdoor parking lots. During the testing stage, a specific-designed holder was manufactured in 

order to mount the sensor in order to mount the sensor non-invasively on a commercial car that 

was employed as the experimental test bed. The position and orientation of the sensor is chosen to 

optimize the overall field of view. 

The rest of the paper is organized as follows. In Section 2, an overview of the system is 

presented along with the description of the algorithm to generate 3D representation of the 

environment. In Sections 3, the parking assistance system is exposed in details, including a 

thorough description of the camera calibration and the BFS algorithm. Experimental results are 

introduced in Section 4, in which some typical common parking scenarios are analyzed to validate 

the proposed approach. 
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2. System overview 
 

For the testing of the system during its development, it was integrated with a commercial car 

that served as the experimental test bed. Fig. 1 shows the Kinect sensor mounted on the front of 

the vehicle using a custom-built holder. A suction pad is adopted to attach the holder to the car’s 

hood. The holder is made of aluminum profiles to ensure lightness. Its weight is around 1.5 kg. 

Considering the weight of the sensor, around 1.3 kg, the two parts assembled have a weight equal 

to 2.8 kg that is a way less than the suction pad maximum weight capability. 

The holder design and its position were chosen to provide short-range sensing, i.e. the 

longitudinal field of view ranges from 0.20 m to 1.80 m, starting exactly from the vehicle bumper 

that is a requirement for parking applications. At a distance less than 0.20 m, the risk of collision is 

considered too high to drive and the vehicle should stop. At a distance higher than 1.80 m from the 

bumper, the vehicle is supposed to have enough free space in front of it. 

 

 

 

Fig. 1 The experimental test bed equipped with a Microsoft Kinect camera for parking assistance purposes 

 

 

Fig. 2(a) shows the kinematic scheme of the Kinect holder consisting of a two-link mechanism 

with adjustable length of both arms. The numbers 2 and 3 denote the prismatic joints, whereas the 

letter c denotes the revolute joint. The number 1 denotes the base joint where the holder is linked 

to the vehicle. The so-designed structure has three degrees of freedom. The revolute joint is 

positioned on the elbow, whereas the sensor is attached to the wrist 4. Fig. 2(b) shows the position 

of the Kinect and its field of view expressed in the vehicle reference frame (SdRv). One can note 

that, the sensor is not aligned with the vehicle bumper, yet it is positioned 0.15 m backward. In this 

way, the field of view of the sensor starts from the vehicle bumper. Hence, this system ensures the 

required short-range visibility to the driver.  

The Kinect camera provides 640×480 RGB-D images at 30Hz. The sensor comprises a RGB 

camera and a 3D depth sensor. The RGB video camera provides 8-bit RGB images with resolution 

of 640×480 pixels. The sensor beam is 57×43 degrees in horizontal and vertical direction, 

respectively. The 3D depth sensor consists of an infrared laser emitter and a monochrome depth 
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camera. These two sensors provide a light coding able to acquire information about the distances 

between the sensor and each pixel in the image. Processing of the sensor raw data is performed 

using the Point Cloud Library (PCL) (Cousins and Rusu 2011). PCL presents an advanced and 

extensive approach to the subject of 3D perception, providing support for all the common 3D 

building blocks that applications require. The library contains state-of-the-art algorithms for: 

filtering, feature estimation, surface reconstruction, registration, model fitting and segmentation. 

The implemented algorithm includes a filtering stage including an outlier removal and a 

voxelization in order to increase the robustness of the system. 

 

 

 

(a) 

 

(b) 

Fig. 2 (a) Kinematic scheme of the sensor holder, and (b) position of the sensor on the vehicle and 

longitudinal field of view 
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3. The parking assistance algorithm 
 

The algorithm for parking assistance comprises the following steps: 1) camera calibration; 2) 

reference grid definition; 3) grid population; 4) single cell classification. The calibration step is 

necessary to transform the range measurements from the sensor reference frame to the vehicle 

reference frame. Then, the 3D point cloud is divided into a grid of 0.15 m × 0.15 m terrain patches 

projected onto a horizontal plane. Each 3D point is mapped to a specific cell of the reference grid. 

By evaluating the elevations of points in each cell is possible to assign a label to each cell. A 

graph-based algorithm, namely the Breadth-First-Search (BFS), is used to visit all cells of the 

reference grid and identify the connected cells. 

 

 

 

 

 

 

 

(a) (b) 

Fig. 3 (a) Plan view of the reference grid in the vehicle reference frame SdRv (Ov, xv, yv, zv), and (b) 

elevation histogram bins for a sample cell. Blue dots: 3D points falling into the given cell 

 

 

Fig. 3 helps to clarify the grid definition process showing a view of the discretized reference 

grid from above. Let us consider SdRv: (Ov, xv, yv, zv) as the vehicle reference frame. With 

reference to SdRv, the look-ahead distance along the xv-axis and yv-axis results in 1.95 m and 2.10 

m, respectively. Let P = (X, Y, Z), be a 3D point in a Kinect scan’s point cloud, where the Xv-Yv 

plane is aligned with the grid and Z is the elevation of P above the grid. A cell (i, j) is assigned to 

each 3D point P as 

        







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s

X
i             (1) 

        







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s

Y
j             (2) 

where s is the bin size, and the function ⌈ ⌉ gives the smallest integer greater or equal to x. In 

general, a cell (i, j) can have k points Pk(i, j). After cells have been assigned to points, the elevation 
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of a cell can be computed. In detail, the histogram of the elevations (Z coordinates) of all 3D 

points that map to that cell is evaluated. Let a be the size of the histogram bins, then, the bin w that 

corresponds to elevation Z can be estimated as 

 









a

Z
w                     (3) 

Fig. 3(b) shows the elevation histogram bins for a sample cell. Each point in the 3D point cloud 

contributes a vote to the particular bin of the histogram. In order to gain robustness to the presence 

of outliers, if a histogram bin shows less than m votes, it is discarded by setting the associated 

histogram bin value to zero. This eliminates the effect of isolated outliers. It should be noted that 

the elevation histogram shown in Fig. 3(b) features some 3D points on the ground and some points 

on an overhanging structure, i.e. the horizontal bar of the barrier. In general, if an overhanging 

structure detected in the scene is much higher than the vehicle, the vehicle can safely pass under it, 

i.e. the overhanging structure can be ignored for obstacle detection. This is the case for overpasses 

or road bridges. Overhanging structures can be, therefore, detected by scanning upward from the 

lowest non-zero histogram bin in a cell, which corresponds to the lowest surface in the given cell. 

If a stretch of empty histogram bins is observed that is larger than the vehicle’s height, it can be 

disregarded (set to zero). In summary, the remaining highest non-zero bin in a cell provides the 

elevation of the highest point in that cell that must be considered for obstacle detection, as 

explained later in the paper. In the remainder of this Section, first the calibration stage is detailed. 

Then, the strategy for obstacle detection is described. 

 

3.1 Camera calibration 
 

The camera calibration stage is a delicate step, since the accuracy of the calibration determines 

the robustness of the parking assistance process. During the acquisition stage, the sensor provides 

data in the camera reference frame SdRc (Oc, xc, yc, zc). However, the driver needs information in 

its own reference frame and for this reason the system needs to be calibrated fin the vehicle 

reference frame SdRv. In order to perform the calibration, it is necessary to locate a point in the 

world reference frame using a calibration grid. This camera calibration method is widely used in 

computer vision in order to locate the camera in a fixed reference frame (Zhang 2000, Hartly and 

Zisserman 2004). 

In order to transform the camera reference frame into the vehicle reference frame, the following 

transformation matrix is required 

     wcvwvc TTT ,,,              (4) 

where, Tc,w ∈ ℜ 
4× 4

 is the transformation matrix from the camera reference frame to the world 

reference frame and Tw,v ∈ ℜ 
4× 4

 is the transformation matrix from the world reference frame to the 

vehicle reference frame. Their product is Tc,v ∈ ℜ 
4× 4

 that is the transformation matrix from the 

camera reference frame to the vehicle reference frame. Specifically, Tc,w is given by the extrinsic 

calibration of the camera  
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where, rc,w ∈ ℜ 
3× 3

 and tc,w ∈ ℜ 
3× 1

 are the rotation matrix and the translation displacement vector of 

the transformation matrix Tc,w, given by 
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The scalars l, m, n, are the director cosines of rcw along x, y and z-axis respectively. Similarly, 

the Tw,v matrix is identified by 
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Fig. 4 reports the details and nomenclature of the mentioned reference frames. The camera 

reference frame SdRc has its origin Oc in the center of the camera. The world reference frame is  

 

 

 

Fig. 4 Nomenclature for the Kinect Camera calibration 
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positioned in a known location of the space, i.e. the left-top corner of a 0.1 m square grid, called 

calibration pattern. The origin of the vehicle reference frame Ov is aligned with Oc along the 

vertical direction. Moreover, the horizontal grid plane (xw, yw) coincides with the horizontal 

vehicle plane (xv, yv). The calibration is performed using the MatLab calibration toolbox (Bouguet). 

 

3.2 Classification algorithm 
 

The goal is to classify a given cell as being traversable or not. The notion of traversability 

needs to be introduced defining which cells a vehicle can safely move to from its actual position. 

We start by defining the concept of traversability for two adjacent cells. With reference to Fig. 5, 

two adjacent cells ci and cj are traversable from each other if the maximum elevation of the two 

cells is similar. This can be formalized by estimating the slope αi,j between the two cells 

     
r

zz ij

ji

max,max,

,


                      (11) 

where, zi,max and zj,max are the elevation of the cells ci and cj, respectively, and r is the distance 
between the geometric center of two adjacent cells. The two cells are defined to be traversable if 
αi,j is smaller than a specific threshold αs. Otherwise, the cells are classified as “non-traversable”. 
The parameter αs is a user choice and it depends on the vehicle climbing capability and on the 
smallest obstacle height that the system is required to detect. In our system, a value of αs = tan(15°) 
was found to be suitable for parking applications that corresponds to a minimum detectable height 
of about 8 cm.  

Now, the concept of traversability can be extended to the entire grid that can be seen as a graph 
whose nodes are the cells of the grid and whose edges link adjacent cells that are traversable from 
each other. These connected cells will form the set of traversable cells T. 

In the graph-theory, the BFS is a strategy for searching in a graph and it can be used to identify 
the connected components. Starting from a node, called the “root node”, it inspects all the  

 
 

  

(a) (b) 

Fig. 5 (a) Breadth-First-Search can be applied to identify the connected components starting form a “root” 

node in a graph whose nodes are the cells of the grid, and (b) geometric interpretation of the 

traversability condition for two adjacent cells 
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neighboring nodes in order to find a path to another node (Knuth and Donald 1997). In this work, 
an extension of the BFS is employed. Starting from the root cell, the algorithm iteratively inspects 
all cells, classifying them as “ground” or “non-ground”. 

In summary, the proposed system works according to the block diagram shown in Fig. 6. 
 

 

 

Fig. 6 Block diagram of the proposed system 

 

 

4. Experimental results 
 

Extensive tests were performed in order to verify the effectiveness of the parking assistance 

system in the field. A large number of scenarios and parking maneuvers were analyzed. Tests were 

performed in both indoor and outdoor parking. Salient results are collected in the following Figs. 

7-11. In detail, Fig. 7 shows the traversability map obtained from the system for a sample image 

acquired as the vehicle maneuvers toward a parking spot that is delimited by a squared concrete 

pillar of 0.4 m×0.4 m. Cells classified as ground are marked in green, whereas red cells mark non-

traversable portions of the scene. As apparent from the map, the system correctly flagged the 

presence of the obstacle and the drivable portion of the scene. The entire sequence comprises 60 

frames acquired at a sampling rate of 1 Hz with a maximum travel speed of about 5 km/h that is 

typical in parking maneuvers. 

The grid view was designed to ensure simplicity and readability. The original visual image is 

also shown on the right of the figure. Fig. 7 may represent a possible visualization layout on the 

dashboard of a car for the practical implementation of the system. 

Fig. 8 shows a different scenario acquired during a parking maneuver in an underground 

parking with very low lighting condition. The duration of this acquisition is 313 seconds with a 

sampling frequency of 1 Hz. Since the system is based on IR-technology, it is still able to generate  
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Fig. 7 Traversability map obtained from the parking assistance system at a travel speed of about 5 km/h in an 

underground parking where a concrete pillar was present in the scene. The original visual image is 

shown on the right side 

 

 

 

(a) (b) 

Fig. 8 (a) Experimental result obtained from the system during a parking maneuvering in low-lighting 

condition. The traversability map is shown along with the original visual image, and (b) original 

image enhanced after low-light image processing 
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an accurate traversability map. Although the visual camera does not “see” the other car in front, as 

shown in Fig. 8(b) that was obtained after low-light image processing, the depth camera is able to 

perform range measurements allowing the algorithm to run correctly. One can note that, the grid is 

not completely populated and it shows some empty cells. As a matter of fact, when an obstacle is 

located in front on the camera, it is impossible to acquire data behind it. For this reason, some cells 

contain no 3D points and cannot be labeled. In addition, the grid presents cyan cells; they 

characterize what are referred to as the “unknown” cells. In this category fall all the cells that 

contain 3D data but cannot be classified by the system. This happens for cells that are directly 

occluded by an obstacle or cells that cannot be connected to any ground-labeled root node, i.e., 

that are not physically “reachable” by the car. 

 

 

 

Fig. 9 Underground parking scenario showing a barrier at 0.4 m across from the vehicle. Left side and right 

side show the traversability map and the camera image, respectively 

 

 

Another scene is shown in Fig. 9 extracted from an acquisition at 1 Hz, during a parking 

maneuver in the underground parking of the “Corpo Y” building at the Department of Engineering 

for Innovation of the University of Salento. A metallic barrier, 1.2 m wide and 1.3 m high, is 

located in front of the vehicle at about 0.8 m. Again, the scene is correctly interpreted by the 

algorithm with the horizontal bar of the barrier that is flagged as an obstacle since the overhanging 

structure is not higher than the car, as explained in Section 3. Note that all the cells occluded by 

the barrier are labeled as unknown by the system.  

Fig. 10 reports a scenario acquired in an outdoor parking, instead. This scenario presents a 

0.12-m diameter metallic pole, at 0.5 m in front of the car and a sidewalk behind it. Even in this 

case, the scene is correctly interpreted by the system. However, it should be highlight that the  
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Fig. 10 Outdoor parking scenario with a metal pole at 0.5 m from the vehicle bumper and a side curb 

 

 

Fig. 11 Traversability map for a scene with a pedestrian across from the car 
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Kinect sensor has limitations in brightness, and for this reason, it cannot be applied in the case of 

high lighting conditions or direct sunlight. This limitation of the Kinect sensor is already known in 

the literature. More robust results may be achieved by the algorithm using data acquired by a high-

end sensor. 

Finally, the case reported in Fig. 11 includes a pedestrian at low distance (less than 0.2 m) from 

the vehicle bumper; also in this scene, the algorithm provides a correct traversability analysis of 

the scene detecting the pedestrian and the drivable areas. 

In order to provide a quantitative evaluation of the system performance, the detection error of 

the classifier were measured for a subset of images (sb = 80) taken from different data sets 

(underground and outdoor parking lot). This subset was hand-labeled to identify the ground-truth 

class corresponding to each cell. It resulted in an average ground detection error of 2.1% and a 

non-ground detection error of 6.2%. 

 

 

5. Conclusions  
 

In this paper, an IR-based parking assistance system was proposed. Throughout the paper, the 

scene interpretation approach has been described based on an extension of the BFS algorithm 

along with the 3D point cloud processing and the 2D traversability map generation. A simple and 

user-friendly grid view of the surrounding environment has been proposed. The simplicity of this 

algorithm and the grid view lend this method very well to practical application in driving 

assistance. During an extensive experimental campaign, the proposed parking assistance system 

was shown to be robust and reliable in detecting different kind of obstacles. The depth-camera 

used in this implementation is an off-the-shelf cost-effective camera, thus it could be easily 

integrated with commercial cars.  
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