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Abstract.  Vibration of axially functionally graded nano-rods and beams is investigated. It is assumed that the 

material properties change along the rod and beam length. The Ritz method with algebraic polynomials is used in the 

formulation of the problems. Stress gradient elasticity theory is utilized in order to include the nonlocal effects. 

Frequencies are obtained for different boundary conditions, geometrical and material properties. Nonlocal parameter 

is assumed as changing linearly or quadratically along the length of the nanostructure. Frequencies are compared to 

constant nonlocal parameter cases and considerable differences are observed between constant and variable nonlocal 

parameter cases. Mode shapes in various cases are depicted in order to explain the effects of axial grading. 
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1. Introduction 

 
Functionally graded (FG) material is a compositional gradient of two or more component 

materials. Materials can be designed for specific applications with the variation of their 

composition and structure gradually. FG materials can have the desirable properties of each 

component because of a homogenous mixture of constituents. 

Functionally graded material (FGM) structures have taken great interest of engineers recent 

years. They were designed for thermal isolation for aerospace structural applications and fusion 

reactors, especially. Metal-ceramic functionally graded materials are used in extremely high 

temperature environments as a structural element (Bharti et al. 2013). 

Functionally graded nano rod and beam structures are used in some nano electromechanical 

system similar to their macro counterparts because of smooth variation of the material properties 

in preferred directions of structures. Although thickness wise grading is generally considered in the 

previous studies, axially functionally graded rods and beams can also be used at the nano length 

scale. 

Continuous material property variation provides continuous stress distribution in the FG 

structures, where a discontinuous stress distribution appears in laminated composites. FGMs with 
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material properties varying only in the thickness direction can be manufactured by the high speed 

centrifugal casting (Fukui 1990, Yamanouchi et al. 1990, Berger et al. 1994, Moya 1995) and 

those with properties varying in the plane of a sheet by the ultraviolent irradiation to alter chemical 

composition (Lambros et al. 1999). Studies related with structural analysis of FGM with properties 

varying in the thickness direction can be found in (Vel and Batra 2004, Qian et al. 2004, Ferreira 

et al. 2006, Uymaz and Aydogdu 2007, Aydogdu 2008, Şimşek 2010). 

Some studies can also be obtained related to axially graded macro structures. Elishakoff and co- 

workers (Elishakoff and Guédé 2004, Wu et al. 2005, Elishakoff and Johnson 2005) studied 

vibration and buckling of inhomogeneous beams for some preselected polynomial mode shapes. 

Recently, (Anandakumar and Kim 2010) used the Rayleigh-Ritz method and the finite element 

method in analysis of free vibration of a three-dimensional functionally graded cantilever beam. 

Some specific material gradations are considered in the axial direction: Exponential, linear and 

hyperbolic tangent material gradations. (Huang and Li 2010) studied axially graded beams with 

non-uniform cross section in free vibration case using Fredholm integral equations. Free vibration 

and stability analysis of axially functionally graded tapered Timoshenko beams investigated by 

(Shahba et al. 2011) on the classical and non-classical boundary conditions using a finite element 

formulation, recently. (Qian and Batra 2005) investigated optimal natural frequencies in 

bidirectional functionally graded plates. They obtained that functionally grading in axial direction 

provides good vibration results. Free (Janghorban and Zare 2011, Nejad and Hadi 2016), forced 

(Barati 2017) and nonlinear (Hosseini-Hashemi and Nazemnezhad 2013) vibrations of FGM 

nanostructures also studied by scientists. Dynamic instability (Sedighi et al. 2015) and magnetic-

electric fields effect (Ebrahimi and Jafari 2017) investigated in detail. 

Axially grading has been also considered in some of the previous nanoscale studies (Akgöz and 

Civalek 2013, Shafiei et al. 2016, Li et al. 2017, Shafiei et al. 2017). Ebrahimi and co-workers 

studied vibration of the axially graded nanobeams in thermal environment (Ebrahimi et al. 2017, 

Ebrahimi and Barati 2017a, c, Ebrahimi et al. 2018) and embedded in elastic medium (Ebrahimi 

and Barati 2017b, d). Using a bottom-to-up approach by suitable arranging atoms axially grading 

may also be possible artificially. Continuously graded thick Si and Ge nanowires along the its 

length shows local variations in Raman phonon bands (Yang et al. 2008). 

Free longitudinal vibration of axially functionally graded tapered nanorods has been studied by 

(Şimşek 2012) using the Galerkin method. (Huang et al. 2013) have investigated the vibration of 

axially functionally graded Timoshenko beam with non-uniform cross section. 

In the nanoscale continuum modeling of the nanostructures the stress gradient elasticity has 

been used. Nonlocal elasticity has been firstly proposed by (Eringen 1976, 1983) and has been 

used in statics and dynamics analysis of nanorods and beams (Peddieson et al. 2003, Sudak 2003, 

Wang 2005). Molecular dynamic simulations and nonlocal continuum models are compared for 

wave propagation in carbon nanotubes (Hu et al. 2008). Good agreement is observed between two 

results. 

In the previous studies related to nano functionally graded materials, the nonlocal parameter is 

generally assumed as a constant. But similar to other material properties like elasticity modulus, 

density and Poisson ratio, nonlocal parameter should also be variable depending on the grading 

directions. 

In the present study, the vibration of axially functionally graded nano rods and beams has been 

investigated by using the Classical Beam Theory (CBT). The Ritz method is used in the solution of 

vibration problems. A linear variation of material properties (Young modulus and density) is 

assumed in the length direction of beams. For nonlocal parameter linear and quadratic variations 
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are considered. It is assumed that the elasticity modulus, density and nonlocal parameter of rods 

and beams are changing in the axial direction. The frequency parameters are obtained for various 

material and geometrical properties, nonlocal parameter and boundary conditions. 
 

 

2. Analysis 
 

2.1 The nonlocal elasticity model for nano beam 
 

An axially functionally graded beam of length L and radius R is considered. A cartesian 

coordinate system is chosen in which x axis in the length direction; z and y axes are cross sectional 

coordinates of the beam, respectively (Fig. 1). It is assumed that the material properties of the nano 

beam are changing along the length direction. 

In the frame work of the Euler Bernoulli beam theory displacement field can be written as 
 

𝑈 𝑥, 𝑦 = 𝑢 𝑥, 𝑡 − 𝑧𝑤,𝑥  

𝑉 𝑥, 𝑦, 𝑡 = 0 

𝑊 𝑥, 𝑡 = 𝑤 𝑥, 𝑡  

(1) 

 

where U and W are the axial and transverse displacement of a typical point of the beam and u and 

w are the corresponding in-plane displacements, t is the time. It should be noted that deformation 

in the y direction is neglected. Assuming small deformations, linear strain components are 
 

휀𝑥 =
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
= 휀𝑥

0 + 𝑧𝜅 

휀𝑥
0 =

𝜕𝑢

𝜕𝑥
 

𝜅 =
𝜕2𝑤

𝜕𝑥2
 

(2) 

 

where ε is the axial strain and  is the curvature. Stress and moment resultant of the beam, without 

any dimensional or material limitation, can be defined as 
 

𝑁 =  𝜎𝑥𝑥

𝐴

𝑑𝐴,          𝑀 =  𝑧𝜎𝑥𝑥

𝐴

𝑑𝐴 (3) 

 

 

 

Fig. 1 FGM Nanostructure 
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where N and M are the force and moment resultants, respectively and A is the cross sectional area 

of the beam. Virtual displacement principle can be written as 
 

 𝜎𝑖𝑗

𝐴

𝛿휀𝑖𝑗 𝑑𝑉 =  𝑡𝑖 

𝑆2

𝛿𝑢𝑖𝑑𝑆2 +  𝑓𝑖
𝑉

𝛿𝑢𝑖𝑑𝑉 (4) 

 

where 𝜎𝑖𝑗  is the components of the stress tensor, V is the volume, S2 is the boundary, fi is the body 

force, δ is the variational symbol and 𝑡𝑖  is the surface stress. Using Eq. (1-3) in Eq. (4) following 

relation can be obtained 
 

   𝑁𝛿휀𝑥
0 + 𝑀𝛿𝜅 − 𝑚0  

𝜕𝑢

𝜕𝑡

𝜕𝛿𝑢

𝜕𝑡
+

𝜕𝑤

𝜕𝑡

𝜕𝛿𝑤

𝜕𝑡
 − 𝑚2

𝜕2𝑤

𝜕𝑥𝜕𝑡

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑡
− 𝑓𝛿𝑢 − 𝑞𝛿𝑤

𝐿

0

𝑡0

0

− 𝑁𝑒

𝜕𝑤

𝜕𝑥

𝜕𝛿𝑤

𝜕𝑥
 𝑑𝑥 𝑑𝑡 = 0 

(5) 

 

where 𝑚𝑖 =  𝜌
𝐴

𝑧𝑖𝑑𝐴 (i = 0, 2) and f, q and Ne are the axial, flexural and in-plane external 

forces, respectively. Following equations of motion can be obtained from Eq. (5) 
 

𝜕𝑁

𝜕𝑥
+ 𝑓 = 𝑚0(𝑥)

𝜕2𝑢

𝜕𝑡2
 (6a) 

 

𝜕2𝑀

𝜕𝑥2
+ 𝑞 −

𝜕

𝜕𝑥
 𝑁

𝜕𝑤

𝜕𝑥
 = 𝑚0 𝑥 

𝜕2𝑤

𝜕𝑡2
− 𝑚2(𝑥)

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
 (6b) 

 

Here Eqs. (6a) and (6b) are the axial and transverse equations of motion of a beam structure. 

For uncoupled problems, Eq. (6a) is also called the classical rod equation of motion. Following 

boundary conditions are also obtained at x = 0 and x = L. 
 

𝑢     or     𝑁 (7a) 

 

𝑤     or     
𝜕𝑀

𝜕𝑥
− 𝑁𝑒

𝜕𝑤

𝜕𝑥
+ 𝑚2

𝜕3𝑤

𝜕𝑥𝜕𝑡2
= 𝑉𝑠  (7b) 

 

−
𝜕𝑤

𝜕𝑥
     or     𝑀 (7c) 

 

where Vs is the shear force. The nonlocal constitutive relations of stress gradient elasticity has been 

proposed as (Lu et al. 2007, Aydogdu 2009a) 
 

 1 − 𝜇𝛻2 𝜏𝑘𝑙 = 𝜆휀𝑟𝑟𝛿𝑘𝑙 + 2𝐺휀𝑘𝑙  (8) 
 

where 𝜏𝑘𝑙  is the nonlocal stress tensor, 휀𝑘𝑙  is the strain tensor, λ and G are the Lame constants, 

𝜇 =  𝑒0𝑎 2 is called the nonlocal parameter, a is an internal characteristic length (nm) and e0 is a 

constant. Physical interpretation and choice of this parameter has been discussed in some of the 

previous studies (Aydogdu 2009a, b). 
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In this study, 0 ≤  𝑒0𝑎 2 ≤ 2 nm2 is chosen in order to investigate nonlocality effects as 

suggested in (Wang 2005). It should be noted that for axially graded (or tapered) nano structure 

nonlocal parameter  cannot be a constant. This is due to variation of the micro structure of the 

solid along the axial direction. It means that the atomic distance changes along the length of the 

nano structure or there are different atoms along the length of the structure. Therefore, the nonlocal 

parameter is assumed as a function of axial coordinate in this study. 
 

2.2 Equation of motion of a nanorod 
 

For the axial vibration of an axially functionally graded nanorod Eq. (8) can be written in the 

following one dimensional form 
 

 1 − 𝜇(𝑥)
𝜕2

𝜕𝑥2
 𝜏𝑥𝑥 = 𝐸(𝑥)휀 (9) 

 

where E(x) is the modulus of elasticity. Integrating Eq. (9) with respect to the area of nanorod, and 

multiplying by z and integrating again with respect to area gives the following relations 
 

𝑁 − 𝜇 𝑥 
𝜕2𝑁

𝜕𝑥2
= 𝑁𝐿 (10a) 

 

𝑀 − 𝜇 𝑥 
𝜕2𝑀

𝜕𝑥2
= 𝑀𝐿 (10b) 

 

where the local force and moment resultants are defined in the conventional manner 
 

𝑁𝐿 = 𝐸𝐴휀𝑥𝑥
0 (11a) 

 

𝑀𝐿 = 𝐸𝐼𝜅 (11b) 

 

From Eqs. (4) and (6) and Eq. (8) axial force can be written as 
 

𝑁 = 𝐸𝐴
𝜕𝑢

𝜕𝑥
+ 𝜇 𝑥 

𝜕

𝜕𝑥
 𝑚0(𝑥)

𝜕2𝑢

𝜕𝑡2
− 𝑓  (12) 

 

Using Eq. (8) in Eq. (6) gives the equation of motion for the axial free-vibrating nanorod in the 

nonlocal elasticity in terms of displacement 
 

𝜕

𝜕𝑥
 𝐸𝐴

𝜕𝑢

𝜕𝑥
 +

𝜕

𝜕𝑥
 𝜇 𝑥 

𝜕

𝜕𝑥
 𝑚0(𝑥)

𝜕2𝑢

𝜕𝑡2
− 𝑓  + 𝑓 = 𝑚0(𝑥)

𝜕2𝑢

𝜕𝑡2
 (13) 

 

Eq. (13) is the consistent fundamental equation of the axially graded nonlocal rod model. This 

equation leads to second order variable coefficient ordinary differential equation. Unfortunately it 

is not possible to obtain a general solution of this kind of equations. When µ = 0 nm2, it is reduced 

to the equation of the classical rod model. When material properties are uniform and homogeneous 

along the length direction of nano rod previously obtained equations of motion of nonlocal 
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nanorod is obtained. 
 

2.3 Equation of motion of a nanobeam 
 

Using Eq. (6b) and (10b) the moment relation of nonlocal elasticity can be written as 
 

𝑀 = −𝐸𝐼
𝜕2𝑤

𝜕𝑥2
+ 𝜇(𝑥)  

𝜕

𝜕𝑥
 𝑁𝑒

𝜕𝑤

𝜕𝑥
 − 𝑞 + 𝑚0

𝜕2𝑤

𝜕𝑥2
− 𝑚2

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
  (14) 

 

Inserting Eq. (14) into Eq. (10b) leads to following equation of motion for a nanobeam 

 

𝜕2

𝜕𝑥2
 −𝐸𝐼

𝜕2𝑤

𝜕𝑥2
+ 𝜇 𝑥  

𝜕

𝜕𝑥
 𝑁𝑒

𝜕𝑤

𝜕𝑥
 − 𝑞 + 𝑚0

𝜕2𝑤

𝜕𝑥2
− 𝑚2

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
  + 𝑞 −

𝜕

𝜕𝑥
 𝑁

𝜕𝑤

𝜕𝑥
  

= 𝑚0

𝜕2𝑤

𝜕𝑥2
− 𝑚2

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
 

(15) 

 

Again, this equation is a variable coefficient differential equation. The equation of motion of 

the conventional Euler Bernoulli beam theory is obtained from Eq. (15) by setting µ = 0. 
 

2.4 Functionally graded materials 
 

The functionally graded materials are produced by mixing two or more materials. In the present 

study variation of the material properties (elasticity modulus, density and nonlocal parameter) are 

assumed in the following forms (It should be noted that these material properties can be chosen as 

any function in the present formulation) 
 

𝐸 𝑥 = 𝛼1𝑥 + 𝛼2  (16a) 

 

𝜌 𝑥 = 𝛽1𝑥 + 𝛽2 (16b) 

 

𝜇 𝑥 = 𝛾0𝑥
2 + 𝛾1𝑥 + 𝛾2 (16c) 

 

where related parameters are 
 

𝛼1 = 𝐸1 − 𝐸0    ,   𝛼2 = 𝐸0 (17a) 

 

𝛽1 = 𝜌1 − 𝜌0 ,     𝛽2 = 𝜌0 (17b) 

 

𝛾0 = 𝛾1 = 𝜇1/2,      𝛼2 = 𝜇0 (17c) 

 

here E0, 0, 0 and E1, 1, 0 are the material properties at the left and right end of the beam 

respectively. Material property variations are shown in Fig. 2. 
 

2.5 Ritz formulation 
 

Analytical solution of equations of motion of axially functionally graded nanorods and beams 

are difficult or not possible, therefore an approximate variational method, Ritz method will be used 
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Fig. 2 Material properties of FGM nanostructures 

 

 

in the formulation of the present problem. 

 

2.5.1 Nano rod 
The strain energy of an axially functionally graded rod can be (Adali 2008, 2009, 2015, 

Robinson and Adali 2016) 

 

𝑈𝑠 =
1

2
 𝐸(𝑥)

𝐿

0

𝐴𝑢,𝑥
2𝑑𝑥 (18) 

 

where u and A are the displacement in the x direction and cross-sectional area respectively and L is 

the length of the rod. The kinetic energy of the rod is (Adali 2008, 2009, 2015, Robinson and 

Adali 2016) 

 

𝑇 =
1

2
  𝑚 𝑥 𝑤 2 + 𝜇(𝑥)𝑚 𝑥 𝑤 ′𝑥

2 
𝐿

0

𝑑𝑥 (19) 

 

where a dot denotes derivative with respect to time. In this relation the second term of the kinetic 

energy is due to the nonlocal elasticity. 

 

2.5.2 Nano beam 
A functionally graded beam is an inhomogeneous structure consisting of a mixture of isotropic 

materials. Therefore, for thin beams say L/h > 20 classical beam theory can be used. Since axially 

grading leads to a variable coefficient differential equation for vibration of beams, the Ritz method 

(Aydogdu and Filiz 2011) is used in the present study. Strain energy and kinetic energy of the 

beam for the Ritz formulation can be defined as below. The strain energy of the beam 

263



 

 

 

 

 

 

Metin Aydogdu, Mustafa Arda and Seckin Filiz 

𝑈𝑠 =
1

2
 𝐼𝐸(𝑥)

𝐿

0

𝑤,𝑥𝑥
2𝑑𝑥 (20) 

 

where w and I are the displacement in the z direction and moment of inertia of cross-section 

respectively and L is the length of the beam. The kinetic energy of the beam 
 

𝑇 =
1

2
  𝑚 𝑥 𝑤 2 + 𝜇(𝑥)𝑚 𝑥 𝑤 ′𝑥

2 
𝐿

0

𝑑𝑥 (21) 

 

where dot denotes the time derivative. In the Ritz method, displacement component is defined in 

the following form 

𝑤 𝑥, 𝑡 = sin 𝜔𝑡  𝐴𝑖𝜓𝑖(𝑥)

𝐼

𝑖=𝑖0

 (22) 

 

where Ai’s are the unknown coefficients,  is the angular frequency and 𝜓𝑖(𝑥) is a function 

which satisfies at least geometric boundary conditions of the beam. Convergence of this function 

is guaranteed if this function is mathematically complete set. To determine the vibration 

frequencies of the axially graded beams following functional is defined 
 

𝐹 = 𝑇max − 𝑈max  (23) 

 

This functional should be minimized with respect to unknown coefficients given in Eq. (22) 
 

𝜕𝐹

𝜕𝐴𝑖
= 0 (24) 

 

This yields a total of I×I simultaneous, linear, homogeneous equations in an equal number of 

unknowns Ai. Those equations can be described as an eigen-value problem 
 

  𝐾 − 𝛺2 𝑀  Δ = 0 (25) 
 

where K and M are the stiffness and mass matrix respectively;  is the dimensionless frequency 

parameter defined as Ω4 =  𝑚0𝜔
2𝐿4 /(𝐸0𝐼) and Ω2 =  𝑚0𝜔

2𝐿2 /(𝐸0𝐴) for the nano beam 

and the nano rod respectively and Δ is the column vector of unknown coefficients Ai. Here  (rad/s) 

is the angular frequency of vibrations. The mode shapes corresponding to any Ω is found by 

substituting that value into Eq. (25) and solving for the eigenvector components Ai/A1. Inserting 

these components into Eq. (22) gives mode shape of nanorod or nano beam. In the present study, 

mode shape amplitudes are normalized with respect to highest amplitude value of the 

corresponding mode, therefore the highest amplitude in each mode equals to unity. 

After the defining non-dimensional coordinate ( = x/L), the following simple algebraic 

polynomials are used 
 

𝑤 𝜉, 𝑡 =  𝐴𝑖𝑋𝑖(𝜉)

𝑀

𝑖=𝑖0

sin 𝜔𝑡 (26) 
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Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter 

where the polynomial is defined as 
 

𝑋𝑖 = 𝜉𝑖 𝜉 − 1 𝐵  (27) 
 

and Ai’s are unknown undetermined coefficients. The values of B = 0, 1 and 2 correspond to the 

free, hinged and clamped edge, respectively. It should be noted that rod kinetic and strain energy 

equations (Eqs. (18)-(19)) should be used in Eq.(23) when solving rod vibration problem. 
 

 

3. Results and discussions 
 

Investigation on vibration of axially functionally graded nano rods and nano beams with 

various boundary conditions are carried out. Following boundary conditions are assumed in the 

present study. 
 

Nanorod: Clamped-Clamped (C-C), Clamped-Free (C-F) 

Nanobeam: Clamped-Free (C-F), Clamped-Simply Supported (C-SS) 
 

In the Ritz method, displacement field should be chosen as satisfy at least the geometric 

boundary conditions. The kinematic boundary conditions of the nanorod and nanobeam are given 

in Table 1. It should be noted that free edge boundary conditions are approximately satisfied in this 

study. 

In order to see the effect of nonlocal parameter five different nonlocal parameter values are 

chosen. For axially functionally graded rods and beams µ = 1 nm2 and µ  = 2 nm2 are assumed at 

the left and right end of nano structure, respectively. The variations of µ parameter are assumed in 

the following forms. 
 

µ = 0 (local) 

µ = 1 nm2 (nonlocal with constant µ) 

µ = 2 nm2 (nonlocal with constant µ) 

µ = µ0 (ξ + 1) (nonlocal with linear µ variation) 

µ = µ0 (0.5ξ2 + 0.5ξ + 1) (nonlocal with quadratic µ variation) 

(28) 

 

Sample convergence studies are carried out for the non-dimensional frequency parameter Ω and 
 

 

Table 1 Kinematic boundary conditions of rods and beams 

Nanorod Nanobeam 

 𝜉 = 0 𝜉 = 1  𝜉 = 0 𝜉 = 1 

C-C 𝑢 = 0 𝑢 = 0 C-F 

𝑤 = 0 

𝜕𝑤

𝜕𝜉
= 0 

𝜕2𝑤

𝜕𝜉2
= 0 

𝜕3𝑤

𝜕𝜉3
= 0 

C-F 𝑢 = 0 
𝜕𝑢

𝜕𝜉
= 0 C-SS 

𝑤 = 0 

𝜕𝑤

𝜕𝜉
= 0 

𝑤 = 0 

𝜕2𝑤

𝜕𝜉2
= 0 
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Table 2 Convergence of non-dimensional frequencies for nano rods and nano beams 

(L = 5 nm, µ = (0.5ξ2 + 0.5ξ + 1)) 

N 
Nanorod C-C Nanorod C-F Nanobeam C-F Nanobeam C-S 

Ω1 Ω 2 Ω 3 Ω 1 Ω 2 Ω 3 Ω 1 Ω 2 Ω 3 Ω 1 Ω 2 Ω 3 

3 2.479 3.385 3.965 1.304 3.137 3.577 1.589 3.419 6.068 3.324 5.170 7.790 

4 2.479 3.385 3.668 1.304 3.093 3.531 1.589 3.419 5.198 3.323 5.133 6.609 

5 2.479 3.384 3.601 1.304 3.093 3.531 1.589 3.418 5.162 3.323 5.118 6.447 

6 2.479 3.384 3.577 1.304 3.093 3.531 1.589 3.418 5.145 3.323 5.116 6.406 

7 2.479 3.384 3.565 1.304 3.093 3.531 1.589 3.418 5.144 3.323 5.116 6.394 

 

 

Table 3 Convergence of non-dimensional frequencies for nano rods and nano beams 

(L = 30 nm, µ = (0.5ξ2 + 0.5ξ + 1)) 

N 
Nanorod C-C Nanorod C-F Nanobeam C-F Nanobeam C-S 

Ω1 Ω 2 Ω 3 Ω 1 Ω 2 Ω 3 Ω 1 Ω 2 Ω 3 Ω 1 Ω 2 Ω 3 

3 3.098 6.239 9.339 1.359 4.628 9.753 1.682 4.516 10.296 3.804 6.919 13.103 

4 3.098 6.087 9.320 1.359 4.583 7.759 1.682 4.480 7.613 3.803 6.918 9.963 

5 3.098 6.086 8.831 1.359 4.569 7.545 1.682 4.475 7.584 3.803 6.892 9.945 

6 3.098 6.085 8.829 1.359 4.569 7.469 1.682 4.475 7.521 3.803 6.982 9.817 

7 3.098 6.085 8.817 1.359 4.569 7.464 1.682 4.475 7.521 3.803 6.892 9.816 

 

 

tabulated in Tables 2 and 3. It is seen that the convergence is better for the lower modes of 

vibration and long nano rods and beams. The highest difference between 6 and 7 terms is 0.33% 

for the third mode of C-C nanorod at L = 5 nm. The non-dimensional frequency parameters 

obtained with 6 and 7 term are very close to each other. Consequently, all of the remaining results 

presented have been obtained using 7 terms in Eq. (26). 

In Table 4, the present non-dimensional frequency parameters are compared with classical 

analytical results for axially graded rods and beams for different boundary conditions. The 

maximum percentage difference is less than 3%. It can be concluded that, there is a good 

agreement between the results. 

After verifying the convergence and accuracy of the present Ritz analysis, the non-dimensional 

frequency parameters are obtained for axially graded nano rods and nano beams with different 

material properties, nonlocal parameter and boundary conditions. In Tables 5-8 percentage errors 
 

 

Table 4 Comparison of Non-Dimensional Frequencies for linear material property variations 

(E = (-ξ + 2), ρ = (-ξ + 2), µ = 0) 

 Nanorod C-C Nanorod C-F Nanobeam C-F 

 Present 
(Aydogdu and 

Filiz 2011) 
Present 

(Aydogdu and 

Filiz 2011) 
Present 

(Aydogdu and 

Filiz 2011) 

Ω1 3.123 3.1235 1.794 1.7932 2.077 2.0245 

Ω2 6.273 6.2748 4.802 4.8038 4.849 4.715 

Ω3 9.418 9.4580 7.909 7.9629 7.950 7.738 
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of non-dimensional frequencies using constant nonlocal parameters are compared with that of 

variable nonlocal linear and parabolic parameters. Percentage errors are computed according to the 

following equation 
 

𝐸𝑟𝑟𝑜𝑟 % =
Ω𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ,𝜇 − Ω𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ,𝜇

Ω𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ,𝜇
𝑥100 (29) 

 

From these tables, it is seen that non-dimensional frequencies obtained by using µ = 1 nm2 are 

always lower than non-dimensional frequencies obtained by using variable µ, whereas the reverse 

is true for µ  = 2 nm2. µ  = 1.5 nm2 results are lower than variable case results except some 

frequencies of C-F nano rods and C-S nano beams. The percentage errors are higher in the rod 

case when compared with the beam vibration case. Also the errors are increases with increasing 

the mode number. Highest errors are obtained with more constrained boundary conditions (CC 

rod). Errors are changing between 0.686% and 24.947% for the rod problem and between 0.339% 

and 9.225% for the beam problem when µ = 1 nm2. 

When µ = 2 nm2, the errors are between -2.348% and -9.055% for the rod problem and between 

-0.994% and -6.608% for the beam problem. It is natural to assume the nonlocal parameter µ as an 

average of the end values. So in the present problem average value of the µ is 1.5 nm2. The 

percentage errors are higher than 5% for some cases and these results suggest to use a variable 

nonlocal parameter for the axially graded nano rods and nano beams. 

In Figs. (3)-(6) the variation of dimensionless frequency parameter with µ0 is given. It is seen 

that the dimensionless frequency parameters are decreasing with the increasing nonlocal parameter. 

Higher order frequencies are more sensitive to the nonlocal elasticity. Order of frequencies is 

obtained as local, non-local (µ = 1 nm2), non-local (quadratic), non-local (linear) and non-local (µ  

= 2 nm2). The higher order frequencies of the variable nonlocal parameters are much closer to 
 

 

Table 5 Percentage frequency errors of constant nonlocal parameters compared to variable nonlocal 

parameters for C-C Nanorod (L = 5 nm) 

 µ = 1 nm2 µ = 1.5 nm2 µ = 2 nm2 

 
Linear error 

(%) 

Quadratic error 

(%) 

Linear error 

(%) 

Quadratic error 

(%) 

Linear error 

(%) 

Quadratic error 

(%) 

Ω1 7.576 6.839 0.740 0.050 -4.938 -5.589 

Ω2 17.123 15.513 2.497 1.087 -7.737 -9.006 

Ω3 24.947 23.874 5.976 5.065 -6.351 -7.156 

 

 

Table 6 Percentage frequency errors of constant nonlocal parameters compared to variable nonlocal 

parameters for C-F nanorod (L = 5 nm) 

 µ = 1 nm2 µ = 1.5 nm2 µ = 2 nm2 

 
Linear error 

(%) 

Quadratic error 

(%) 

Linear error 

(%) 

Quadratic error 

(%) 

Linear error 

(%) 

Quadratic error 

(%) 

Ω1 0.962 0.686 -0.734 -1.005 -2.348 -2.615 

Ω2 11.757 10.014 0.699 -0.870 -7.614 -9.055 

Ω3 20.694 19.277 3.693 2.476 -7.691 -8.774 
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Table 7 Percentage frequency errors of constant nonlocal parameters compared to variable nonlocal 

parameters for C-F nanobeam (L = 5 nm) 

 µ = 1 nm2 µ = 1.5 nm2 µ = 2 nm2 

 
Linear error 

(%) 

Quadratic error 

(%) 

Linear error 

(%) 

Quadratic error 

(%) 

Linear error 

(%) 

Quadratic error 

(%) 

Ω1 2.360 2.077 0.618 0.339 -0.994 -1.268 

Ω2 8.688 8.091 2.465 1.902 -2.137 -2.675 

Ω3 8.998 7.961 1.295 0.331 -4.181 -5.094 

 

 
Table 8 Percentage frequency errors of constant nonlocal parameters compared to variable nonlocal 

parameters for C-S nanobeam (L = 5 nm) 

 µ = 1 nm2 µ = 1.5 nm2 µ = 2 nm2 

 
Linear error 

(%) 

Quadratic error 

(%) 

Linear error 

(%) 

Quadratic error 

(%) 

Linear error 

(%) 

Quadratic error 

(%) 

Ω1 5.018 4.570 1.208 0.777 -2.004 -2.421 

Ω2 7.956 6.864 0.861 -0.158 -4.363 -5.330 

Ω3 9.225 7.882 0.577 -0.659 -5.445 -6.608 

 
 

µ  = 2 nm2 curve. The variable nonlocal parameter is more effective for the C-F boundary 

conditions when compared to the C-C boundary conditions. The quadratic nonlocal parameter 

variation gives higher results then the linear variation especially for the lower modes of vibration. 

 

 

 

Fig. 3 Variation of first three non-dimensional frequency parameter with nonlocal parameter for 

variable nonlocal parameters for C-C nanorod (L = 5 nm) 
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Fig. 4 Variation of first three non-dimensional frequency parameter with nonlocal parameter 

for variable nonlocal parameters for C-F nanorod (L = 5 nm) 

 

 

 

Fig. 5 Variation of first three non-dimensional frequency parameter with nonlocal parameter for 

variable nonlocal parameters for C-F nanobeam (L = 5 nm) 

 

 

The variation of the non-dimensional frequency parameters with length of nano structure are 

shown in Figs. 7-10. It is seen that with decreasing nanotube length difference between the 

classical and the nonlocal model increases. The difference between different µ0 models is more 

pronounced for the lower nanotube lengths. The variable µ predicts frequencies between two 
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Fig. 6 Variation of first three non-dimensional frequency parameter with nonlocal parameter for 

variable nonlocal parameters for C-S nanobeam (L = 5 nm) 
 

 

 

Fig. 7 Variation of first three non-dimensional frequency parameter with nano tube length L for 

various nonlocal parameters for C-C nanorod 
 

 

constant values predicted. Frequencies are closer to µ0 = 2 nm2 value especially for the beam 

problems. Also the difference between the classical elasticity and the nonlocal elasticity is more 

pronounced for the higher modes of vibration. 

Normalized mode shapes equations (highest amplitude equals to unity) of nano-rods and beams 

obtained from Eq. (25) are given below for various boundary conditions and isotropic and FGM 

nano rods and nano beams. 
 

C-C nanorod 
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𝑤𝐼𝑆𝑂 ,1 = −3.141𝜉 − 0.0002𝜉2 + 5.170𝜉3 − 0.022𝜉4 − 2.462𝜉5 − 0.200𝜉6

+ 0.875𝜉7 − 0.218𝜉8 

𝑤𝐼𝑆𝑂 ,2 = −6.314𝜉 + 0.756𝜉2 + 32.723𝜉3 + 46.041𝜉4 − 210.184𝜉5

+ 191.767𝜉6 − 54.790𝜉7 + 0𝜉8 

𝑤𝐼𝑆𝑂 ,3 = −9.586𝜉 + 7.101𝜉2 + 37.765𝜉3 + 676.543𝜉4 − 3011.278𝜉5

+ 4631.704𝜉6 − 3109.667𝜉7 + 777.416𝜉8 

𝑤𝐹𝐺𝑀 ,1 = −3.462𝜉 + 1.449𝜉2 + 3.514𝜉3 − 0.722𝜉4 − 0.812𝜉5 + 0.011𝜉6

− 0.006𝜉7 + 0.028𝜉8 

𝑤𝐹𝐺𝑀 ,2 = −4.884𝜉 + 1.893𝜉2 + 9.963𝜉3 + 25.986𝜉4 − 78.819𝜉5

+ 96.576𝜉6 − 73.4710𝜉7 + 22.755𝜉8 

𝑤𝐹𝐺𝑀 ,3 = −6.926𝜉 + 81.283𝜉2 − 845.196𝜉3 + 4254.318𝜉4 − 10976.366𝜉5

− 15275.630𝜉6 − 10904.819𝜉7 + 3122.076𝜉8 

(30) 

 

where subscript “ISO” denotes the isotropic case whereas “FGM” denotes the functionally graded 

case and “i” denotes the mode number: 
 

C-F nanorod 
 

𝑤𝐼𝑆𝑂 ,1 = 1.570𝜉 − 0.000038𝜉2 − 0.645𝜉3 − 0.0013𝜉4 + 0.082𝜉5 − 0.0030𝜉6

− 0.0032𝜉7 

𝑤𝐼𝑆𝑂 ,2 = 4.721𝜉 − 0.270𝜉2 − 14.917𝜉3 − 10.882𝜉4 + 43.998𝜉5 − 29.649𝜉6 + 6𝜉7 

𝑤𝐼𝑆𝑂 ,3 = 7.623𝜉 + 5.537𝜉2 − 119.540𝜉3 + 92.236𝜉4 + 270.585𝜉5 − 406.551𝜉6

+ 151.108𝜉7 

𝑤𝐹𝐺𝑀 ,1 = 1.973𝜉 − 0.950𝜉2 + 0.052𝜉3 − 0.185𝜉4 + 0.158𝜉5 − 0.059𝜉6 + 0.011𝜉7 

𝑤𝐹𝐺𝑀 ,2 = 4.451𝜉 − 1.453𝜉2 − 10.579𝜉3 + 3.834𝜉4 − 0.691𝜉5 + 5.747𝜉6 − 2.310𝜉7 

𝑤𝐹𝐺𝑀 ,3 = 2.323𝜉 + 1.858𝜉2 − 29.331𝜉3 + 74.077𝜉4 − 128.509𝜉5 + 121.740𝜉6

− 41.159𝜉7 

(31) 

 

 

 

Fig. 8 Variation of first three non-dimensional frequency parameter with nano tube length L for 

various nonlocal parameters for C-F nanorod 
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Fig. 9 Variation of first three non-dimensional frequency parameter with nano tube length L for 

various nonlocal parameters for C-F nanobeam 

 

 

 

Fig. 10 Variation of first three non-dimensional frequency parameter with nano tube length L for 

various nonlocal parameters for C-S nanobeam 

 

 

C-F nanobeam 
 

𝑤𝐼𝑆𝑂 ,1 = 1.614𝜉2 − 0.573𝜉3 − 0.095𝜉4 + 0.018𝜉5 + 0.045𝜉6 − 0.009𝜉7 + 0.0002𝜉8 

𝑤𝐼𝑆𝑂 ,2 = 10.589𝜉2 − 10.630𝜉3 − 8.910𝜉4 + 2.530𝜉5 + 14.493𝜉6 − 11.110𝜉7

+ 2.334𝜉8 

𝑤𝐼𝑆𝑂 ,3 = 22.556𝜉2 − 11.618𝜉3 − 162.909𝜉4 + 240.779𝜉5 − 0.189𝜉6 − 150.696𝜉7

+ 62.514𝜉8 

𝑤𝐹𝐺𝑀 ,1 = 1.946𝜉2 − 1.372𝜉3 + 0.633𝜉4 − 0.350𝜉5 + 0.199𝜉6 − 0.068𝜉7 + 0.010𝜉8 

𝑤𝐹𝐺𝑀 ,2 = 12.740𝜉2 − 20.186𝜉3 + 4.535𝜉4 − 1.279𝜉5 + 8.305𝜉6 − 5.840𝜉7

+ 1.123𝜉8 

(32) 
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𝑤𝐹𝐺𝑀 ,3 = 25.664𝜉2 − 42.702𝜉3 − 55.419𝜉4 + 81.520𝜉5 + 100.678𝜉6 − 167.920𝜉7

+ 58.441𝜉8 
(32) 

 

C-S nanobeam 
 

𝑤𝐼𝑆𝑂 ,1 = −8.868𝜉2 + 8.035𝜉3 + 7.109𝜉4 − 3.225𝜉5 − 7.093𝜉6 + 4.235𝜉7

+ 0.156𝜉8 − 0.349𝜉9 
(33) 

 

 

 

Fig. 11 First three mode shapes of C-C isotropic and axially functionally graded nanorods 

 

 

 

Fig. 12 First three mode shapes of C-F isotropic and axially functionally graded nanorods 
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Fig. 13 First three mode shapes of C-F isotropic and axially functionally graded nanobeams 

 

 

 

Fig. 14 First three mode shapes of C-S isotropic and axially functionally graded nanobeams 

 

 

𝑤𝐼𝑆𝑂 ,2 = −23.639𝜉2 + 29.713𝜉3 + 45.470𝜉4 + 141.851𝜉5 − 684.748𝜉6

+ 843.902𝜉7 − 435.520𝜉8 + 82.969𝜉9 

𝑤𝐼𝑆𝑂 ,3 = −40.325𝜉2 − 13.487𝜉3 + 814.222𝜉4 − 1550.392𝜉5 − 423.082𝜉6

+ 3420.276𝜉7 − 3085.544𝜉8 + 878.332𝜉9 

𝑤𝐹𝐺𝑀 ,1 = −10.969𝜉2 + 16.359𝜉3 − 3.664𝜉4 + 0.637𝜉5 − 5.002𝜉6 + 2.897𝜉7

− 0.124𝜉8 − 0.134𝜉9 

(33) 
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𝑤𝐹𝐺𝑀 ,2 = −26.338𝜉2 + 51.458𝜉3 + 3.508𝜉4 + 83.137𝜉5 − 391.421𝜉6

+ 459.133𝜉7 − 213.771𝜉8 + 34.292𝜉9 

𝑤𝐹𝐺𝑀 ,3 = −44.591𝜉2 + 87.371𝜉3 + 152.017𝜉4 + 305.968𝜉5 − 3008.848𝜉6

+ 5251.263𝜉7 − 3677.971𝜉8 + 934.790𝜉9 

(33) 

 

Some typical mode shapes are shown in Figs. 11-14 for different boundary conditions and 

isotropic and quadratically graded nanorods and nanobeams. It is seen that the first mode shapes 

are approximately identical. The difference between the mode shapes of isotropic and axially FG 

rods and beams are more apparent for the higher modes and at the right end of the nanorod or nano 

beam. All the materials properties, young modulus, density and nonlocal parameter increase to the 

right end of the structure and this makes the structure more flexible at the right end. Considerable 

changes are observed for the nodes of the mode shapes. This gives an opportunity to the designer 

to tailor the mode shapes of the nano structures. 
 

 

4. Conclusions 
 

In the present study, the vibration of axially functionally graded nanorods and nanobeams was 

presented. The material properties are graded in the axial direction of the rod and beam linearly. 

The Euler-Bernoulli beam theory and Ritz method are employed for the analysis. The 

dimensionless frequency parameters are obtained for various material properties. The following 

main conclusions can be drawn from the present analysis. 
 

 The percentage errors of using a constant nonlocal parameter leads to errors higher than 5% 

for some cases and these results suggest using a variable nonlocal parameter for the axially 

graded nano rods and nano beams. Errors are more apperent for the higher modes of 

vibration. 

 Mode shapes of the axially functionally graded nanorods and nano beams are different 

from the isotropic nanorods and nanobeams and this may give various design 

opportunities. 

 The Ritz method can be easily used in the formulation of axially functionally graded 

nanorods and beams with the variable nonlocal parameter. 
 

One could easily vary the frequency parameters of the FG beam by varying the volume fraction 

of the constituents. Present study can be extended to the statics and dynamics analysis of nano 

plates or nano shells. 
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