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Abstract.  In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded 

material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified 

couple stress theory. Material properties of the beam change in the height direction according to exponential 

distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory 

consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an 

additional material parameter enables the new beam model to capture the size effect. The new non-classical beam 

model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is 

investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the 

accuracy of the present formulation and results, the deflections are obtained, and compared with the published results 

available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge 

cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, 

different length scale parameter, different crack depths, and different material distributions. Also, the difference 

between the classical beam theory and modified couple stress theory is investigated for static bending of edge 

cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can 

compare their results. 
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1. Introduction 
 

With the great advances in technology in recent years, micro and nano structures have found 

many applications. In these structures, micro beams and micro tubes are widely used in micro- and 

nano electromechanical systems (MEMS and NEMS) such as sensors (Zook et al. 1992, Pei et al. 

2004), actuators (Senturia 1998, Rezazadeh et al. 2006). In investigation of micro and nano 

structures, the classical continuum mechanics is not capable of explanation of the size-dependent 

behaviors. Nonclassical continuum theories such as higher order gradient theories and the couple 

stress theory are capable of explanation of the size dependent behaviors which occur in 

micro/nano-scale structures. 

Functionally graded materials (FGMs) are a new generation of composites where the volume 

fractions of the FGM constituents vary gradually, giving a non-uniform nanostructure with 

continuously graded macro properties such as elasticity modulus, density, heat conductivity, etc.. 

With the advance of the material science, micro–electro-mechanical systems are the new field in 
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which FGMs have been utilized to achieve the desired performance. With the development of 

technology, FGMs are initialized to be used in micro/nano structural systems. 

In recent years, functionally graded materials have been widely used in micro/nanoelectro-

mechanical  

gradient a systems (MEMS/NEMS), such as the components in the form of shape memory 

alloy thin films with a global thickness in micro- or nano-scale (Fu et al. 2003, Witvrouw and 

Mehta 2005, Lü et al. 2009), electrically actuated MEMS devices (Hasanyan et al. 2008, 

Mohammadi-Alasti et al. 2011, Zhang and Fu 2012), and atomic force microscopes (AFMs) 

(Rahaeifard et al. 2009). In all these applications, the thickness of the microstructures (i.e., 

microbeams or microplates) is typically on the order of microns and sub-microns. At the present 

time, the experimental investigations of the micro materials are still a challenge because of 

difficulties confronted in the micro scale. Therefore, mechanical theories and atomistic simulations 

have been used for micro structural analysis. The process of the atomistic simulations is very 

difficult and takes much time. So, continuum theory is the most preferred method for the analysis 

of the micro and nano structures. Classical continuum mechanics does not contain the size effect, 

because of its scale-free character. The nonlocal continuum theory initiated by Eringen (1972) has 

been widely used to mechanical behavior of nano-micro structures. 

The size effect plays an important role on the mechanical behavior of micro/nano structures at 

the nanometer scale that the classic theory has failed to consider when the size reduces from macro 

to nano (Toupin 1962, Mindlin and Tiersten 1962, Mindlin 1963, Fleck and Hutchinson 1993, 

Yang et al. 2002, Lam et al. 2003). Therefore, higher-order theories modified couple stress theory 

and modified strain re used in the mechanical model of the nano-micro structures (Yang et al. 2002, 

Lam et al. 2003). 

The determination of the nano-structural material length scale parameters is very difficult 

experimentally. So, Yang et al. (2002) proposed the modified couple stress theory in which the 

strain energy has been shown to be a quadratic function of the strain tensor and the symmetric part 

of the curvature tensor, and only one length scale parameter is included. After this, the modified 

couple stress and the strain gradient elasticity theories have been widely applied to static and 

dynamic analysis of beams (Park and Gao 2006, Ma et al. 2008, Kong et al. 2008, Asghari et al. 

2010, Wang 2010, Şimşek 2010, Kahrobaiyan et al. 2010, Xia et al. 2010, Ke et al. 2011, Akgöz 

and Civalek 2012, Ansari et al. 2012, Gürses et al. 2012, Wang et al. 2013, Kocatürk and Akbaş 

2013, Kong 2013, Ghayesh et al. 2013, Daneshmehr et al. 2013, Akgöz and Civalek 2013). More 

recently, Darijani and Mohammadabadi (2014) proposed a new deformation beam theory for 

static and dynamic analysis of microbeams which includes unknown functions takes into account 

shear deformation and satisfies both of shear and couple-free conditions on the upper and lower 

surfaces of the beam based on a modified couple stress theory. Tang et al. (2014) analyzed a 

theoretical model for flexural vibrations of microbeams in flow with clamped-clamped ends based 

on a modified couple stress theory. Sedighi et al. (2014) investigated the dynamic pull-in 

instability of vibrating micro-beams undergoing large deflection under electrosatically actuation. 

Farokhi and Ghayesh (2015) studied the three-dimensional motion characteristics of perfect and 

imperfect Timoshenko microbeams under mechanical and thermal forces based on the 

modified couple stress theory. Ansari et al. (2015) studied an exact solution of vibrations of 

postbuckled microscale beams based on the modified couple stress theory. Dai et al. (2015) 

developed a new nonlinear theoretical model for cantilevered microbeams and to explore the 

nonlinear dynamics based on the modified couple stress theory, taking into account of one single 

material length scale parameter. Farokhi and Ghayesh (2015) investigated the three-dimensional 
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motion characteristics of perfect and imperfect Timoshenko microbeams under mechanical and 

thermal forces. 

In recent years, various investigations have been carried out to study of static and vibration 

behavior of the Functioanlly graded (FGM) micro/nano beams; (Ansari et al. 2011, 2013a, b, Liu 

and Reddy 2011, Reddy 2011, Ke et al. 2011, Salamat-Talab et al. 2012, Nateghi and Salamat-

Talab 2013, Akgöz and Civalek 2013, Şimşek and Reddy 2013a, Zamanzadeh et al. 2013, Şimşek 

et al. 2013, Ansari et al. 2014a, b), buckling (Ansari et al. 2012, 2013c, d, Şimşek and Reddy 

2013b, Wang et al. 2014, Akgöz and Civalek 2014, 2015a, b, 2016) of the FGM beams in which 

the nonclassical continuum mechanics have been employed. Berrabah et al. (2013) examined 

bending, buckling and free vibration of nanobeams by using unified nonlocal shear deformation 

theory. Tagrara et al. (2015) presented a trigonometric refined beam theory for the bending, 

buckling and free vibration analysis of carbon nanotube-reinforced composite beams resting on 

elastic foundation. Zemri et al. (2015) investigated nonlocal shear deformation beam theory for 

bending, buckling, and vibration of functionally graded nanobeams using the nonlocal differential 

constitutive relations of Eringen. Aissani et al. (2015) presented a new nonlocal hyperbolic shear 

deformation beam theory for the static, buckling and vibration of nanoscale-beams embedded in an 

elastic medium. Akbaş (2016b) investigated forced vibration of viscoelastic nano scale beams. 

Akbaş (2016c) presented static analysis of nanoplates by using differantial quadrature method. 

Ehyaei et al. (2016) examined effect on free vibration characteristics of functionally graded size-

dependent nanobeams by using a semi analytical differential transform method. Ebrahimi and 

Barati (2016a, b) investigated buckling of functionally graded nanobeams. Eltaher et al. (2016) 

studied the effects of thermal load and shear force on the buckling of nanobeams. Akbaş (2017a) 

analyzed forced vibration of functionally graded nanobeams. 

Micro and nano structures are subjected to destructive effects in the form of initial defects 

within the material or caused by fatigue or stress concentration, for example, crack occurrence in 

ZnO nano-rods is due to thermal fabrication process (Fang and Chang 2003, Fang et al. 2003). As 

a result of destructive effects, cracks occur in the structural elements. It is known that cracks cause 

local flexibility and changes in structural stiffness. Understanding the mechanical behaviour edge-

cracked structures and detection of cracks are very important for safety of nano structures. 

In the literature, the studies of the cracked micro-nano structures are as follows; Loya et al. 

(2009) studied the flexural vibrations of cracked micro- and nanobeams with the rotational and 

linear spring model based on nonlocal elasticity. Hasheminejad et al. (2011) investigated the 

flexural vibrations of cracked micro- and nanobeams in the presence of surface effects with the 

rotational linear spring model. Hsu et al. (2011) analysed longitudinal vibration of cracked 

nanobeams based on nonlocal elasticity theory. Torabi and Nafar Dastgerdi (2012) studied with the 

free transverse vibration of cracked nanobeams modeled based on Eringen’s nonlocal elasticity 

theory and Timoshenko beam theory with a rotational spring. Liu et al. (2013) investigated 

Vibration behavior of a cracked Euler-Bernoulli micro-cantilever beam under coupling action of 

nonlinear electrostatic force and squeeze film damping effect. Hosseini-Hashemi et al. (2014) 

investigated the dynamics of thin and thick cracked nanobeams with surface effects. Tadi Beni et 

al. (2015) examined the transverse vibration of cracked nano-beam based on modified couple 

stress theory with rotational spring model. Akbaş (2016a) investigated static analysis of cracked 

micro beams. Shaat et al. (2016) investigated vibration analysis of Cracked Nano- Beams made of 

Nanocrystalline Materials. Akbaş (2017b) studied free vibration of edge cracked functionally 

graded microsbeams. Akbaş (2018) investigated forced vibration analysis of cracked functionally 

graded microbeams. 
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This paper examines static bending of an edge cracked FGM cantilever nanobeam based on the 

modified couple stress theory. The nanobeam is subjected to transversal point load at the free end 

of the beam. Material properties of the beam change in the height direction according to 

exponential distributions. The cracked beam is modelled using a proper modification of the 

classical cracked-beam theory consisting of two sub-beams connected through a massless elastic 

rotational spring. The considered problem is investigated within the Euler-Bernoulli beam theory 

by using finite element method. This nanobeam model incorporates the material length scale 

parameter which can capture the size effect. In order to establish the accuracy of the present 

formulation and results, the deflections are obtained, and compared with the published results 

available in the literature. Good agreement is observed. In the numerical study, the static 

deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack 

positions, different lengths of the beam, different length scale parameter, different crack depths, 

and different material distributions. Also, the difference between the classical beam theory and 

modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. 

It is believed that the tabulated results will be a reference with which other researchers can 

compare their results. 
 

 

2. Theory and formulations 
 

Consider a cantilever FGM nanobeam of length L, width b, height h, containing an edge crack 

of depth a located at a distance L1 from the left end, as shown in Fig. 1. It is assumed that the crack 

is perpendicular to beam surface and always remains open. The beam is subjected to a point load 

(Q) in the transverse direction as seen from Fig. 1. 

The material properties of the FGM nanobeam P, i.e., Young’s modulus E, Poisson’s ratio ν 

and shear modulus G vary continuously in the thickness direction (Y axis) according to exponential 

distributions as follows 
 

𝑃 𝑌 = 𝑃0𝑒
𝛽𝑌  (1) 

 

where 𝑃0  is the material properties at the midplane (Y = 0) of the beam. 𝛽 is a constant 

characterizing the gradual variation of the material properties along thickness direction. When 𝛽 = 

0, the material of the beam is homogeneous. According to Eq. (1) that when Y = h/2, P = PB (PB is 

the material properties of the bottom). When Y = ‒h/2, P = PT (PT is the material properties of the 

top). 
 

2.1 The modified couple stress theory 
 

The strain energy density for a linear elastic material which is a function of both strain tensor 
 

 

 

Fig. 1 A cantilever FGM nanobeam with an open edge crack subjected to a point load 
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and curvature tensor is introduced by Yang et al. (2002) for the modified couple stress theory 
 

𝑈 =   𝜎: 𝜀 + 𝑚: 𝜒 

𝑉

𝑑𝑉 (2) 

 

where σ is the stress tensor, ε is the strain tensor, m is the deviatoric part of the couple stress tensor, 

χ is the symmetric curvature tensor, defined by 
 

𝜎 = 𝜆 𝑡𝑟 𝜀 𝐼 + 2𝜇𝜀 (3) 

 

𝜀 =
1

2
 ∇𝑢 +  ∇𝑢 𝑇  (4) 

 

𝑚 = 2𝑙2𝜇 𝜒 (5) 

 

𝜒 =
1

2
 ∇𝜃 +  ∇𝜃 𝑇  (6) 

 

where λ and μ are Lame’s constants, l is a material length scale parameter which is regarded as a 

material property characterizing the effect of couple stress. The material length scale is a size 

effect parameter which has important role on the structural behavior of micro/nano structures, 

because the dimensions of these structures are smaller than the atomic/molecular distances. 

However, classical continuum mechanics does not contain the material length scale parameter, 

because of its scale-free character. u is the displacement vector and θ is the rotation vector, given 

by 

𝜃 =
1

2
curl 𝑢 (7) 

 

The parameters λ and μ in the constitutive equation are given by 
 

𝜆 𝑌 =
𝐸 𝑌  𝜈 𝑌 

 1 + 𝜈 𝑌   1 − 2𝜈 𝑌  
,           𝜇 𝑌 =

𝐸 𝑌 

2 1 + 𝜈 𝑌  
 (8) 

 

Where E is the modulus of elasticity and ν is the Poisson’s ratio and their dependence on Y 

coordinate are given by Eq. (1). 
 

2.2 Governing equations of FGM nanobeams 
 

According to the coordinate system (X, Y, Z) shown in Fig. 1, based on Euler-Bernoulli beam 

theory, the axial and the transverse displacement field are expressed as 
 

𝑢 𝑋, 𝑌 = 𝑢0 𝑋 − 𝑌
𝜕𝑣0 𝑋 

𝜕𝑋
 (9) 

 

𝑣 𝑋, 𝑌, 𝑡 = 𝑣0 𝑋, 𝑡  (10) 
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𝑤 𝑋, 𝑌, 𝑡 = 0 (11) 
 

where u, v, w are x, y and z components of the displacements, respectively. Also, u0 and v0 are the 

axial and the transverse displacements in the mid-plane. 

Because the transversal surfaces of the beam is free of stress, then 
 

 𝜎𝑧𝑧 = 𝜎𝑦𝑦 = 0 (12) 
 

By using Eqs. (3), (8) and (9) and strain- displacement relation can be obtained 
 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑋
=

𝜕𝑢0 𝑋 

𝜕𝑋
− −𝑌

𝜕2𝑣0 𝑋 

𝜕𝑋2
 (13a) 

 

𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝑌
𝜈 𝑌 𝜕2𝑣0 𝑋 

𝜕𝑋2
 (13b) 

 

𝜀𝑥𝑧 = 𝜀𝑦𝑧 = 𝜀𝑥𝑦 = 0 (13c) 
 

By using Eqs. (7), (9), (10) and (11) 
 

𝜃𝑧 =
𝜕𝑣0 𝑋 

𝜕𝑋
,          𝜃𝑥 = 𝜃𝑦 = 0 (14) 

 

Substituting Eq. (14) into Eq. (6), the curvature tensor χ can be obtained as follows 
 

𝜒𝑥𝑧 =
1

2
 
𝜕2𝑣0 𝑋 

𝜕𝑋2
,          𝜒𝑥𝑥 = 𝜒𝑥𝑦 = 𝜒𝑦𝑦 = 𝜒𝑦𝑧 = 𝜒𝑧𝑧 = 0 (15) 

 

According to Hooke’s law, constitutive equations of the FGM nanobeam are as follows 
 

𝜎𝑥𝑥 = 𝐸(𝑌)𝜀𝑥𝑥 = 𝐸(𝑌)  
𝜕𝑢0 𝑋 

𝜕𝑋
− 𝑌

𝜕2𝑣0 𝑋 

𝜕𝑋2
  (16) 

 

Where σxx and εxx are normal stresses and normal strains in the X direction, respectively. 

Substituting Eq. (15) into Eq. (5), the couple stress tensor can be obtained as follows 
 

𝑚𝑥𝑧 = 𝑙2𝜇(𝑌)
1

2

𝜕2𝑣0 𝑋 

𝜕𝑋2
 (17a) 

 

𝑚𝑥𝑥 = 𝑚𝑥𝑦 = 𝑚𝑦𝑦 = 𝑚𝑦𝑧 = 𝑚𝑧𝑧 = 0 (17b) 
 

where μ is shear modulus which is defined by Eq. (8). Based on Euler-Bernoulli beam theory, the 

elastic strain energy (Ui) of the FGM nanobeam is expressed as 
 

𝑈𝑖 =
1

2
   𝜎𝑖𝑗  𝜀𝑖𝑗 + 𝑚𝑖𝑗  𝜒𝑖𝑗  

𝐴

𝑑𝐴 𝑑𝑋

𝐿

0

 (18) 
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By substituting Eqs. (16), (17), (13a) and (15) into Eq. (18), elastic strain energy (Ui) can be 

rewritten as follows 
 

𝑈𝑖 =
1

2
  𝐴11  

𝜕𝑢0

𝜕𝑋
 

2

− 2𝐵11  
𝜕𝑢0

𝜕𝑋
  

𝜕2𝑣0

𝜕𝑋2
 + 𝐷11  

𝜕2𝑣0

𝜕𝑋2
 

2

+
1

4
𝑙2𝐴55  

𝜕2𝑣0

𝜕𝑋2
 

2

 𝑑𝑋

𝐿

0

 (19) 

 

Where 
 

 𝐴11 , 𝐵11 , 𝐷11 =  𝐸 𝑌 (1, 𝑌, 𝑌2)𝑑𝐴

𝐴

,       𝐴55 =  𝜇 𝑌 𝑑𝐴

𝐴

 (20) 

 

The potential energy of the external load can be written as 
 

𝑊 =  𝑄 𝑣0 𝑋 = 𝐿  (21) 
 

The considered problem is solved by using finite element method. 

Total nodal displacements q which is written for a two-node beam element, each node has three 

degrees of freedom, shown in Fig. 2 are defined as follows 
 

 𝑞 e =  𝑢𝑖
 𝑒 

, 𝑣𝑖
 𝑒 

,  𝜃𝑖
 𝑒 

, 𝑢𝑗
 𝑒 

, 𝑣𝑗
 𝑒 

,  𝜃𝑗
 𝑒 

   
𝑇

 (22) 

 

The displacement field of the finite element is expressed in terms of nodal displacements as 

follows 

𝑢 𝑒  𝑋 = 𝜑1
 𝑈  𝑋  𝑢𝑖 + 𝜑2

 𝑈  𝑋  𝑢𝑗 =  𝜑 𝑈   
 𝑢𝑖

 𝑢𝑗
 =  𝜑 𝑈   𝑞 𝑈  (23) 

 

𝑣 𝑒  𝑋 = 𝜑1
 𝑉  𝑋  𝑣𝑖 + 𝜑2

 𝑉  𝑋  𝜃𝑖 + 𝜑3
 𝑉  𝑋  𝑣𝑗 + 𝜑4

 𝑉  𝑋  𝜃𝑗  

 𝜑 𝑉  

 
 

 
 𝑣𝑖

 𝜃𝑖

 𝑣𝑗 
 𝜃𝑗 

 

 

=  𝜑 𝑉   𝑞 𝑉  
(24) 

 

Where ui, vi and θi are axial displacements, transverse displacements and slopes at the two end 

nodes of the beam element, respectively. 𝑗𝑖
(𝑈)

 and 𝑗𝑖
(𝑉)

 are Hermitian shape functions for axial 

and transverse degrees of freedom, respectively, which are given in Appendix. 

By substituting Eqs. (23) and (24) into Eq. (19), energy functions can be rewritten as follows 
 

 

 

Fig. 2 A two-node beam element 
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𝑈𝑖 =
1

2
 

 
 
 
 
 𝐴11  

𝜕𝜑 𝑈 

𝜕𝑋
 𝑞 𝑈 

2

− 2𝐵11  
𝜕𝜑 𝑈 

𝜕𝑋
 𝑞 𝑈  

𝜕2𝜑 𝑉 

𝜕𝑋2
 𝑞 𝑉 

+𝐷11  
𝜕2𝜑(𝑉)

𝜕𝑋2
 𝑞 𝑉 

2

+   
1

4
𝑙2𝐴55  

𝜕2𝜑(𝑉)

𝜕𝑋2
 𝑞 𝑉 

2

 
 
 
 
 

𝑑𝑋

𝐿

0

 (25) 

 

The total potential energy of the beam is given by 
 

Π = 𝑈 − 𝑊 (26) 
 

According to the minimum total potential energy principle, nodal displacements  𝑞  which 

correspond to the minimum of the total potential energy are determined by the conditions 
 

𝜕П

𝜕𝑞
= 0 (27) 

 

Differentiation of П in respect to nodal displacements  𝑞  produces the following equilibrium 

equations for a finite element 
 

 𝐾  𝑞 =  𝐹  (28) 
 

where, [K] is the stiffness matrix and {F} is the load vector. The components of the stiffness 

matrix [K] 

 𝐾 =  
 𝐾𝐴  𝐾𝐵 

 𝐾𝐵 T  𝐾𝐷 
  (29) 

 

Where 
 

 𝐾𝐴 =  𝐴11

𝐿e

0

 
𝜕𝜑(𝑈)

𝜕𝑋
 

𝑇

  
𝜕𝜑(𝑈)

𝜕𝑋
 𝑑 (30a) 

 

 𝐾𝐵 = − 𝐵11

𝐿e

0

 
𝜕2𝜑(𝑉)

𝜕𝑋2
 

𝑇

  
𝜕𝜑(𝑈)

𝜕𝑋
 𝑑 (30b) 

 

 𝐾𝐷 =   𝐷11 +
1

4
𝑙2𝐴55 

𝐿e

0

 
𝜕2𝜑(𝑉)

𝜕𝑋2
 

𝑇

  
𝜕2𝜑(𝑉)

𝜕𝑋2
  (30c) 

 

Where Le indicates the length of the finite beam element. 

The load vector {F} is expressed as 
 

 𝐹 =  𝜑(𝑋) 𝑇  𝑄 (31) 
 

2.3 Crack modeling 
 

The cracked FGM nanobeam is modelled using a proper modification of the classical cracked-

beam theory consisting of two sub-beams connected through a massless elastic rotational spring 
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shown in Fig. 3. 

The bending stiffness of the cracked section kT is related to the flexibility G by 
 

𝑘𝑇 =
1

𝐺
= 0 (32) 

 

The cracked section’s flexibility G can be derived from Broek’s approximation (Broek 1986) 
 

 1 − 𝜈2 𝐾𝛪
2

𝐸(𝑎)
=

𝑀2

2

𝑑𝐺

𝑑𝑎
 (33) 

 

where M is the bending moment at the cracked section, a is the crack depth, KI is the stress 

intensity factor (SIF) under mode I bending load (which is a function of the geometry, loading, and 

material properties), and v indicates Poisson’s ratio (which is taken as constant since its influence 

on the SIF is quite limited (Erdoğan and Wu 1997)). For an FGM strip with an open edge crack 

under bending, the analytical solution along with the expression of SIF has been given Yu and Chu 

(2009), which was obtained from the data given by Erdogan and Wu (1997) through the Lagrange 

interpolation technique 
 

𝐾𝐼 =
6𝑀

𝜋𝑏
 𝜋𝑎 𝐹 𝐸𝑅 , 𝑎/ℎ  (34) 

 

where ER is the ratio of Young’s modulus at the bottom to the top surface of the beam (EB/ET), and 

F is an unknown function of two independent variables, given as (Yu and Chu 2009) 

 

𝐹 𝐸𝑅 , 𝑎 ℎ  =
𝑝1 + 𝑝2ln 𝐸𝑅 + 𝑝3 ln 𝐸𝑅  

2 + 𝑝4 ln 𝐸𝑅  
3 + 𝑝5(𝑎 ℎ) + 𝑝6(𝑎 ℎ) 2 

1 + 𝑝7ln 𝐸𝑅 + +𝑝8 ln 𝐸𝑅  
2 + 𝑝9(𝑎 ℎ) + 𝑝10(𝑎 ℎ) 2 + 𝑝11(𝑎 ℎ) 3 (35) 

 

Here the coefficients p1, p2, …, p10, p11 = 1.1732, -0.3539, 0.0289, -0.0061, 0.6625, 3.072, -0.0014, 

-0.0017, 1.9917, -0.3496, -3.0982 were obtained from Yu and Chu (2009), which were determined 

by fitting Eq. (33) using the least squares method to the numerical data of the SIF for specific 

material gradients and normalized crack sizes given by Erdogan and Wu (1997). 

After substituting Eq. (34) into Eq. (33) and integrating, the flexibility coefficient of the crack 

section G is obtained as 
 

𝐺 =  
72𝜋  1 − 𝜈2 𝑎𝐹2  𝐸𝑅 , 𝑎/ℎ  

𝐸 𝑎 ℎ4

𝑎/ℎ

0

𝑑𝑎 (36) 

 

The spring connects the adjacent left and right sub-elements, providing a jump between the 

 

 

 

Fig. 3 Rotational spring model 
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slopes of the two FGM sub-elements at the crack location. In the massless spring model, the 

compatibility conditions enforce the continuities of the axial displacement, transverse deflection, 

axial force and bending moment across the crack at the cracked section (X = L1), that is 

 

𝑢1 = 𝑢2 ,      𝑣1 = 𝑣2 ,     𝑁1 = 𝑁2 ,     𝑀1 = 𝑀2 (37) 

 

A discontinuity exists in the slope at the cracked section 

 

𝑘𝑇  
𝑑𝑣1

𝑑𝑋
−

𝑑𝑣2

𝑑𝑋
 = 𝑘𝑇 𝜃1 − 𝜃2 = 𝑀1 (38) 

 

Based on the massless spring model, the stiffness matrix of the cracked section is 

 

 𝐾 (𝐶𝑟) =  
1 𝐺 −1 𝐺 

−1 𝐺 1 𝐺 
 =  

𝑘𝑇 −𝑘𝑇

−𝑘𝑇 𝑘𝑇
  (39) 

 

The stiffness matrix of the cracked section is written in terms of the displacement vector 

 

 𝑞 (𝐶𝑟) =  𝜃1 ,  𝜃2 
𝑇  (40) 

 

where θ1 and θ2 are the angles on the two sides of the cracked section. With the addition of the 

crack model and by following the conventional assembly procedure for the finite elements, the 

system stiffness matrix is obtained as follows 

 
 𝐾 (𝑆) =  𝐾 +  𝐾 (𝐶𝑟) (41) 

 

where  𝐾  is the intact stiffness matrix for the intact FGM nanobeam, which appears in Eq. (29). 

The dimensionless quantities can be expressed as 

 

X =
𝑋 

𝐿
, Y =

𝑌 

𝐿
, v =

𝑣 

𝐿
, 𝜂 =

𝐿1  

𝐿
,      𝑎𝑟 =

𝑎  

ℎ
, 𝐸𝑅 =

𝐸𝐵  

𝐸𝑇
 (42) 

 

Where, 𝜂 is the ratio of crack location and 𝑎𝑟  is the ratio of crack depth. 

 

3. Numerical results 
 

In the numerical examples, the effects of the location of crack, the depth of the crack, the 

material distributions and different dimensions of the beam on the static deflection of the 

nanobeams are presented in both the modified couple stress theory and the classical beam theory in 

s and figures. The beam considered is made of aluminum (E = 70 GPa, ν = 0.33), for which the 

material constants change exponentially as in Eq. (1). The bottom surface of the FGM nanobeam is 

aluminum. In the numerical calculations, the number of finite elements is taken as n = 120. 

In the literature, the length scale parameter of an isotropic homogeneous nanobeam has been 

experimentally evaluated as l = 17.6 μm in (Lam et al. 2003). However, there is no available 

experimental data relevant to the FGM nanobeams in open literature. Therefore, in order to 

quantitatively study the size effects on the static bending of FGM nanobeams, the values of length 
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scale parameters are assumed to be equal l0 = l1 = l2 = l = 15 μm. 

In order to establish the accuracy of the present formulation and the computer program 

developed by the author, the results obtained from the present study are compared with the 

available results in the literature. For this purpose, static deflections of a homogeneous cantilever 

intact beam which is subjected to a point load are calculated for modified couple stress theory and 

compared with those of Park and Gao (2006) in Fig. 4. It is clearly seen that the curves of Fig. 4 of 

the present study are very close to those of Fig. 3 of Park and Gao (2006). 

In order to investigate the size effect and the material distribution, the maximum dimensionless 

vertical displacements (at the free end of the beam) of edge cracked FGM nanobeam are presented 

with different the material distribution (ER) and the dimensionless material length scale parameter 

(h/l) for modified couple stress theory and classical beam theory for point load Q = 1000 μN, L/h = 

20, ar = 0.8, b = h and the crack location ratio 𝜂 = 0.01 in Table 1. 

As seen from Table 1, with the increase in the ratio of the ER, the displacements decrease, as 

expected. This is because by increasing the ratio of the ER, the elasticity modulus of the beam and 
 

 

 

Fig. 4 Deflections of the cantilever beam based on the modified coupled stress theory 
 

 

Table 1 Maximum dimensionless of vertical displacements edge FGM nanobeam with different the material 

distribution (ER) and the dimensionless material length scale parameter (h/l) for point load Q = 1000 

μN, L/h = 20, ar = 0.8, b = h and 𝜂 = 0.01 

 Modified couple stress theory Classical beam theory 

h/l 
Homogeneous 

Beam (ER = 1) 
ER = 0.8 ER = 0.5 ER = 0.1 

Homogeneous 

Beam (ER = 1) 
ER = 0.8 ER = 0.5 ER = 0.1 

2 1.2292 1.3085 1.5209 2.9569 1.2851 1.3586 1.5613 2.9789 

3 0.5586 0.5925 0.6848 1.3189 0.5712 0.6038 0.6939 1.3240 

5 0.2039 0.2158 0.2485 0.4759 0.2056 0.2174 0.2498 0.4766 

8 0.0800 0.0847 0.0974 0.1861 0.0803 0.0849 0.0976 0.1862 

10 0.0513 0.0542 0.0624 0.1191 0.0514 0.0543 0.0625 0.1192 

15 0.0228 0.0241 0.0277 0.0529 0.0228 0.0242 0.0278 0.0530 

20 0.0128 0.0136 0.0156 0.0298 0.0129 0.0136 0.0156 0.0298 

30 0.0057 0.0060 0.0069 0.0132 0.0057 0.0060 0.0069 0.0132 

50 0.0021 0.0022 0.0025 0.0048 0.0021 0.0022 0.0025 0.0048 
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the bending rigidity increase according to Eq. 1. As a result, the strength of the material increases. 

It can be noticed that the results predicted by the modified couple stress theory (MCST) are always 

smaller than those of the classical beam theory (CBT). Further, the difference between the two 

results is remarkable for thin nanobeams with h/l < 10. Also, it is seen from Table 1 that with the 

decrease in the ratio of the ER, the difference between the results of the modified couple stress 

theory and classical beam theory decrease considerably. It shows that an increase in the material 

length scale parameter (h/l) leads to a decline on effects of size effect and difference between the 

results of MCST and CBT diminishes for h/l > 15. 

In Table 2, the maximum dimensionless vertical displacements of the edge cracked FGM 

nanobeam are presented with different the crack depth ratios (𝑎𝑟 ) and the dimensionless material 

length scale parameter (h/l) for modified couple stress theory and classical beam theory for point 

load Q = 5000 μN, L/h = 20, ER = 0.5, b = h and 𝜂 = 0.01. 

It is seen from Table 2, with the increase in the crack depth, the displacements increase, as 

expected. This is because by increasing the crack depth ratio, the beam becomes flexible. With the 

decrease in the crack depth, the difference between the results of the modified couple stress theory 

and classical beam theory decrease considerably. It shows that an increase in the material length 

 
 

Table 2 Maximum dimensionless of vertical displacements edge FGM nanobeam with different the crack 

depth ratios (𝑎𝑟) and the dimensionless material length scale parameter (h/l) for point load Q = 5000 

μN, L/h = 20, ER = 0.5, b = h and 𝜂 = 0.01 

 Modified couple stress theory  Classical beam theory 

h/l Intact 𝑎𝑟= 0.1 𝑎𝑟= 0.5 𝑎𝑟= 0.8 Intact 𝑎𝑟= 0.1 𝑎𝑟= 0.5 𝑎𝑟= 0.8 

2 0.1399 0.1461 0.2774 1.5209 0.1803 0.1865 0.3178 1.5613 

3 0.0710 0.0728 0.1321 0.6848 0.0801 0.0819 0.1412 0.6939 

5 0.0276 0.0282 0.0496 0.2485 0.0288 0.0295 0.0508 0.2498 

8 0.0111 0.0113 0.0197 0.0974 0.0113 0.0115 0.0199 0.0976 

10 0.0071 0.0073 0.0126 0.0624 0.0072 0.0074 0.0127 0.0625 

15 0.0032 0.0033 0.0056 0.0277 0.0032 0.0033 0.0056 0.0278 

20 0.0018 0.0018 0.0032 0.0156 0.0018 0.0018 0.0032 0.0156 

 

 
Table 3 Maximum dimensionless of vertical displacements edge FGM nanobeam with different the crack 

locations (𝜂) and the dimensionless material length scale parameter (h/l) for point load Q = 5000 μN, 

L/h = 20, ER = 0.5, b = h and ar = 0.8 

 Modified couple stress theory  Classical beam theory 

h/l Intact 𝜂 = 0.5 𝜂 = 0.3 𝜂 = 0.01 Intact 𝜂 = 0.5 𝜂 = 0.3 𝜂 = 0.01 

2 0.1399 0.4922 0.8303 1.5209 0.1803 0.5326 0.8707 1.5613 

3 0.0710 0.2276 0.3779 0.6848 0.0801 0.2367 0.3870 0.6939 

5 0.0276 0.0839 0.1380 0.2485 0.0288 0.0852 0.1393 0.2498 

8 0.0111 0.0331 0.0542 0.0974 0.0113 0.0333 0.0544 0.0976 

10 0.0071 0.0212 0.0347 0.0624 0.0072 0.0213 0.0348 0.0625 

15 0.0032 0.0095 0.0155 0.0277 0.0032 0.0095 0.0155 0.0278 

20 0.0018 0.0053 0.0087 0.0156 0.0018 0.0053 0.0087 0.0156 
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scale parameter (h/l) leads to a decline on effects of cracks in difference between the results of 

MCST and CBT. 

In Table 3, the maximum dimensionless vertical displacements of edge cracked FGM 

nanobeam are presented with different the crack locations (𝜂) and the dimensionless material 

length scale parameter (h/l) for modified couple stress theory and classical beam theory for Q = 

5000 μN, L/h = 20, ER = 0.5, b = h and ar = 0.8. 

It is seen from Table 3 that when the crack locations get closer to the left end of the beam, the 

displacements increase for cantilever beam. This is because the crack at the left end of the beam 

has a most severe effect in the cantilever beam. As stated before, the material parameter has a very 

important role on the static behavior of the edge cracked FGM nanobeams, and it should be 

considered in the static and dynamic analysis of nanobeams. Also, it is believed that the tabulated 

results will be a reference with which other researchers can compare their results. 

Also it is seen from Table 3 that increase in the material length scale parameter (h/l), the 

difference between results of the MCST and CBT decrease considerably for different ratio of the 

crack locations (𝜂). It is observed from tables that for the higher ratio of h/l, the classical cracked- 

beam theory can be used for the cracked problems of the nanoobeams. 

In order to investigate the effect of crack depth ratio (𝑎𝑟 ) on the results of MCST and CBT, the 

maximum dimensionless vertical displacements of edge cracked FGM nanobeam are presented 

with different crack depth ratio in both MCST and CBT for Q = 1000 μN, L/h = 20, ER = 0.1, h/l = 

3, b = h and 𝜂 = 0.01 in Fig. 5. 

As seen from Fig. 5 that with increase in the crack depth ratios (𝑎𝑟 ), the difference between 

results of the MCST and CBT increases. In small values of the crack depth ratios, the difference 

between results of the MCST and CBT decrease considerably. It is observed from Fig. 5 that for 

small values of the crack depth ratios, the classical cracked-beam theory can be used for the 

cracked problems of the nanobeams. 

In Fig. 6, the maximum dimensionless vertical displacements of the edge cracked FGM 

nanobeam are presented with different the crack depth ratios (𝑎𝑟 ) and the slenderness ratios (L/h) 
 

 

 
Fig. 5 Maximum dimensionless vertical displacements of edge cracked FGM nanobeam with different 

the crack depth ratios (𝑎𝑟) in both MCST and CBT for Q = 1000 μN, L/h = 20, ER = 0.1, h/l = 3, 

b=h and 𝜂 = 0.01 
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Fig. 6 Maximum dimensionless vertical displacements of edge cracked FGM nanobeam with different 

the crack depth ratios (𝑎𝑟) and the slenderness ratios (L/h) for Q = 1000 μN, h/l = 8, ER = 0.1, b 

= h and 𝜂 = 0.01 

 

 

on modified couple stress theory for Q = 1000 μN, h/l = 8, ER = 0.1, b = h and 𝜂 = 0.01. 

It is seen from Fig. 6 that with increase in the ratio of L/h, the difference among the crack depth 

ratios increase significantly. This is because by increasing the ratio of the L/h, the beam gets more 

flexible and makes more sensitive the cracks. It shows that the geometry properties have a very 

important role on the static behavior of the edge cracked nanobeams. 

In Fig. 7, the effects the crack locations (𝜂) on the results of MCST and CBT are plotted for Q= 

1000 μN, L/h = 20, ER = 0.1, h/l = 3, b = h and ar = 0.6. 
 

 

 
Fig. 7 Maximum dimensionless vertical displacements of edge cracked FGM nanobeam with different 

the crack locations (𝜂) in both MCST and CBT for Q = 1000 μN, L/h = 20, ER = 0.1, h/l = 3, b = 

h and 𝜂 = 0.01 
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It is seen from Fig. 7 that with decrease in the crack locations (𝜂), in other words, when the 

crack locations get closer to the left end of the beam, the difference between results of the MCST 

and CBT increases considerably. This is because the crack at the left end of the beam has a most 

severe effect in the cantilever beam. Therefore, the beam gets more flexible and makes more 

sensitive the cracks. The reasons for large difference between MCST and CBT in small values of 

the crack locations is by using the classical cracked-beam theory for the cracked nanobeams based 

on the modified couple stress theory (MCST). It is observed from Fig. 7 that in high values of the 

crack locations, in other words, when the crack locations get closer to the free end of the beam, the 

difference between results of the MCST and CBT decreases because the effect of the crack on the 

beam is low when the crack gets closer to the free end. 

In Fig. 8, the maximum dimensionless vertical displacements of the edge cracked FGM 

nanobeam are presented with different the crack locations (𝜂) and the slenderness ratios (L/h) on 

modified couple stress theory for Q = 1000 μN, h/l = 8, ER = 0.1, b = h and ar = 0.8. 

It is seen from Fig. 8 that with increase in the ratio of L/h, the difference among the crack depth 

ratios increase significantly. It is mentioned before that, because by increasing the ratio of the L/h, 

the beam gets more flexible and makes more sensitive the cracks. Also it seen from Fig. 8 that, 

with increase in the crack locations (𝜂), the difference among the results of the L/h decreases 

considerably as like the results of the Fig. 7. 

In order to investigate relationship between the effect of crack depth ratio (𝑎𝑟 ) and the material 

distribution, the maximum dimensionless vertical displacements (at the free end of the beam) of 

edge cracked FGM nanobeam are presented with different ratio of ER and ar on modified couple 

stress theory for Q = 1000 μN, L/h = 20, h/l = 8, b = h and 𝜂 = 0.01 in Fig. 9. 

It is seen from Fig. 9 that increases in the Young’s modulus ratio ER causes decrease in the 

displacements. When the Young’s modulus ratio ER increases, the elasticity modulus of the beam 

increases according to Eq. (1). Another result of the Fig. 9 that with the increase in Young’s 

modulus ratio ER, the differences of the crack depth ratio ar decrease seriously. This is because, an 

increase in the Young’s modulus ratio ER leads to an increase in the elasticity modulus and the 
 

 

 
Fig. 8 Maximum dimensionless vertical displacements of edge cracked FGM nanobeam with different 

the crack locations (𝜂) and the slenderness ratios (L/h) for Q = 1000 μN, h/l = 8, ER = 0.1, b = h 

and ar = 0.8 
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Fig. 9 Maximum dimensionless vertical displacements of edge cracked FGM nanobeam with different 

the crack depth ratios (𝑎𝑟) and the material distribution ratio (ER) for Q = 1000 μN, L/h = 20, h/l 

= 8, b = h and 𝜂 = 0.01 

 

 

bending rigidity. As a result, the strength of the material increases. Hence, the beam becomes more 

strength and the effect of the crack on the FGM nanobeam decreases. It shows that with the 

suitable choice of ER, the negative effects of the crack can be reduced. 

In Fig. 10, the maximum dimensionless vertical displacements of the edge cracked FGM 

nanobeam are presented with different the crack locations (𝜂) and the material distribution on 

modified couple stress theory for Q = 1000 μN, L/h = 20, h/l = 8, b = h and ar = 0.8. 

 

 

 
Fig 10 Maximum dimensionless vertical displacements of edge cracked FGM nanobeam with different 

the crack locations (𝜂) and the material distribution ratio (ER) for Q = 1000 μN, L/h = 20, h/l = 

8, b = h and ar = 0.8 
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It is observed from Fig. 10 that with the increase in Young’s modulus ratio ER, the differences 

of the crack locations decrease seriously. It is observed from results that the distribution of the 

material plays an important role on the mechanical behaviour of the FGM nanobeam. It shows that 

FGM is very effective for reducing the negative influence of the cracks. Also, it is observed from 

Fig. 10 that in high values of the crack locations, in other words, when the crack locations get 

closer to the free end of the beam, the difference between results of the ratio ER decreases because 

the effects of the crack on the beam diminish when the crack gets closer to the free end. 

Figs. 11, 12 and 13 display the effect of the material distribution, the crack depth and the crack 

location on the deflected shape of the beams for Q = 1000 μN, L/h = 20, h/l = 8, b = h. 

It is observed from Fig. 11 that with the increase in the ratio of the ER, the displacements 
 

 

 

Fig. 11 The effect of the material distribution ratio (ER) on the deflected shape of the FGM nanobeam 

for Q = 1000 μN, L/h = 20, h/l = 8, b = h 𝜂 = 0.2 and ar = 0.8 
 

 

 

Fig. 12 The effect of the crack depth ratios (𝑎𝑟) on the deflected shape of the FGM nanobeam for Q = 

1000 μN, L/h = 20, h/l = 8, b = h, 𝜂 = 0.2 and ER = 0.1. 
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Fig. 13 The effect of the crack locations (𝜂) on the deflected shape of the FGM nanobeam for Q = 1000 

μN, L/h = 20, h/l = 8, b = h, ar = 0.8 and ER = 0.1 

 

 

decrease, as expected. It is stated before that because of increasing the ratio of the ER, the elasticity 

modulus of the beam and the bending rigidity increase according to Eq. (1). As a result, the 

strength of the material increases. Clearly, by having a suitable material distribution of the FGM, 

the negative effect of the crack can be reduced. Evidently, Young’s modulus ratio ER plays a very 

important role in the mechanical response of the FGM nanobeam. 

From Fig. 12, it is seen that with the increase in the crack depth ratio, the displacement 

increases, as expected. This is due to the fact that increasing the crack depth ratio results in the 

increase of the flexibility of the FGM nanobeam. The results indicate that the cracks are very 

sensi t ive to the change in the mechanical  behaviour  of the FGM nanobeam. 

It is clearly seen from Fig. 13 that when the crack location gets closer to the left end (fixed end), 

the displacement of the FGM nanobeam increases, due to the fact that the crack at the fixed end 

has a most severe effect on the beam. So, when the crack location gets closer to the fixed end, the 

beam gets more flexible. It was mentioned previously that as the crack gets closer to the left end, 

the strength of the beam decreases. As can be seen, the crack location plays an important role in 

the static response of the FGM nanobeams. 

 

 

4. Conclusions 
 
This paper examines static bending of an edge cracked FGM cantilever nanobeam subjected to 

transversal point load at the free end based on the modified couple stress theory by using finite 

element method within the Euler-Bernoulli beam theory. Material properties of the beam change in 

the height direction according to exponential distributions. The cracked beam is modelled using a 

proper modification of the classical cracked-beam theory consisting of two sub-beams connected 

through a massless elastic rotational spring. The elastic deflections of the edge cracked nano 

beams are calculated and discussed for different crack positions, different lengths of the beam, 

different length scale parameter, different crack depths, and different material distributions. In 

order to establish the accuracy of the present formulation and results, the deflections are obtained, 

236



 

 

 

 

 

 

Bending of a cracked functionally graded nanobeam 

and compared with the published results available in the literature. Good agreement is observed. 

The primary purpose of this study is to fill this gap for FGM nanobeams. 
 

The following conclusions are reached from the obtained results: 
 

(1) With the suitable choice of material distribution, the negative effects of the crack can be 

reduced. 

(2) FGM is very effective for reducing the negative influence of the cracks. 

(3) The crack location and the crack depth play an important role in the static response of the 

FGM nanobeams. 

(4) It is found that the deflections of the FGM nanobeam by the classical beam theory are 

always larger than those by the modified couple stress theory. 

(5) The geometry properties and material parameter have a very important role on the static 

behavior of the edge cracked FGM nanobeams. 

(6) With increase in the material length scale parameter (h/l), the difference between results 

of the MCST and CBT decrease considerably for different ratio of the crack locations (𝜂) 

and the crack depth ratio (𝑎𝑟 ). 

(7) With increase in the ratio of h/l, the effects of the cracks on the static responses of the 

nano beams are decrease significantly. With increase in the ratio of h/l, the difference 

among the crack depth ratios diminishes. After a certain value of the ratio of h/l and L/h, 

the classical cracked-beam model can be used for the cracked problems of the 

nanobeams. 

(8) With increase in the crack locations (𝜂), the difference among the results of the L/h 

decreases considerably. 

(9) Young’s modulus ratio ER plays a very important role in the mechanical response of the 

FGM nanobeam. 

(10) For the smaller ratio of L/h, the modified couple stress theory must be used instead of the 

classical beam theory. 

(11) It is believed that the tabulated results will be a reference with which other researchers 

can compare their results. 
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Appendix 
 

The interpolation functions for axial degrees of freedom are 

 

𝜑 𝑈  𝑋 =  𝜑1
 𝑈  𝑋   𝜑2

 𝑈  𝑋  
𝑇

, (A1) 

 

Where 

 

𝜑1
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𝑋

𝐿e
+ 1 , (A2) 

 

𝜑2
 𝑈 
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𝑋

𝐿e
  (A3) 

 

The interpolation functions for transverse degrees of freedom are 

 

𝜑 𝑉  X =  𝜑1
 𝑉  X   𝜑2

 𝑉  X   𝜑3
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Where 𝐿e  indicates the length of the finite beam element. 
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