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Abstract.  A new nonlocal higher order shear deformation theory (HSDT) is developed for buckling properties of 

single graphene sheet. The proposed nonlocal HSDT contains a new displacement field which incorporates 

undetermined integral terms and contains only two variables. The length scale parameter is considered in the present 

formulation by employing the nonlocal differential constitutive relations of Eringen. Closed-form solutions for 

critical buckling forces of the graphene sheets are obtained. Nonlocal elasticity theories are used to bring out the small 

scale influence on the critical buckling force of graphene sheets. Influences of length scale parameter, length, 

thickness of the graphene sheets and shear deformation on the critical buckling force have been examined. 
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1. Introduction 
 

Nanotechnology is an emerging technology considering the characterization, design, production 

and application of materials, structures and systems within the control of matter on the nanometer 

length scale, that is, at the level of atoms and molecules. Mechanical analysis of nanostructures 

and nanocomposite has been reported by many researchers (Belkorissat et al. 2015, Kolahchi and 

Moniri Bidgoli 2016, Kolahchi et al. 2016a, b, 2017a, b, c, Madani et al. 2016, Ahouel et al. 2016, 

Bilouei et al. 2016, Arani and Kolahchi 2016, Besseghier et al. 2017, Bouafia et al. 2017, Bellifa 

et al. 2017a, Zamanian et al. 2017, Kolahchi and Cheraghbak 2017, Hajmohammad et al. 2017, 

Kolahchi 2017, Zarei et al. 2017, Shokravi 2017a, b, c, d, Karami et al. 2018a). In recent years, the 

single layered graphene sheets (SLGSs) was successfully prepared and it has triggered a novel 

wave of carbon materials investigation (Novoselov et al. 2004). 
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Experimental simulations on nanostructures are difficult, so most researchers employed 

theoretical formulation or numerical methods to investigate the nanomaterials (Eringen 1983). The 

classical continuum elasticity model was often employed in a very long time, which is a scale-

independent model and cannot capture the size influence of nanomaterials. But the small scale 

influence is very important in nanoscale structures, so several size-dependent continuum models 

were developed. However, the most employed continuum theory for investigating small scale 

structures is the nonlocal elasticity model proposed by Eringen (1983). In nonlocal elasticity 

model, the small scale influence is considered by supposing that the stress components at a point x 

is dependent not only on the strain components at the same point x but also on all other points in 

the domain. The nonlocal elasticity model has been widely employed in small scale materials, a 

number of investigations have been carried out on bending, vibration and buckling analysis of 

micro/nanostructures (Reddy and Pang 2008, Hashemi and Samaei 2011, Wang 2009, Mustapha 

and Zhong 2010, Eltaher et al. 2012, Berrabah et al. 2013, Benguediab et al. 2014, Besseghier et 

al. 2015, Zemri et al. 2015, Ebrahimi and Salari 2015, Chemi et al. 2015, Janghorban and Zare 

2011, Behravan Rad 2015, Larbi Chaht et al. 2015, Ghadiri and Jafari 2016, Ghorbanpour Arani et 

al. 2016, Jandaghian and Rahmani 2016, Akbaş 2016, Bennoun et al. 2016, Eltaher et al. 2016, 

Mehar et al. 2016, Bounouara et al. 2016, Janghorban 2016, Rakrak et al. 2016, Khetir et al. 2017, 

Mouffoki et al. 2017, Shahsavari et al. 2018, Karami et al. 2018b, c, Youcef et al. 2018). 

The Eringen’s nonlocal elasticity model is widely employed when investigating the nonlocal 

effect of SLGSs. Murmu and Pradhan (2009a) studied the dynamic response of SLGSs embedded 

in elastic medium based on nonlocal elasticity model. Babaei and Shahidi (2010) utilized the 

Galerkin procedure to analyse the nonlocal effect on the stability of quadrilateral nanoplates based 

on nonlocal elasticity theory. Murmu and Pradhan (2009b) discussed the stability of bi-axially 

compressed orthotropic nanoplates. Pradhan (2009a) examined the stability of SLGSs based on 

nonlocal elasticity and HSDT. Samaei et al. (2011) studied the buckling analysis of SLGSs 

embedded in elastic medium based on nonlocal Mindlin plate theory. Ghorbanpour Arani et al. 

(2012) presented a buckling analysis and smart control of SLGS using elastically coupled PVDF 

nanoplate based on the nonlocal Mindlin plate theory. Samaei et al. (2015) investigated the 

vibration of a graphene sheet embedded in an elastic medium with consideration of small scale 

effect. Alipour Ghassabi et al. (2017) presented for the first time a free vibration analysis of 

functionally graded rectangular nanoplates considering spatial variation of the nonlocal parameter. 

Mokhtar et al. (2018) presented a novel shear deformation theory for buckling analysis of single 

layer graphene sheet based on nonlocal elasticity theory. Sobhy (2014) presented a generalized 

two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions. 

Yazid et al. (2018) proposed a novel nonlocal refined plate theory for stability response of 

orthotropic single-layer graphene sheet resting on elastic medium. It is noted that in recent years 

various plate/shell theories (Rastgaar et al. 2006, Matsunaga 2008, Pradyumna and 

Bandyopadhyay 2008, Reddy 2011, Xiang et al. 2011, Shahrjerdi et al. 2011, Ait Amar Meziane et 

al. 2014, Yaghoobi et al. 2014, Ahmed 2014, Belabed et al. 2014, Hebali et al. 2014, Swaminathan 

and Naveenkumar 2014, Ait Yahia et al. 2015, Al-Basyouni et al. 2015, Hamidi et al. 2015, Hadji 

et al. 2015, Bellifa et al. 2016, Houari et al. 2016, Draiche et al. 2016, Bouderba et al. 2016, 

Akavci 2016, Bousahla et al. 2016, Aldousari 2017, Rahmani et al. 2017, Kar et al. 2018, 

Bouhadra et al. 2018, Attia et al. 2018) are developed and the need of proposing a new nonlocal 

HSDT is desired. Moreover, in many of the above mentioned HSDTs as in the CPT or the simple 

FSDT proposed by Thai and Choi (2013), the expression ∂w/∂x or ∂θ/∂x are present in the 

displacement field. Consequently, the numerical computation is harder to handle. Normally C-1-
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FEM is required. However, this can be changed if the displacement field is composed with 

undetermined integral terms as in this paper. 

In this work, the buckling of a single-layer graphene sheet in the presence of length scale is 

investigated based on a new nonlocal HSDT. Higher order plate model presents the kinematics 

better, does not use shear correction coefficient and yield more accurate interlaminar stress 

variations (Pradhan 2009b). In principle, it is possible to expand the displacement field in terms of 

the thickness coordinate up to any desired degree. However, because of the algebraic complexity 

and computational effort involved with higher order models in return for gain in accuracy, theories 

with higher number of variables have not been attempted. The consideration of the integral term in 

the displacement field led to a reducing in the number of unknowns and governing equations, thus 

saving computational time. Nonlocal elasticity theory by Eringen (1983) has been incorporated in 

the investigation. The effect of nonlocal parameter on the critical buckling load of the graphene 

sheets with different parameters such as length and thickness of the graphene sheets are examined 

in detail. 
 

 

2. Mathematical formulation 
 

The coordinate system employed for the graphene sheet is indicated in Fig. 1. 

Origin is selected at one corner of the middle surface of the graphene sheet. The x, y 

coordinates of the axes are considered along the length and width of the graphene sheet. 

zcoordinate is considered along the thickness of the graphene sheet. The kinematic of the proposed 

theory is expressed as follows (Bellifa et al. 2017b, Chikh et al. 2017, El-Haina et al. 2017, 

Menasria et al. 2017, Fourn et al. 2018, Younsi et al. 2018) 
 

dxyxzfk
x

w
zzyxu 



 ),()(),,( 1

0   (1a) 

 

dyyxzfk
y

w
zzyxv 



 ),()(),,( 2

0   (1b) 

 

),(),,( 0 yxwzyxw   (1c) 

 

where P(n) is the effective material characteristic of FGM of layer n. Pm and Pc present the 

 

 

 
 

(a) (b) 

Fig. 1 Model of single layered graphene sheet: (a) discrete model; (b) continuum model 
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property of the bottom and top faces of layer 1 (h0 ≤ z ≤ h1), respectively, and vice versa for layer 3 

(h2 ≤ z ≤ h3) depending on the volume fraction V(n) (n = 1, 2, 3). Note that Pm and Pc are, 

respectively, the corresponding properties of the metal and ceramic of the FGM sandwich plate. 

The volume fraction V(n) of the FGMs is assumed to obey a power-law function along the thickness 

direction (Taibi et al. 2015) 
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In this work, the shape function in Eq. (2) is expressed by a cubic function and assures an 

accurate distribution of shear deformation through the nanoplate thickness and allows to transverse 

shear stresses vary as parabolic across the thickness as satisfying shear stress free surface 

conditions without using shear correction factors. Indeed, it should be mentioned that contrary to 

the first shear deformation theory (FSDT), the proposed theory does not require shear correction 

factors. The kinematic relations can be expressed as follows 
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and 
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The integrals defined in the above equations shall be resolved by a Navier type technique and 

can be expressed as follows 
 

,' 
2

yx
Adx

y 










    ,' 

2

yx
Bdy

x 










    ,' 

x
Adx






    

y
Bdy






 '  (5) 

 

where the coefficients A′ and B′ are given according to the type of solution employed, in this case 

using Navier method. Therefore, A′ and B′ are written as follows 
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where α and β are defined in expression (18). 
 

2.1 Governing equations 
 

Principle of virtual work can be applied to determine the governing equations of the graphene 

sheet. Using the principle of virtual displacements (Bousahla et al. 2014, Bourada et al. 2015, 

Mahi et al. 2015, Beldjelili et al. 2016, Abdelaziz et al. 2017, Belabed et al. 2018, Kaci et al. 

2018), the following governing equations can be obtained 
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where the stress resultants M and S are defined by 
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2.2 Nonlocal theory and constitutive relations 
 

Unlike the local theory, the nonlocal theory of elasticity assumes that the stress at a point is 

related not only to the strain at that point but also to strains at all other points of the body. Based 

on work proposed by Eringen (1983), the nonlocal stress tensor σ at point x is expressed by 

 

  2  (10) 

 

where τ is local stress tensor at a point x defined versus the strain by the Hooke’s law; μ is the 

scale parameter which introduces the small scale effect. 

 

2.3 Stress resultants 
 

For a graphene sheet, the nonlocal constitutive relation in Eq. (10) takes the following forms 
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where (σx, σy, τxy, τyz, τyx) and (εx, εy, γxy, γyz, γxz) are the stress and strain components, respectively. 

By substituting Eq. (3) into Eq. (11) and the subsequent results into Eq. (8), the stress resultants 

are obtained as 
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By substituting Eq. (3) into Eq. (11) and the subsequent results into Eq. (8), the stress resultants 

are obtained as 
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where 𝐷𝑖𝑗 , 𝐷𝑖𝑗
𝑠  etc., are the plate stiffness, defined by 
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2.4 Governing equations in terms of displacements 
 

The nonlocal governing equations of the proposed plate theory can be expressed in terms of 

displacements (w0, θ) by substituting stress resultants in Eq. (13) into Eq. (7) as 
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where dij, dijl and dijlm are the following differential operators 
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3. Analytical solutions 
 

A simply supported rectangular nanoplate with length a and width b is considered here. Based 

on Navier method, the following expansions of generalized displacements are chosen to 

automatically satisfy the simply supported boundary conditions 
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where Wmn and Xmn are arbitrary coefficients to be determined, 

and 
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By substituting Eq. (17) into Eq. (16) we obtain some results that concern the buckling of 

nanoplate subjected to a system of uniform in-plane compressive loads 𝑁𝑥
0 and 𝑁𝑦

0 (𝑁𝑥𝑦
0

 = 0). 

Assuming that there is a given ratio between these forces such that 𝑁𝑥
0 = −𝑁0  and 

𝑁𝑦
0 = −𝛾𝑁0; 𝛾 = 𝑁𝑦

0/𝑁𝑥
0 (here 𝛾 is non-dimensional load parameter), we get 
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where {Δ} denotes the column 
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The critical buckling loads (Ncr) can be obtained from the stability problem |K| = 0. 
 

 

4. Results and discussion 
 

First, it should be noted that the present theory is already applied to other type of structures 

such as laminated composite plates (Merdaci et al. 2016) and functionally graded plates (Hebali et 

al. 2016) where the accuracy and usability of the proposed plate theory is clearly demonstrated. 

Thus, in this work, this theory is extended to study the buckling response of nanoplate. 

It can be observed from Eq. (21) that the percentage difference in buckling forces computed via 

local and nonlocal elasticity theory will depend on (i) size of the graphene sheet, (ii) mode of 

buckling and (iii) scale parameter. In the present study the graphene sheet is assumed to be a 

square graphene sheet. Buckling load ratio is defined as the ratio of the buckling load determined 

by employing nonlocal elasticity to that computed using local elasticity theory (μ = 0). For various 

scale parameters and lengths of the graphene sheet the buckling load ratios are presented in Fig. 2. 

The obtained results are compared with those given using the nonlocal HSDT developed by 

Pradhan (2009a, b). It can be seen from the examination of this figure that the present HSDT 
 

 

 

Fig. 2 Variation of buckling load ratio with the length of a square nanoplate for various nonlocal parameters 
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with only two unknowns give the same results to those predicted by HSDT developed by Pradhan 

(2009a, b) involving three unknowns. Further, from this example it can be seen that lower buckling 

load ratio is determined at higher values of scale parameter. In other words, classical elasticity 

model (μ = 0) over predicts buckling loads. So if classical elasticity results are employed for 

experimental prediction of Young’s modulus, the value will be under determined. Further it can be 

seen that as length increases, buckling load ratio increases. This remark is attributed to the fact that 

scale effect is more important in the case of small nanolengths. 

Fig. 3 presents buckling load ratio for different lengths of the graphene sheet and different 

modes of buckling. The value of scale parameter (μ) is considered to be 2 nm2. It can be observed 

that the buckling load ratios diminish with increasing the buckling modes. This reveals that scale 

parameter is more important in higher buckling modes. Values of elastic modulus E = 1.02 TPa, 

thickness of graphene sheet h = 0.34 nm and Poisson’s ratio ν = 0.3 have been employed in the 

above investigation. However, the increase of the length of the graphene sheet leads to a reduction 

of the buckling load ratio. 

 

 

  

(a) (b) 

Fig. 3 Variation of buckling load ratio with length of a square graphene sheet for various modes of 

buckling for (a) m = n; and (b) m ≠ n 

 

 

 

Fig. 4 Variation of buckling load ratio with scale parameter for various length of a square graphene sheet 
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5. Conclusions 
 

Equations of stability of a refined two variable plate theory are obtained based on Eringen’s 

differential constitutive equations of nonlocal elasticity. By considering further simplifying 

suppositions to the existing HSDTs and with the incorporation of an undetermined integral term, 

the number of variables and governing equations of the developed HSDT are diminished by one, 

and hence, make this model simple and efficient to utilize. The governing equations are then 

analytically solved to determine analytical solution for buckling loads of all edges simply 

supported graphene sheets. Influences of scale parameter and length of the graphene sheet on 

buckling load ratio based on the nonlocal elasticity model are examined. Buckling load ratio 

diminishes with increasing buckling mode number. As the size of the graphene sheet diminishes 

the influence of nonlocal elasticity becomes more important and predicts smaller buckling load 

ratio. This is more considerable for higher modes. The practical utilities of this theory are: (1) there 

is no need to use a shear correction factor; (2) the finite element model based on this model will be 

free from shear locking since the classical plate theory comes out as a special case of the proposed 

theory; and (3) the theory is simple and time efficient due to involving only four unknowns as 

opposed to five numbers in the case of FSDT or other HSDTs. In conclusion, it can be said that the 

proposed model is accurate and efficient in predicting the buckling response of the graphene sheet. 
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