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Abstract.  Forced vibration behavior of porous metal foam nanoplates on elastic medium is studied via a 4-variable 

plate theory. Different porosity distributions called uniform, symmetric and asymmetric are considered. Nonlocal 

strain gradient theory (NSGT) containing two scale parameters is employed for size-dependent modeling of porous 

nanoplates. The present plate theory satisfies the shear deformation effect and it has lower field variables compared 

with first order plate theory. Hamilton’s principle is employed to derive the governing equations. Obtained results 

from Galerkin’s method are verified with those provided in the literature. The effects of nonlocal parameter, strain 

gradient, foundation parameters, dynamic loading, porosity distributions and porosity coefficient on dynamic 

deflection and resonance frequencies of metal foam nanoscale plates are examined. 
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1. Introduction 
 

Lightweight materials have been broadly applied in many engineering sciences due to their 

eligible stiffness with respect to their weight. Porous materials, such as metal foams, are an 

important category of lightweight materials with application to aerospace engineering, automotive 

industry and civil constructions owning to supreme multi-functionality offered by low specific 

weight, efficient capacity of energy dissipation and enhanced machinability. Usually, the variation 

of porosity through the thickness of porous plates causes a smooth change in mechanical 

properties. Therefore, this type of materials has received broad interest by some researchers. 

Jabbari et al. (2013) examined porosity distribution effect on buckling characteristics of 

saturated porous plates. Chen et al. (2015) studied static bending and buckling of metal foam 

porous beams with functionally graded porosities using a shear deformation beam model. In 

another work, Chen et al. (2016) explored linear and nonlinear vibration behavior of metal foam 

beams with different porosity distributions. They stated that uniform and non-uniform porosity 

distributions have a significant influence on vibration frequencies of the plates due to the reduction 

in their stiffness. 

Distinguished from the investigations related to the uniform and graded (non-uniform) porosity 

distribution effects on mechanical characteristics of metal foam beams and plates, some studies 
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have been performed on porous ceramic-metal or porous functionally graded (FG) structures. The 

latter is a different case in which the material properties are graded in the thickness direction based 

on the well-known power-law model considering the volume fraction of porosities. For example, 

Wattanasakulpong and Ungbhakorn (2014) employed a modified power-law function to describe 

the FG material properties with application to vibration analysis of porous beams. Also, Atmane et 

al. (2015) explored vibration and buckling characteristics of FG beams having porosities using 

higher order shear deformation theories. 

Moreover, considerable progression in the utilization of structural elements such as beams and 

plates with micro and nano scales in micro/nano electro-mechanical systems (MEMS/NEMS), due 

to providing outstanding mechanical, chemical, and electronic characteristics, led to a sudden 

momentum in modeling of micro and nano scale structures. In these applications, size effects 

become prominent. The problem in using the classical theory is that the classical continuum 

mechanics theory does not take into account the size influence in nanosize structures. The classical 

continuum mechanics over predicts the responses of micro/nano structures. So a new form of 

continuum mechanics that captures small scale effect is required. The most commonly used 

continuum mechanics theory is proposed by Eringen (1983) known as nonlocal theory of elasticity. 

The theory includes the influences of small size with good accuracy to model micro/nano scale 

devices and systems. Several studies have been conducted extending nonlocal model to predict the 

mechanical responses of the nanostructures (Eltaher et al. 2016, Natarajan et al. 2012, Elmerabet 

et al. 2017, Tounsi et al. 2013, Barati et al. 2016, Zenkour and Abouelregal 2015, Kheroubi et al. 

2016, Sobhy and Radwan 2017, Li et al. 2016a, Besseghier et al. 2015, Ebrahimi and Barati 2016, 

2017a). 

Searching the literature reveals that there is no published paper on metal foam nanoplates with 

the effect of porosity distribution. However, there are some published papers on analysis of 

mechanical behaviors of porous FG nanostructures based on modified power-law function. 

Mechab et al. (2016) examined vibrational characteristics of porous FG nanoplates resting on 

elastic medium using a higher order refined plate theory. Barati (2017a) explored forced vibration 

behavior of FG nanobeams with porosities under dynamic loads and resting on an elastic 

foundation. In another study, Ebrahimi and Barati (2017b) presented vibration analysis of porous 

FG nanobeams under magneto-electric field. 

It is known that the Mindlin’s plate theory suggests a displacement field having a linear 

configuration involving shear correction factors. Reddy (1984) proposed a third-order plate model 

which satisfies the lateral shear strains without the need for shear correction coefficients. Even 

though, new HSDTs possessing four field variables can produce sufficiently accurate results (Park 

et al. 2016, Javed et al. 2016, Becheri et al. 2016). The proposed theory contain fewer unknowns 

and equations of motion than the first-order and third order shear deformation theories, but satisfy 

the equilibrium conditions at the top and bottom surfaces of the plate without using any shear 

correction factors. Indeed, unlike the previous mentioned theories, the governing equations in the 

present theory are similar to the CPT. 

Recently, nonlocal strain gradient theory (NSGT) is developed to consider both stiffness 

reduction and stiffness enhancement mechanisms in modeling and analysis of nanostructures (Lim 

et al. 2015). In fact, NSGT is a more reliable theory compared with nonlocal elasticity theory 

(NET) in which strain gradient effects have been ignored. Therefore, nonlocal elasticity theory 

used in previous studied is impotent to capture microstructure-dependent or strain gradient based 

behavior of nanoscale structures. In last two years, the works of present author and some other 

researchers is focused on the mechanical analysis of nanostructures (Barati and Zenkour 2017, Li 
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and Hu 2016, Li et al. 2016b, Xiao et al. 2017, Zhou and Li 2017). 

In this research, forced vibration analysis of double-layered metal foam nanoplates with 

porosities is carried out applying a 4-unknown plate model considering exact location of neutral 

surface and different porosity distributions. Size-dependency of nanoplate is describe via a general 

nonlocal strain gradient theory with two scale parameters. Uniform, symmetric and asymmetric 

distributions of porosity have been considered. The present non-polynomial shear deformation 

theory possesses only four field variables and doesn’t require a correction factor. Galerkin’s 

approach is implemented to solve the governing equations. It is shown that the dynamic deflection 

and resonance frequencies of porous nanoplates are significantly affected by porosities coefficient, 

porosity distribution, nonlocality, strain gradients, elastic foundation constants and dynamic 

loading. 
 

 

2. Modeling of nanoplates based on NSGT 
 

Based on NSGT, the stress field is divided into a nonlocal stress 
)0(

ij  and a higher order stress 

field 
)1(

ij  as (Barati and Zenkour 2017) 
 

(0) (1)
ij ij ij     (1) 

 

in which the stresses )0(
ij  and 

)1(
ij  are corresponding to strain εij and strain gradient εij, 

respectively as 

(0)
0 0( , , ) ( )ijkl klij

V
x x e a x dxC        (2a) 

 

(1) 2
1 1( , , ) ( )ijkl klij

V
l x x e a x dxC        (2b) 

 

in which Cijkl are the elastic coefficients and e0a and e1a capture the nonlocal effects and l captures 

the strain gradient effects. When the nonlocal functions α0 (x, x′, e0a) and α1 (x, x′, e1a) satisfy the 

developed conditions by Eringen, the constitutive relation of nonlocal strain gradient theory has 

the following form 
 

2 2 2 2 2 2 2 2 2 2

1 0 1 0[1 ( ) ][1 ( ) ] [1 ( ) ] [1 ( ) ]ijkl kl ijkl klije a e a e a l e aC C             (3) 
 

in which 2 denotes the Laplacian operator. Considering e1 = e0 = e, the general constitutive 

relation in Eq. (3) becomes 
 

2 2 2 2[1 ( ) ] [1 ]ijkl klijea lC       (4) 

 

 

3. Porous nanoplate model with different porosity distributions 
 

Assume a rectangular porous nanoplate with thickness h as illustrated in Figs. 1 and 2. 

Different types of porosity distribution have been considered: (1) uniform distribution; (2) non-

uniform distribution 1 (symmetric); (3) non-uniform distribution 1 (asymmetric). 

In the case of non-uniform distribution 1, the lowest values of elasticity moduli and mass 

density occur at the mid-plane of the nanoplate due to the largest size of nano-pores; while the 

395



 

 

 

 

 

 

Mohammad Reza Barati 

  

(a) Non-uniform porosity distribution 1 (b) Non-uniform porosity distribution 2 
 

 

(c) Uniform porosity distribution 

Fig. 1 Porosity distributions in the thickness direction 

 

 

 

Fig. 2 Configuration of porous nanoplate under dynamic load 

 

 

highest values of elasticity moduli and mass density occur at the top and bottom sides. In the case 

of non-uniform distribution 2, the elasticity moduli and mass density change gradually from their 

highest values at the top surface to a lowest value at bottom surface. The mechanical properties of 

a saturated porous nanoplate with different types of porosity distributions can be expressed by 

(Chen et al. 2016) 
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 Uniform porosity distribution 
 

2 0(1 )E E e    (5a) 

 

2 0(1 )G G e    (5b) 

 

2 0(1 )e     (5c) 
 

 Non-uniform distribution 1 
 

2 0( ) (1 cos )
z

E z E e
h

 
   

 
 (6a) 

 

2 0( ) (1 cos )
z

G z G e
h

 
   

 
 (6b) 

 

2( ) (1 cos )m

z
z e

h


 

 
   

 
 (6c) 

 

 Non-uniform distribution 2 
 

2 0( ) (1 cos )
2 4

z
E z E e

h

  
   

 
 (7a) 

 

2 0( ) (1 cos )
2 4

z
G z G e

h

  
   

 
 (7b) 

 

2( ) (1 cos )
2 4

m

z
z e

h

 
 

 
   

 
 (7c) 

 

where E2, G2 and ρ2 are the maximum values of elasticity moduli, shear moduli and mass density; 

e0 and em are the coefficients of porosity and mass density, respectively defined by 
 

2 2
0

1 1

1 1
E G

e
E G

     (8a) 

 

2

1

1me



   (8b) 

 

Also, em can be determined based on the typical mechanical properties of an open-cell metal 

foam as 
2

2 2

1 1

E

E





 
  
 

 (9a) 
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01 1me e    (9b) 

 

In the case of uniform porosity distribution, the material properties are constant through the 

thickness direction and they are only dependent on porosity coefficient e0. Then, the coefficient χ is 

expressed by 
2

0

0 0

1 1 2 2
1 1e

e e


 

 
     

 
 (10) 

 

Assuming four field variables, the displacement field of the nanoplate can be supposed as 
 

    *

1

**, , , , , ( ) [ ( ) ]b sw w
f z z

x
u x y z t u x y t z z

x
 

 
 

 
 (11a) 

 

    *

2

**, , , , , ( ) [ ( ) ]b sw w
f z z

y
u x y z t v x y t z z

y
 

 
 

 
 (11b) 

 

3( , , , ) ( , , ) ( , , ) ( , , )b su x y z t w x y t w x y t w x y t    (11c) 

 

where 

 
/2

* /2

/2

/2

( )

( )

h

h

h

h

E z zdz
z

E z dz










,

    

/2

** /2

/2

/2

( ) ( )

( )

h

h

h

h

E z f z dz
z

E z dz








  

(12) 

 

Also, u and v are in-plane displacements and wb and ws denote the bending and shear transverse 

displacement, respectively. Actually, this theory divides the total deflection of the plate into the 

bending and shear deflections. The shape function of transverse shear deformation is supposed as 
 

3

2

5
( )

4 3

z z
f z

h
    (13) 

 

It is now possible to obtain the strains based upon the present plate model as 
 

2 2
* **

2 2

2 2
* **

2 2

2 2
* **

( ) [ ( ) ]

( ) [ ( ) ]

2( ) 2[ ( ) ]

,( ) ( )

x

y

xy

y

b s

b s

b s

s s
z xzg

w wu
z z f z z

x x x

w wv
z z f z z

y y y

w wu v
z z f z z

z

y x x y x y

w w

x
g z

y







 

 
   

  

 
   

  

  
    











    

 

 
  

 
(14) 

 

Now, Hamilton’s principle can be written as 
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0
( ) 0

t

U T V dt     
(15) 

 

here, U is strain energy, T is kinetic energy and V is work done by external forces. The first 

variation of the strain energy can be calculated as 
 

(1) (1) (1)

(1) (1)

(

)

xx xx xx xx yy yy yy yy xy xy xy xy
V

yz yz yz yz xz xz xz xz

U

dV

                  

           

        

     

  (16) 

 

in which ζij are the components of the stress tensor and εij are the components of the strain tensor. 
 

2 2

2 20

2 2 2

2 2

2

0
[ [ ] [ ]

( ) 2

2 ]

b
b sb s

xx xx xx yy

b s bb s b
yy yy xy xy

s s s s
xy yz xz

a w wu w w v w w

x x x x x y y y

w w wu v w w w w
M M N M

y y y x x y y x x y

w w w
M Q Q dydx

x y y x

U N M M N
    

     

  


      

  
       

       
      

         

  
  

   

  

 
(17) 

 

in which 

 
/2

0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0

/2

( )

( )

( )

( )

(

h

xx xx xx xx xx
h

h

xy xy xy xy xy
h

h

yy yy yy yy yy
h

h
b b b

xx xx xx xx xx
h

h
s

xx xx xx
h

N dz N N

N dz N N

N dz N N

M z dz M M

M f

 

 

 

 

 











   

   

   

   

 










(1) (0) (1)

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

/2
0 (1) (

/2

)

( )

( )

( )

( )

s s

xx xx

h
b b b

yy yy yy yy yy
h

h
s s s

yy yy yy yy yy
h

h
b b b

xy xy xy xy xy
h

h
s s

xy xy xy xy
h

dz M M

M z dz M M

M f dz M M

M z dz M M

M f dz M

 

 

 

 









 

   

   

   

  








0) (1)

/2
0 (1) (0) (1)

/2

/2
0 (1) (0) (1)

/2

( )

( )

s

xy

h

xz xz xz xz xz
h

h

yz yz yz yz yz
h

M

Q g dz Q Q

Q g dz Q Q

 

 







   

   




 

(18a) 

 

where 
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0 1
0 0

2 3

( ) ( )
[ ( ) (

) ( ) (

a b
b s b s b b b

b s s s s b b b b

w w w w w w wu u v v u u v
K I I

t t t t t t t x t x t t t y t

w w w w w w w w wv u u v v
I I

y t t t x t x t t t y t y t t x t x t y t y

    


     

            
     

              

            
      
                     

 

4 5

)

( ) ( )]s s s s b s s b b s s b

t

w w w w w w w w w w w w
I I dydx

x t x t y t y t x t x t x t x t y t y t y t y t

     


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     
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 
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 

 

 
(18b) 

 

in which (ij = xx, xy, yy). The first variation of the work done by applied forces can be written as 
 

0 0

0 0

0

( ) ( ) ( ) ( )
(

( ) ( )
2 ( )( ) ( )

( ) ( ) ( ) ( )
( ))

a b
b s b s b s b s

x y

b s b s
xy w dynamic b s b s

b s b s b s b s
p

w w w w w w w w
V N N

x x y y

w w w w
N k q w w w w

x y

w w w w w w w w
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x x y y

 


 

 

       
 

   

   
    

 

       
 

   

 

 
(19) 

 

where 
000 ,, xyyx NNN  are in-plane applied loads; kw and kp are Winkler and Pasternak constants. Also, 

qdynamic is the transverse force due to applied dynamic load. The first variation of the kinetic energy 

can be written in the following form 
 

 (20) 

 

in which 
 

 
(21) 

 

By inserting Eqs. (17)-(20) into Eq. (15) and setting the coefficients of δu, δv, δwb and δws to 

zero, the following Euler–Lagrange equations can be obtained. 
 

3 32
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(22a) 

 
3 32

0 1 32 2 2

xy y b s
N N w wv

I I I
x y t y t y t

   
   

      

 
(22b) 

 

/2
* * 2 ** * ** ** 2

0 1 2 3 4 5
/2

( , , , , , ) (1, , ( ) , , ( )( ), ( ) ) ( )
h

h
I I I I I I z z z z f z z z f z f z z dz


      

400



 

 

 

 

 

 

Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with... 

2 22
2

mi2 2

2 2 23 3
2 2

0 1 2 42 2 2 2 2

2 ( ) ( )

( )
( ) ( ) ( )

b bb
xy yx

w b s p b s dyna c

b s b s

M MM
k w w k w w q

x x y y

w w w wu v
I I I I

t x t y t t t

 
       

   

    
       

      

 (22c) 

 
2 22

mi2 2

2 2 23 3
2 2 2

0 3 4 52 2 2 2 2

2 ( )

( )
( ) ( ) ( ) ( )

s ss
xy y yzx xz

w b s dyna c

b s b s
p b s

M M QM Q
k w w q

x x y y x y

w w w wu v
k w w I I I I

t x t y t t t

   
      

     

    
         

      

 
(22d) 

 

The classical and non-classical boundary conditions can be obtained in the derivation process 

when using the integrations by parts. Thus, we obtain classical boundary conditions at x = 0 or a 

and y = 0 or b as 
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 nx and ny are the x and y-components of the unit normal vector on the 

nanoplate boundaries, respectively and the non-classical boundary conditions are 
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Based on the NSGT, the constitutive relations of presented higher order nanoplate can be stated 

as 
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(24) 

 

Integrating Eq. (24) over the plate thickness, one can obtain the force-strain and the moment-

strain of the nonlocal refined plates can be obtained as follows 
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(29) 

 

The governing equations in terms of the displacements for a NSGT refined four-variable 

nanoplate can be derived by substituting Eqs. (25)-(28), into Eq. (22) as follows 
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4. Solution procedure 
 

In this section, Galerkin’s method is implemented to solve the governing equations of nonlocal 

strain gradient based double-layered nanoplates. Thus, the displacement field can be calculated as 
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where (Wbmn, Wsmn) are the unknown coefficients and the functions Xm and Yn satisfy the boundary 

conditions. The classical and non-classical boundary condition based on the present plate model 

are 
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(34) 

 

By substituting Eqs. (32) and (33) into Eqs. (30) and (31), and using the Galerkin’s method, one 

obtains 
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in which ωex is the excitation frequency and the components of mass and stiffness matrices are 

presented in Appendix. 
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Finally, setting the coefficient matrix to zero gives the natural frequencies. The function Xm for 

simply-supported boundary conditions is defined by 
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𝑋𝑚  𝑥 = sin(𝜆𝑚𝑥) 

𝜆𝑚 =
𝑚𝜋

𝑎
 

(37) 

 

The function Yn can be obtained by replacing x, m and a, respectively by y, n and b. It is 

supposed that the dynamic load is distributed uniformly acting harmonically along a straight line 

leading to forced vibration and is expressed by the following form 
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in which Qn are the Fourier coefficients and q(x) = q0 is the uniform load density; x0 and y0 are the 

centroid coordinate. Solution of Eq. (35) gives the bending (Wbn) and shear (Wsn) components of 

transverse displacement. The dynamic deflection of a higher order refined nanoplate can be 

obtained by W = Wbn + Wsn. The dimensionless excitation frequency and forced vibration amplitude 

are defined as 
3

2 2

4

2 0

ρ 10
ω ,

E
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E h
a W W

a q
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5. Numerical results and discussions 
 

In this section, results are presented for forced vibration study of size-dependent porous 

nanoplates modeled via a 4-unknown plate model and NSGT. The nanoplate is subjected to a 

uniform dynamic load shown in Fig. 3. First of all, the frequency response of the present study is 

validated with those of classical nanoplate model with graded material properties obtained by 

Natarajan et al. (2012) through finite element approach. These results are tabulated in Table 1 for 

fully simply-supported edge conditions and a good agreement is observed. In the present study, the 

material properties of metal foam nanoplate are considered as 
 

 𝐸2 = 200 GPa, 𝜌2 = 7850 kg/m3, 𝑣 = 0.33, 
 

Fig. 4 shows the influence of strain gradient parameter (λ) and nonlocality parameter (µ) on the 

dynamic deflection and resonance frequencies of porous nanoplates versus excitation frequency at 

a/h = 10, e0 = 0.5 and Kw = Kp = 0. It is evident that dynamic deflection of the nanoplate is 

prominently affected by the magnitude of excitation frequency of dynamic load. In fact, dynamic 

deflection increases smoothly with the increase of excitation frequency. At a certain value of 

excitation frequency, a notable increase in deflection of nanoplate is observed. The reason is that 

the excitation frequency of dynamic load coincides with the natural frequency of the nanoplate 

leading to the resonance phenomena. Resonance frequencies of a macro scale plate are obtained by 

setting µ = λ = 0. Also, setting λ = 0 results in the analysis of a nanoplate via nonlocal elasticity 
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Fig. 3 The top view of nanoplate and location of dynamic load 

 

 
Table 1 Comparison of non-dimensional fundamental natural frequency of nanoplates 

with simply-supported boundary conditions 

a/h µ 
a/b = 1 a/b = 2 

Natarajan et al. (2012) Present Natarajan et al. (2012) Present 

10 

0 0.0441 0.043823 0.1055 0.104329 

1 0.0403 0.04007 0.0863 0.085493 

2 0.0374 0.037141 0.0748 0.074174 

4 0.0330 0.032806 0.0612 0.060673 

20 

0 0.0113 0.011256 0.0279 0.027756 

1 0.0103 0.010288 0.0229 0.022722 

2 0.0096 0.009534 0.0198 0.019704 

4 0.0085 0.008418 0.0162 0.016110 

 

 

  

(a) λ = 0 (b) λ = 0.1 

Fig. 4 Dimensionless amplitude of the nanoplate versus excitation frequency for different nonlocal 

and strain gradient parameters (a/h = 10, Kw = 0, Kp = 0, e0 = 0.5) 
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(c) λ = 0.2 

Fig. 4 Continued 
 

 

theory neglecting strain gradient effects. One can see that nonlocal coefficient provides a stiffness 

reduction mechanism leading to smaller resonance frequencies and larger dynamic deflections for 

all values of strain gradient coefficient. But, a different mechanism is introduced by strain gradient 

coefficient. Therefore, increasing in strain gradient coefficient results in larger resonance 

frequencies. The competition between these two scale parameters clarifies the importance of 

presented nonlocal strain gradient theory. For example, obtained frequencies are respectively 

smaller and larger than that of classical elasticity theory at λ < µ and λ > µ. Such important facts 

must be considered in analysis of nanoplates. 
 

 

  

(a) Uniform distribution (b) Non-uniform distribution 1 

Fig. 5 Dimensionless amplitude of the nanoplate versus excitation frequency for different porosity 

distributions (a/h = 10, Kw = 0, Kp = 0, µ = 0.2, λ = 0.1) 
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(c) Non-uniform distribution 2 

Fig. 5 Continued 
 

 

Porosity effect on the dynamic deflection and resonance frequencies of porous nanoplates with 

respect to excitation frequency is presented in Fig. 5 at µ = 0.2, Kw = 0 and Kp = 0. An increase in 

porosity coefficient yields larger resonance frequencies for nanoplates with porosity distribution 1 

while lower resonance frequencies for nanoplates with uniform porosities and distribution 2. 

Obtained results show that as the porosity coefficient increases, the nanoplate with porosity 

distribution 1 has the highest resonance frequency whereas the results of the nanoplates with 

uniform porosity distribution and graded porosity distribution 2 are quite close. This indicates that 

the nanoplate with symmetrically distributed porosity can achieve the highest plate stiffness 
 

 

  

(a) Kp = 0 (b) Kp = 2 

Fig. 6 Dimensionless amplitude of the nanoplate versus excitation frequency for various foundation 

constants and uniform porosity distribution (a/h = 10, µ = 0.2, e0 = 0.5) 

407



 

 

 

 

 

 

Mohammad Reza Barati 

 

(c) Kp = 5 

Fig. 6 Continued 
 

 

 

Fig. 7 Dimensionless amplitude of the nanoplate versus excitation frequency according to the classical 

and present plate theories (µ = 0.2, λ = 0.1, Kw = 25, Kp = 5, e0 = 0.5) 

 

 

hence the best mechanical performance. Therefore, porosity distribution has a major role on 

vibration behavior and should be considered in dynamic analysis of nanoplates. 

In Fig. 6, the effects of Winkler-Pasternak constants on dynamic deflection and resonance 

frequencies of porous nanoplates with uniform porosities are demonstrated when a/h = 10, e0 = 0.5, 

µ  = 0.2 and λ = 0.1. One can see that resonance frequencies are dependent on the magnitudes of 

both Winkler and Pasternak coefficients. Increasing in Winkler and Pasternak coefficients yields 

enhancement of the bending rigidity and resonance frequency of system. Since Pasternak layer has 

a continuous interaction with nanoplates, its effect on resonance frequencies is more sensible 

compared with Winkler layer. 
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A comparison between the dynamic deflection and resonance frequencies of the nanoplate 

based on classical and higher order refined plate theory is presented in Fig. 7 at e0 = 0.5, Kw = 25, 

Kp = 5. It is well-known that classical plate theory is unable to consider shear deformation effects. 

Thus, dynamic deflections in pre-resonance region obtained based on classical plate model are 

smaller than that of refined plate theory. In other words, classical plate theory gives larger 

resonance frequencies than refined theory. Therefore, analysis of forced vibration of nanoplates 

based on higher order refined theories is more reliable than classical plate theory. 

A study on the effects of dynamic load area (a0/a, b0/b) and location (x0/a) on non-dimensional 

deflection of porous nanoplate with respect to excitation frequency is performed in Figs. 8 and 9, 
 

 

 

Fig. 8 Dimensionless amplitude of the nanoplate versus excitation frequency according to various 

location of dynamic load (µ= 0.2, λ = 0.1, Kw = 25, Kp = 5, e0 = 0.5) 

 

 

 

Fig. 9 Dimensionless amplitude of the nanoplate versus excitation frequency according to various 

area of dynamic load (µ = 0.2, λ = 0.1, Kw = 25, Kp = 5, e0 = 0.5) 
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respectively. In these figures, it is considered that a/h = 10, Kw = 25, Kp = 5, µ = 0.2, λ = 0.1 and e0 

= 0.5. It can be observed that as the transverse load moves away from the boundaries, the dynamic 

deflection enlarges. In fact, the region of frequency– response curves of the nanoplate becomes 

wider. Similarly, increasing the area of applied dynamic load on the nanoplate leads to larger 

deflections. But, the area and location of dynamic load have no effect on the magnitude of 

resonance frequency. Because the resonance frequency or natural frequency of system is an 

inherent property of that system. So, it is not affected by the geometrical parameters of external 

load. 

In Figs. 10 and 11, the first mode shape of the nanoplate under uniform dynamic load for 

various porosity coefficients and distributions is shown at Ω = 0.1, µ = 0.2, λ = 0.1, Kw = 25, Kp = 5. 
 

 

 

Fig. 10 Mode shape of the nanoplate for different uniform porosity coefficients 

(a/h = 10, y = 0.5b, Ω = 0.1, Kw = 25, Kp = 5, a0/a = 0.125, b0/b = 0.125, x0 = 0.5a) 
 

 

 

Fig. 11 Mode shape of the nanoplate for different porosity distributions (a/h = 10, y = 0.5b, Ω = 0.1, 

Kw = 25, Kp = 5, e0 = 0.5, a0/a = 0.125, b0/b = 0.125, x0 = 0.5a) 
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For every point of nanoplate in x-direction, porosity distribution 1 yields smallest dynamic 

deflections compared with uniform and non-uniform porosity 2. Thus, the mode shape of a 

nanoplate dependent on the type of porosity distribution. Also, increasing uniform porosity 

coefficient yields larger deflections, because of the reduction in stiffness of nanoplate. Therefore, 

control of porosities is crucial to obtain the best mechanical performance of nanostructures under 

dynamic loads. 
 

 

6. Conclusions 
 

In this paper, forced vibration behavior of nonlocal strain gradient porous plates was explored 

by developing a 4-variable plate model in which shear deformation effect is involved without 

using shear correction factors. Different porosity distributions in the thickness direction were 

considered. Two scale coefficients were considered better size-dependent modeling of nanoplate. It 

was found that increasing the nonlocal parameter results in reduction in the resonance frequencies. 

However, an inverse trend was observed by considering strain gradient effects. The porosity 

coefficient and type of porosity distribution has a great influence on resonance frequencies and 

dynamic deflections of porous nanoplates. The maximum resonance frequency was obtained in the 

case of symmetric porosity distribution. It was concluded that the resonance frequency is bigger 

for porous nanoplates with larger magnitudes of the Winkler’s and Pasternak’s constants. However, 

resonance frequency is not dependent on the dynamic load location and area. 
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