
 

 

 

 

 

 

 

Advances in Nano Research, Vol. 4, No. 3 (2016) 197-228 

DOI: http://dx.doi.org/10.12989/anr.2016.4.3.197                                             197 

Copyright ©  2016 Techno-Press, Ltd. 

http://www.techno-press.com/?journal=anr&subpage=7        ISSN: 2287-237X (Print), 2287-2388 (Online) 
 
 
 

 
 
 
 

Thermal loading effects on electro-mechanical vibration 
behavior of piezoelectrically actuated inhomogeneous 

size-dependent Timoshenko nanobeams 
 

Farzad Ebrahimi
 
and Erfan Salari 

 
Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, 

Qazvin, Iran 

 
(Received May 22, 2016, Revised July 29, 2016, Accepted August 1, 2016) 

 
Abstract.  In the present study, thermo-electro-mechanical vibration characteristics of functionally graded 
piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage 
are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, 
uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-
electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously 
throughout the thickness based on power-law model. Eringen’s nonlocal elasticity theory is exploited to 
describe the size dependency of nanobeam. Using Hamilton’s principle, the nonlocal equations of motion 
together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the 
free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying 
analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide 
accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a 
parametric study is accompanied to examine the effects of several parameters such as various temperature 
distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the 
natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and 
thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams. 
 

Keywords:  functionally graded piezoelectric nanobeam; free vibration; Nonlocal elasticity theory; 

Thermal effect; Timoshenko beam theory 

 
 
1. Introduction 
 

Functionally graded materials (FGMs), a novel generation of composites of microscopical 

heterogeneity initiated by a group of Japanese scientists in the mid-1980s. In comparison with 

traditional composites, FGMs possess various advantages, for instance, ensuring smooth transition 

of stress distributions, minimization or elimination of stress concentration, and increased bonding 

strength along the interface of two dissimilar materials. In the last decade, beams and plates made 

of FGMs have found wide applications as structural elements in modern industries such as 

aeronautics/astronautics manufacturing industry, mechanical engineering and engine combustion 

                                           

Corresponding author, Assistant Professor, E-mail: febrahimy@eng.ikiu.ac.ir 



 

 

 

 

 

 

Farzad Ebrahimi
 
and Erfan Salari 

chamber, nuclear engineering and reactors. Motivated by these engineering applications, ceramic-

metal FGMs have also attracted intensive research interests, which were mainly focused on their 

static, dynamic and vibration characteristics of FG structures (Ebrahimi et al. 2009). 

The piezoelectric materials stand as a class of smart structures which are widely used as sensors 

and actuators in control systems due to their excellent electromechanical properties, easy 

fabrication, design flexibility, and efficiency to convert electrical energy into mechanical energy. 

The ability of piezoelectric materials to surpass the vibrational motion, shape control, and delay 

the buckling have necessitated more investigations on the behavior of structures including 

piezoelectricity effects (Ebrahimi and Rastgoo 2008). However, because of the superior properties 

of these smart materials, piezoelectric nanostructures have been regarded as the next-generation 

piezoelectric materials because of their inherent nanosized piezoelectricity. These distinct features 

make them suitable for potential applications in micro electro-mechanical systems (MEMS) and 

nano electro-mechanical systems (NEMS) such as nanogenerators (Wang and Song 2006), field 

effect transistors (Fei et al. 2009), piezoelectric gated diodes (He et al. 2007), gas sensors (Wan et 

al. 2004), nanowire resonators and oscillators (Tanner et al. 2007). 

Moreover, nanoscale engineering materials have attracted great interest in modern science and 

technology after the invention of carbon nanotubes (CNTs) by Iijima (1991). They have significant 

mechanical, thermal and electrical performances that are superior to the conventional structural 

materials. Beam elements are one of the basic components in micro/nano electromechanical 

systems, biomedical sensors, actuators, transistors, probes, and resonators. In these nanodevices, 

the dimension may vary from several hundred nanometers to just a few nanometers. Therefore, 

understanding the mechanical and physical behaviors of the nanobeams made of piezoelectric 

materials or those incorporated with piezoelectric layer is of necessary in the design of the 

nanodevices.   

The classical continuum theory is quite efficient in the mechanical analysis of the macroscopic 

structures, but its applicability to the identification of the size effect on the mechanical behaviors 

on micro- or nano-scale structures is questionable. This limitation of the classical continuum 

theory is partly due to the fact that the classical continuum theory does not admit the size 

dependence in the elastic solutions of inclusions and inhomogeneities. However the classical 

continuum models need to be extended to consider the nanoscale effects and this can be achieved 

through the nonlocal elasticity theory proposed by Eringen (2002) which consider the size-

dependent effect. According to this theory, the stress state at a reference point is considered as a 

function of strain states of all points in the body. This nonlocal theory is proved to be in 

accordance with atomic model of lattice dynamics and with experimental observations on phonon 

dispersion (Eringen 1983). In the field of nonlocal elasticity theory, Pradhan and Mandal (2013) 

investigated the thermal vibration, buckling and bending characteristics of carbon nanotubes by 

using finite element method (FEM) based on Timoshenko beam theory. Ke et al. (2012a) and Ke 

and Wang (2012) studied the free vibration analysis of the piezoelectric Timoshenko nanobeams 

under thermo-electro-mechanical field based on the Eringen’s theory. They noticed that the values 

of uniform temperature change, nonlocal parameter and applied voltage play a significant role in 

the vibrational response of the piezoelectric nanobeams. 

Nowadays, with the development in nanotechnology, FGMs have also been employed in 

MEMS/NEMS (Witvrouw and Mehta 2005, Lee et al. 2006). Actually, FGMs find increasing 

applications in micro- and nano-scale structures such as thin films in the form of shape memory 

alloys (Fu et al. 2003, Lü et al. 2009), atomic force microscopes (AFMs) (Rahaeifard et al. 2009), 

micro sensors, micro piezoactuator and nano-motors (Carbonari et al. 2009, Lun et al. 2006). In all 
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of these applications, the size effect plays major role which should be considered to study the 

mechanical behaviors of such small scale structures. Beams are the core structures widely used in 

MEMS, NEMS and AFMS with the order of microns or sub-microns, and their properties are 

closely related to their microstructures. On the other hands, FG nanobeams are important structural 

elements and hence, because of high sensitivity of MEMS/ NEMS to external stimulations, 

understanding mechanical properties and vibration behavior of them are of significant importance 

to the design and manufacture of FG MEMS/NEMS. Furthermore, different fabrication processes 

of nanoscale functionally graded material have been focused by the several researchers (Kim et al. 

2009, Kerman et al. 2012). Therefore, establishing an accurate model of FG nanobeams is a key 

issue for successful NEMS design.  

Based on the above discussions, thermal stability and free vibration characteristics of FG micro 

and nano structures have also been of interest of many investigators. Among them, Nateghi and 

Salamat-Talab (2013) investigated thermal effect on buckling and free vibration behavior of 

temperature-independent FG microbeams based on modified couple stress theory and using 

generalized differential quadrature (DQ) method. They showed that higher temperature changes 

signify size dependency of FG microbeam. Employing modified couple stress theory the nonlinear 

free vibration of FG microbeams based on von-Karman geometric nonlinearity was presented by 

Ke et al. (2012b). It is found that both the linear and nonlinear natural frequencies increase 

significantly when the thickness of the size-dependent FGM beam is comparable to the material 

length scale parameter. Eltaher et al. (2012) applied a finite element formulation for free vibration 

analysis of FG nanobeams based on nonlocal Euler beam theory. Also, Hosseini-Hashemi and 

Nazemnezhad (2013) in their study investigated nonlinear free vibration of simply supported 

Euler-Bernoulli FG nanobeams with considering surface effects and balance condition between the 

FG nanobeam bulk and its surfaces. In this study the multiple scales method was used as an 

analytical solution for the nonlinear governing equation. Additionally, using nonlocal simply 

supported Timoshenko beam theory, Rahmani and Pedram (2014) investigated vibration behavior 

of FG nanobeam by analytical method. Recently, Niknam and Aghdam (2015) have performed a 

semi analytical approach for large amplitude free vibration and buckling of FG nanobeams resting 

on elastic foundation based on nonlocal elasticity theory. They discussed that the effect of small 

scale parameter decreases by increasing length of the beam. More recently, Ebrahimi and Salari 

(2015a) analyzed the influences of various thermal environments on buckling and vibration of 

nonlocal temperature-dependent FG beams by using Navier analytical solution. In another work, 

Ebrahimi and Salari (2015b) investigated the thermo-mechanical vibration of FG nanobeams with 

arbitrary boundary conditions applying deferential transform method. Also, Ebrahimi et al. 

(2015a) explored the effects of linear and non-linear temperature distributions on vibration of FG 

nanobeams. Recently, Ebrahimi and Barati (2015a) presented a nonlocal higher-order shear 

deformation beam theory for vibration analysis of size-dependent functionally graded Nanobeams.  

They developed their previous works by analyzing thermal buckling and free vibration behavior of 

FG nanobeams based on the Timoshenko beam theory, too (Ebrahimi and Salari 2015b, c). It 

should be noted that the above mentioned studies dealt with the micro and nanobeams made of 

ceramic-metal functionally graded materials because of their high mechanical–thermal resistant. 

Also, Ebrahimi and Salari (2015d), Ebrahimi et al. (2015c) and examined the applicability of 

differential transformation method in investigations on vibrational characteristics of FG size-

dependent nanobeams. In another work, Ebrahimi and Salari (2015e) presented a semi-analytical 

method for vibrational and buckling analysis of FG nanobeams considering the position of neutral 

axis. 
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Moreover, conventional piezoelectric sensors and actuators are often made of several layers of 

different piezoelectric materials. The principal weakness of these types of structures is that the 

high stress concentrations are usually appeared at the interlayer surfaces under mechanical or 

electrical loading. This drawback reduces the electrical field induced displacement characteristics, 

lifetime, integrity and reliability of piezoelectric devices, and also restricts the usefulness of 

piezoelectric actuators in the area of measured devices requiring high reliability. In order to 

overcome the aforementioned disadvantages of the traditional layered piezoelectric structures, a 

novel class of piezoelectric materials called functionally graded piezoelectric materials (FGPMs) 

has been presented and fabricated by using the metallurgical science and powder mold stacking 

press technique in which mechanical and electrical properties change continuously in one or more 

directions (Zhu and Meng 1995). 

Finally, reported papers on FG piezoelectric materials subjected to thermo-electro-mechanical 

loads are limited in number. For instance, by using DQ method, the static bending, free vibration 

and dynamic analysis of monomorph, bimorph, and multimorph FGPM beams under the action of 

thermal, mechanical, and electrical loadings were presented by Yang and Xiang (2007) based on 

the Timoshenko beam theory. They assumed that the material properties of FGP beam graded in 

the thickness direction according to the power-law model. A closed form solution for the FGPM 

cantilever beams subjected to different loadings and based on the two dimensional theory of 

elasticity and the Airy stress function was proposed by Shi and Chen (2004). Additionally, based 

on the linear piezoelectricity theory, Zhong and Yu (2007) discussed a general solution on the 

electrostatic analysis of an FGP beam under various boundary conditions with arbitrary graded 

material properties along the beam thickness direction. Doroushi et al. (2011) used higher order 

shear deformation of Reddy beam theory to investigate thermo-electro-mechanical free and forced 

vibration analysis of FGPM beams. They solved their problem by using FE method. In another 

study, Komijani et al. (2013) analyzed nonlinear free vibration and post-buckling analysis of 

piezoelectric beams with graded properties based on Timoshenko beam theory. They showed that 

due to the non-symmetric distribution of material properties in the thickness direction, the linear 

critical buckling may not take place in this type of graded beams. Xiang and Shi (2009) predicted 

bending analysis of FGP sandwich cantilever under an applied electric field and heat conduction 

thermal load based on Airy stress function method. Also, thermo-mechanical geometrically non-

linear static and dynamic analysis of FG beams integrated with a pair of sensor layers made of 

FGP materials were studied by Bodaghi et al. (2014). They concluded that the gradient indexes of 

FGP have a noticeable effect on their output voltages. Lezgy-Nazargah et al. (2013) recommended 

an efficient three nodded finite element model for static, free vibration and dynamic response of 

functionally graded piezoelectric material beams. The above reference has been recently extended 

to fully coupled thermo-mechanical analysis of bi-directional FG beams using a computationally 

low cost isogeometric finite element approach (Lezgy-Nazargah 2015). Also, Komijani et al. 

(2014) utilized modified couple stress theory to model the nonlinear deflection response of a 

monomorph microstructure-dependent FGPM beams based on Timoshenko beam theory. They 

also observed that the value of length scale parameter and the type of imposed load has significant 

effect on the nonlinear deflection behavior of FGPM beams.  

To the authors’ best knowledge, there is no work reported in the literature on the effects of 

various thermal environment and nanostructure dependency on the thermo-electro-mechanical 

vibration response of functionally graded piezoelectric nanobeams based on nonlocal elasticity 

theory. The common use of FGPM beams in high temperature environment leads to considerable 

changes in material properties. Consequently, thermal effects become important when the FGP  
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Fig. 1 Schematic configuration of a functionally graded piezoelectric nanobeam 

 

 

nanodevices has to operate in either extremely hot or cold temperature environments. Therefore, 

there is strong scientific need to understand the vibration behavior of graded piezoelectric 

nanobeams under thermal and electrical loadings. According to this fact, in this study, vibration 

characteristics of FGP nanobeams considering the effect of three types of thermal loads namely, 

uniform, linear and non-linear temperature rises across the thickness is analyzed. An analytical 

method called Navier solution is employed for thermo-electrical vibration analysis of FG 

piezoelectric nanobeams for the first time. The thermo-electro-mechanical material properties of 

the beam is assumed to be graded in the thickness direction according to the power law 

distribution. Non- classical Timoshenko beam model and Eringen’s nonlocal elasticity theory can 

capture size effect are employed. Governing equations and boundary conditions for the free 

vibration of a nonlocal FGP nanobeam have been derived via Hamilton’s principle. These 

equations are solved using Navier type method and numerical solutions are obtained. The detailed 

mathematical derivations are presented while the emphasis is placed on investigating the effect of 

several parameters such as external electric voltage, different temperature distributions, power-law 

index, mode number and length scale parameter on vibration characteristics of size-dependent FGP 

nanobeams. Comparison between results of the present study and those available data in literature 

shows the accuracy of this model. Due to lack of similar results on the thermo-electrical response 

of FGP nanostructure, this study is likely to fill a gap in the state of the art of this problem. 

 

 

2. Theoretical formulations 
 

2.1 The material properties of FGP nanobeams 
 

Consider a FGP nanobeam made of PZT-4 and PZT-5H piezoelectric materials with length L in 

x direction and uniform thickness h in z direction, and subjected to an electric potential Φ(x,z,t), as 

shown in Fig. 1. The effective material properties of the FGPM beam are assumed to vary 

continuously in the thickness direction (z-axis direction) according to a power function of the 

volume fractions of the constituents. Based on the power-law model, the effective material 

properties, P, can be considered as below (Komijani et al. 2014) 

        u u l lV VP P P 
 

(1) 
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where (Pl, Pu) are the material properties at the lower and upper surfaces, respectively, and (Vl, Vu) 

are the corresponding volume fractions related by 

        

1
( ) , 1

2

p

u l u

z
V V V

h
  

 
(2) 

Therefore, from Eqs. (1) and (2), the effective thermo-electro-mechanical material properties of 

the FGP beam can be expressed as 

        

 
1

( )
2

l

p

u lP P P
z

z
h

P   
 
 
   

(3) 

here p is the non-negative power-law exponent which determines the material distribution through 

the thickness of the beam and z is the distance from the mid-plane of the graded piezoelectric 

beam. According to this distribution, the top surface (z=h/2) of FGP nanobeam is PZT-4 rich, 

whereas the bottom surface (z=−h/2) is PZT-5H rich.  

 
2.2 Nonlocal elasticity theory for the piezoelectric materials 

 
Unlike the constitutive equation in classical elasticity, Eringen’s nonlocal theory (Eringen 

1983, 2002) states that the stress at a reference point x in a body is considered as a function of 

strains of all points x′ in the near region. This assumption is agreement with experimental 

observations of atomic theory and lattice dynamics in phonon scattering in which for a 

homogeneous and nonlocal piezoelectric solid the basic equations with zero body force may be 

obtained as (Ke et al. 2012a) 

     
  , ( ) ( ) ( )ij ijkl kl kij k ijkl kl

V
x x C x e E x C T dV x           

 
(4a) 

     
  , ( ) ( ) ( )i ikl kl ik k i

V
D x x e x k E x p T dV x         

 
(4b) 

in which ζij, εij, Di and Ei are the stress, strain, electric displacement and electric field components, 

respectively; αkl and ΔT are the thermal expansion coefficient and temperature change, 

respectively; Cijkl, ekij, kik and pi are elastic, piezoelectric, dielectric and pyroelectric constants, 

respectively; α(|x′−x|,η) is the nonlocal kernel function and |x′−x| is the Euclidean distance. η=e0a/l 

is defined as scale coefficient, where e0 is a material constant which is determined experimentally 

or approximated by matching the dispersion curves of plane waves with those of atomic lattice 

dynamics; and a and l are the internal and external characteristic length of the nanostructures, 

respectively.  

According to (Eringen 1983) it is possible to represent the integral constitutive relations given 

by Eq. (4) in an equivalent differential form as 

      
2 2

0( )ij ij ijkl kl kij k ijkl kle a C e E C T        
 

(5a) 

      
2 2

0( )i i ikl kl ik k iD e a D e k E p T     
 

(5b) 

where 
2
 is the Laplacian operator; e0a is called the nonlocal parameter revealing the size effect on 
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the response of nanostructures.  

 
2.3 Nonlocal FG piezoelectric nanobeam model 
 
According to the Timoshenko beam theory, the displacements at any point of the beam, i.e., ux 

and uz along x and z directions, respectively, are assumed to be of the form 

      
   , , , ( , )xu x z t u x t z x t 

 
(6a) 

      
( , , ) ( , )zu x z t w x t

 
(6b) 

in which u and w are displacement components in the mid-plane along the coordinates x and z, 

respectively, while ψ denotes the total bending rotation of the cross-section and t is the time. 

In order to satisfy Maxwell’s equation in the quasi-static approximation, the distribution of 

electric potential along the thickness direction is assumed to vary as a combination of a cosine and 

linear variation which was proposed by (Wang 2002), as follows 

        

2
( , , ) cos ( ) ( , ) E

z
x z t z x t V

h
    

 
(7) 

where β=π/h. Also, VE is the initial external electric voltage applied to the FGP nanobeam; and 

ϕ(x,t) is the spatial function of the electric potential in the x-direction. 

Considering strain-displacement relationships on the basis of Timoshenko beam theory, the 

non-zero strains can be written as: 

        
xx

u

x
z

x










   
(8) 

        
xz

w

x
 


 
  

(9) 

where εxx and γxz are the normal and shear components of strain tensor, respectively. Based on the 

assumed electric potential in Eq. (7), the non-zero components of electric field (Ex, Ez) can be 

obtained as 

        
, ,

2
cos ( ) , sin ( ) E

x x z z

V
E z E z

x h


   


       

  
(10) 

In order to obtain the governing equations of motion, the Hamilton's principle can be stated in a 

dynamic form as 

        0
( ) 0

t

S K W dt      
(11) 

here ∏S is strain energy, ∏K is kinetic energy and ∏W is work done by external applied forces. The 

first variation of strain energy ∏S can be calculated as 

        
 

/2

0 /2

L h

S xx xx xz xz x x z z
h

D E D E dzdx       


       
(12) 
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Substituting Eqs. (8)-(10) into Eq. (12) yields 

        

0

/2

0 /2
cos( ) sin( )

L

S x x x

L h

x z
h

u w
N M Q dx

x x x

D z D z dzdx
x


    


     



        
          

        

  
    

  



 
 

(13) 

in which Nx, Mx and Qx are the axial force, bending moment and shear force resultants, 

respectively. Relations between the stress resultants and stress component used in Eq. (13) are 

defined as 

      

/2 /2 /2

/2 /2 /2
, ,

h h h

x xx x xx x s xz
h h h

N dz M z dz Q K dz  
  

      
(14) 

here KS=5/6 denotes the shear correction factor. In addition, the kinetic energy ∏K for graded 

piezoelectric nanobeam is formulated as 

       

/2
2 2

0 /2

1
( ) ( )

2

L h
x z

K
h

u u
dzdx

t t




  
   

  
 

 

(15) 

where ρ is the mass density. From Eqs. (6) and (15), the first variation of the kinetic energy is 

presented as well by 

   
0 1 2

0
( ) ( )

L

K

u u w w u u
I I I dx

t t t t t t t t t t

      


          
                


 

(16) 

where (I0, I1, I2) are the mass moments of inertia, defined as follows 

       

/2
2

0 1 2
/2

( , , ) (1, , )
h

h
I I I z z dz


   

(17) 

For a typical FGP nanobeam which has been in thermal environment for a long period of time, 

it is assumed that the temperature can be distributed across the thickness. Thus, three kinds of 

thermal loading such as uniform temperature rise, linear and nonlinear (heat conduction) 

temperature rises is taken into consideration. Hence, the work done due to initial thermal stresses 

(induced by the temperature rise) and external electric voltage, ∏W, can be written in the form 

       

 
2

0

1

2

L

W T E

w
N N dx

x

  
    

   


 

(18) 

where NT and NE are the normal forces induced by various temperature change ΔT and external 

electric voltage VE, respectively, which can be expressed as 

       

/2 /2

11 1 0 31
/2 /2

2
( ) ,

h h
E

T E
h h

V
N c T T dz N e dz

h


 
    

 
(19) 

where T0 is the reference temperature. For a FGPM nanobeam under thermo-electro-mechanical 

loading in the one dimensional case, the nonlocal constitutive relations (5a) and (5b) may be 

204



 

 

 

 

 

 

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically... 

simplified as 

       

2
2

0 11 31 11 12
( ) xx

xx xx ze a c e E c T
x


  


    

  
(20) 

       

2
2

0 55 152
( ) xz

xz xz xe a c e E
x


 


  

  
(21) 

      

2
2

0 15 112
( ) x

x xz x

D
D e a e k E

x



  

  
(22) 

       

2
2

0 31 33 32
( ) z

z xx z

D
D e a e k E p T

x



    

  
(23) 

Inserting Eqs. (13), (16) and (18) in Eq. (11) and integrating by parts, and collecting the 

coefficients of δu, δw, δψ and δϕ, the following governing equations are obtained 

       

2 2

0 12 2

xN u
I I

x t t

  
 

    
(24a) 

       

2 2

0 02 2

x
x

Q w w
N I

x x t

  
 

    
(24b) 

       

2 2

1 22 2

x
x

M u
Q I I

x t t

  
  

    
(24c) 

       

/2

/2
cos( ) sin( ) 0

h
x

z
h

D
z z D dz

x
  



 
  

 


 

(24d) 

where Nx0=NT+NE. Furthermore, the corresponding natural and essential boundary conditions are 

defined at x=0 and x=L as follows 

0N   or  0u    at 0x    and x L  (25a) 

0Q   or  0w    at 0x   and x L  (25b) 

0M   or 
0 

  at 0x   and x L  (25c) 

/2

/2
cos( ) 0

h

x
h

D z dz


  or 0    at 0x   and x L  
(25d) 

By integrating Eqs. (20)-(23), the relations between local and nonlocal force-strain, moment-

strain and other necessary nonlocal relations within the FGP Timoshenko nanobeam structure are 

achieved as 
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2

312

ex
x xx xx T E

N u
N A B A N N

x x x





  
     

    
(26) 

       

2

312

x
x xx xx

M u
M B D E

x x x





  
   

    
(27) 

       

2

152
( )x

x s xz s

Q w
Q K C K E

x x x




  
   

    
(28) 

       

2
/2

15 112/2
cos( ) ( )

h
x

x
h

D w
D z dz E F

x x x


 



   
    

   


 

(29) 

       

2
/2

31 31 332/2
sin( )

h
ez

z
h

D u
D z dz A E F

x x x


  



   
    

   


 

(30) 

where μ=(e0a)
2
 and other quantities are defined as 

       
   

/2
2

11 11 11 55
/2

, , , , , ,
h

xx xx xx xz
h

A B D C c z c z c c dz


   
(31a) 

      
   

/2

31 31 15 31 31 15
/2

, , sin( ), sin( ), cos( )
h

e

h
A E E e z z e z e z dz    


   

(31b) 

       
   

/2
2 2 2

11 33 11 33
/2

, cos ( ), sin ( )
h

h
F F k z k z dz  


   

(31c) 

By substituting Eqs. (24a)-(24c), into Eqs. (26)-(28), the explicit relations of the nonlocal 

normal resultant force Nx, bending moment Mx and shear force Qx can be derived as 

   

3 3

31 0 12 2
( )e

x xx xx T E

u u
N A B A N N I I

x x x t x t

 
 

   
      

       
(32) 

2 3 3 2

31 0 1 2 02 2 2 2
( )x xx xx x

u w u w
M B D E I I I N

x x t x t x t x

 
 

     
      

         
(33) 

   

3 3

15 0 02 3
( ) ( )x s xz s x

w w w
Q K C K E I N

x x x t x


 

   
    

      
(34) 

It should be pointed that substituting Eq. (24d) into Eqs. (29) and (30), does not lead to the 

explicit expressions for Dx and Dz as there are two unknowns and only one equilibrium Eq. (24d). 

However, by using Eqs. (29) and (30), Eq. (24d) can be re-expressed in terms of u, w, ψ and ϕ. 

Then, based on Timoshenko beam theory, the equations of motion for a nonlocal FG piezoelectric 

beam can be derived by substituting for Nx, Mx and Qx from Eqs. (32)-(34) into Eqs. (24a)-(24c) as 

follows 
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2 4 2

xx xx 31 0 1 0 12 2 2 2

4

2 2 2

2 2

2
0eu u u

A B A I I I I
x x x t x t x t t

   

       

       
           

(35) 

     

2 2 2 2

15

4

2 2

02 2 2 2

4

0 4

( ) ( )

( ( ) ) 0

s xz s T E

T E

w w w
K C K E N N I

x x x x t

w
I N N

w

t x x

 



    
    

    


 




 




 

(36) 

   

4

xx xx 31 22 2 2

2 2

15 1 2

2 2 4

12 2 2

2 2

( ) ( )

0

s xz

s

u u w
B D E I I K C

x x x t x t x x

u
K E I I

x t t

  
 

 

     
     

       

  
   

    

(37) 

     

2

2

2

15 11 31 31 332
( ) 0ew u

E F A E F
x x x x x

  


    
     

      

(38) 

 
 
3. Types of thermal distributions 
 

3.1 Uniform temperature rise (UTR) 
 

The FGP nanobeam initial temperature is assumed to be T0=300K, which is a stress free state, 

uniformly changed to final temperature with ΔT. The temperature rise is given by 

     0T T T  
 

(39) 

 
3.2 Linear temperature rise (LTR) 

 
Consider a graded nanobeam where the temperature of the upper surface (PZT-4-rich) is Tu and 

it is considered to vary linearly along the thickness from Tu to the lower surface (PZT-5H-rich) 

temperature Tl. Therefore, the temperature rise as a function of thickness is considered as below 

(Kiani and Eslami 2013) 

     

1

2
l

z
T T T

h

 
    

   

(40) 

The ΔT in Eq. (40) could be defined ΔT=Tu−Tl. 

 
3.3 Nonlinear temperature rise (NLTR) 

 
In such a case, nonlinear temperature rise across the thickness is assumed. The steady-state 

one-dimensional heat conduction equation with the known temperature boundary conditions on 
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bottom and top surfaces of the FGP nanobeam can be obtained by solving the following equation 

(Zhang 2013) 

     

( ) 0
d dT

z
dz dz


 

   
 



 

     

,
2 2

u l
h h

T T T T
   
      
   

  

 

(41) 

where κ is the thermal conductivity coefficient. The solution of Eq. (41) subjected to the 

boundary conditions can be solved by the following equation 

     

/2

/2

/2

1

( )
( )

1

( )

z

h

l h

h

dz
z

T T T
dz

z









  



 

(42) 

where ΔT=Tu−Tl.  

 
 
4. Solution procedure 
 

In this section, the analytical solutions of the governing equations for free vibration of FGPM 

nanobeam with simply supported (S-S) boundary conditions are derived by using Navier method. 

Also, it is assumed that the value of electric potential is equal to zero at the ends of the FGPM 

nanobeam. The displacement functions are expressed as product of undetermined coefficients and 

known trigonometric functions to satisfy the governing equations and the conditions at x=0, L. The 

following displacement fields are assumed to be of the form 

      
1

( , ) cos ( ) ni t

n

n

n
u x t U x e

L





  (43) 

      
1

( , ) sin ( ) ni t

n

n

n
w x t W x e

L





  (44) 

      
1

( , ) cos ( ) ni t

n

n

n
x t x e

L








 
 

(45) 

      
1

( , ) sin ( ) ni t

n

n

n
x t x e

L








 
 

(46) 

where Un, Wn, Ψn and Φn are the unknown Fourier coefficients to be determined for each n value.  

The boundary conditions for simply supported FGP beam can be identified as 

         (0) 0, ( ) 0, (0) ( ) 0
u

u L w w L
x


   


 (47) 
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        (0) ( ) 0, (0) ( ) 0L L
x x

 
 

 
   

 
 

Substituting Eqs. (43)-(46) into Eqs. (35)-(38) respectively, leads to Eqs. (48)-(51) 

2 22 2 2 2

xx 0 xx 1

31

+( ) I (1 ( ) ) ( ) I (1 ( ) )

( ) 0

n n n n

e

n

n n n n
A U B

L L L L

n
A

L

   
   



   
         
   

 
   
 

 (48) 

22 2 2 2

xz 0

2

z 1x 5

( ) (1 )( ) ( ) ( ) I (1 ( ) )

( ) ( ) 0

s n n

s n

T

n

E

s

n n n n
K C W

L L L L

n n
K C K

L

N

E

N

L

   
  

 

 
   
 

   
       
   

  

 (49) 

2 2 2

xx xz

2 2 2

xx xz 31

1

2 15

( ) I (1 ( ) ) ( )

( ) I (1 ( ) ) ) ( ) ( ) 0

n n s n

s n n s n

n n n
B U K C W

L L L

n n n n
D K C E K E

L L L L

  
 

   
 

   
      
   

   
          
  





 

(50) 

15 15 31

2 2

31 1 331( ) ( ) ( ) ( ) ( ) 0e

n n n n

n n n n n
A U W F F

L L L
E

L L
E E

           
              
       



 

(51) 

By setting the determinant of the coefficient matrix of the above equations, the nontrivial 

analytical solutions can be obtained from the following equations 

 2([ ] [ ]) [ ] 0

n

n

T

n

n

U

W
K T K M

 
 
 

    
 
  

 (52) 

where [K] and [KT] are stiffness matrix and the coefficient matrix of temperature change, 

respectively, and [M] is the mass matrix. By setting this polynomial to zero, we can find natural 

frequencies n of the FGP nanobeam subjected to thermo-electrical loading. 

 

 

5. Results and discussion 
 

In this section, the thermo-electro-mechanical free vibration of an FGPM nanobeam in thermal 

environments is investigated through some numerical examples and some comparisons are made 

between the results obtained from Navier solution method and other numerical technique so that 

the accuracy of present work is verified. Also, to demonstrate the applied electric voltage and  
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Table 1 Thermo-electro-mechanical coefficients of material properties for PZT-4 and PZT-5H (Doroushi et 

al. 2011) 

Properties PZT-4 PZT-5H 

c11 (GPa) 81.3 60.6 

c55 (GPa) 25.6 23.0 

e31 (Cm
-2

) -10.0 -16.604 

e15 (Cm
-2

) 40.3248 44.9046 

k11 (C
2
m

-2
N

-1
) 0.6712e-8 1.5027e-8 

k33 (C
2
m

-2
N

-1
) 1.0275e-8 2.554e-8 

α1 (K
-1

) 2.0e-6 10.0e-6 

κ (Wm
-1

K
-1

)
 

2.1 1.5 

p3 (Cm
-2

 K
-1

)  2.5e-5 0.548e-5 

ρ (kgm
-3

) 7500 7500 

 

 

nonlocal parameter effects on the thermo-mechanical vibration analysis of FGP nanobeams, 

variations of the natural frequencies versus temperature rise, external electric voltage, power law 

index, and thickness ratios of the FG piezoelectric nanobeam, are presented in this section. To this 

end, the nonlocal FGP beam made of PZT-4 and PZT-5H, with thermo-electro-mechanical 

material properties listed in Table 1, is considered. The bottom surface of the graded nanobeam is 

PZT-5H rich, whereas the top surface of the beam is PZT-4 rich. The beam geometry has the 

following dimensions: L (length)=10 nm and h (thickness)=varied. Also, it is assumed that the 

temperature increase in lower surface to reference temperature T0 of the FGP nanobeam is 

Tl−T0=5K (Kiani and Eslami 2013). Relation described in Eq. (53) are performed in order to 

calculate the non-dimensional natural frequencies 

          2

11 PZT-4( / )L A c I    (53) 

where I=h
3
/12 is the moment of inertia of the cross section of the beam. The numerical or 

analytical results for the thermoelectrically vibration of FGP nanobeam based on the nonlocal 

elasticity theory are not available in the literature. When no piezoelectric effect being taken into 

account, Eqs. (35)-(38) reduce to the model for FG nanobeam based on nonlocal elasticity theory. 

As part of the validation of the present method, a comparison study is performed to check the 

reliability of the present method and formulation. For this purpose, the FG nanobeams consist of 

Steel and Alumina with the material properties Em=70 GPa, vm= 0.3, ρm=7800 kgm
-3 

for Steel and 

Em=390 GPa, vm=0.24, ρm=3960 kgm
-3 

for Alumina. Thus to check the accuracy of the developed 

model, in Table 2, the fundamental frequency of S-S FG nanobeams are compared with those of 

Rahmani and Pedram (2014) which has been obtained by analytical solution for various values of 

the gradient index and nonlocality parameter. It is obvious from Table 2 that there is good 

agreement between the two results. After extensive validation of the present formulation, the 

effects of different parameters such as electric voltage, various temperature rise, nonlocality and 

gradient index on free vibration behavior of FGP nanobeam are investigated. The effect of the 

external electric voltage (VE), gradient index (p) and nonlocal parameter (μ) on the vibration 

behavior of the S-S graded piezoelectric nanobeam for L/h=20 and based on analytical Navier 

solution method is examined and scrutinized in Tables 3-5 that list the variation of the first three  
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Table 2 Comparison of the non-dimensional fundamental frequency for a S-S FG nanobeam with various 

volume fraction index (L/h=20) 

μ (nm)
2
 

p=0 p=0.5 p=1 p=5 

Rahmani and 

Pedram(2014) 
Present 

Rahmani and 

Pedram(2014) 
Present 

Rahmani and 

Pedram(2014) 
Present 

Rahmani and 

Pedram(2014) 
Present 

0 9.8296 9.829567 7.7149 7.714917 6.9676 6.967612 5.9172 5.197206 

1 9.3777 9.377684 7.3602 7.360249 6.6473 6.647298 5.6452 5.645181 

2 8.9829 8.982892 7.0504 7.050389 6.3674 6.367453 5.4075 5.407524 

3 8.6341 8.634101 6.7766 6.776634 6.1202 6.120215 5.1975 5.197559 

4 8.3230 8.323019 6.5325 6.532475 5.8997 5.899707 5.0103 5.010294 

 
Table 3 Effect of external electric voltage and temperature change on non-dimensional frequency of a S-S 

FGP nanobeam subjected to uniform temperature rise (L/h=20) 

μ (nm)
2
 VE (V) i  

ΔT=20 [K] ΔT=50 [K] ΔT=80 [K] 

Gradient index Gradient index Gradient index 

0.5 1 2 0.5 1 2 0.5 1 2 

0 

- 0.5 

1 10.4514 10.3184 10.2265 10.1654 9.9641 9.8082 9.8711 9.5967 9.3713 

2 39.9879 39.3784 38.9264 39.6936 39.0139 38.4961 39.3971 38.6460 38.0609 

3 88.2271 86.8368 85.7950 87.9302 86.4692 85.3609 87.6324 86.0999 84.9246 

0 

1 9.7489 9.5393 9.3717 9.4416 9.1549 8.9135 9.1240 8.7537 8.4304 

2 39.2759 38.5894 38.0612 38.9763 38.2173 37.6210 38.6743 37.8416 37.1755 

3 87.5110 86.0433 84.9250 87.2118 85.6722 84.4864 86.9115 85.2996 84.0456 

+ 0.5 

1 8.9916 8.6907 8.4308 8.6575 8.2669 7.9183 8.3100 7.8202 7.3703 

2 38.5508 37.7837 37.1758 38.2455 37.4038 36.7250 37.9377 37.0198 36.2685 

3 86.7891 85.2424 84.0459 86.4873 84.8678 83.6028 86.1845 84.4916 83.1573 

2 

- 0.5 

1 9.6393 9.5225 9.4435 9.3284 9.1374 8.9890 9.0068 8.7354 8.5101 

2 30.1915 29.7530 29.4332 29.8007 29.2688 28.8616 29.4046 28.7765 28.2785 

3 53.4950 52.6920 52.1001 53.0040 52.0838 51.3821 52.5085 51.4685 50.6540 

0 

1 8.8727 8.6722 8.5105 8.5339 8.2475 8.0032 8.1812 7.7997 7.4614 

2 29.2420 28.7005 28.2790 28.8383 28.1983 27.6836 28.4288 27.6869 27.0751 

3 52.3056 51.3737 50.6546 51.8034 50.7498 49.9159 51.2962 50.1181 49.1660 

+ 0.5 

1 8.0333 7.7289 7.4618 7.6575 7.2492 6.8775 7.2623 6.7354 6.2387 

2 28.2607 27.6079 27.0756 27.8427 27.0854 26.4531 27.4184 26.5527 25.8157 

3 51.0886 50.0208 49.1666 50.5743 49.3798 48.4052 50.0546 48.7303 47.6316 

4 

- 0.5 

1 9.0121 8.9082 8.8396 8.6788 8.4953 8.3523 8.3321 8.0613 7.8346 

2 25.3962 25.0447 24.7930 24.9303 24.4675 24.1117 24.4554 23.8765 23.4106 

3 42.1974 41.5941 41.1573 41.5732 40.8210 40.2446 40.9395 40.0329 39.3108 

0 

1 8.1870 7.9929 7.8351 7.8186 7.5299 7.2808 7.4319 7.0366 6.6806 

2 24.2597 23.7848 23.4111 23.7715 23.1763 22.6884 23.2731 22.5514 21.9418 

3 40.6790 39.9110 39.3115 40.0312 39.1046 38.3549 39.3727 38.2812 37.3738 

+ 0.5 

1 7.2689 6.9581 6.6811 6.8513 6.4210 6.0215 6.4065 5.8347 5.2802 

2 23.0674 22.4543 21.9424 22.5534 21.8087 21.1696 22.0274 21.1434 20.3674 

3 39.1017 38.1537 37.3746 38.4273 37.3094 36.3671 37.7408 36.4454 35.3309 
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Table 4 Effect of external electric voltage and temperature change on non-dimensional frequency of a S-S 

FGP nanobeam subjected to linear temperature rise (L/h=20) 

μ (nm)
2
 VE (V) i  

ΔT=20 [K] ΔT=50 [K] ΔT=80 [K] 

Gradient index Gradient index Gradient index 

0.5 1 2 0.5 1 2 0.5 1 2 

0 

- 0.5 

1 10.5162 10.3970 10.3138 10.4022 10.2542 10.1381 10.2870 10.1094 9.9593 

2 40.0554 39.4605 39.0180 39.9368 39.3117 38.8344 39.8179 39.1623 38.6500 

3 88.2953 86.9199 85.8877 88.1755 86.7694 85.7020 88.0555 86.6186 85.5159 

0 

1 9.8183 9.6242 9.4669 9.6961 9.4698 9.2752 9.5724 9.3128 9.0795 

2 39.3446 38.6731 38.1548 39.2240 38.5212 37.9671 39.1029 38.3688 37.7785 

3 87.5798 86.1271 85.0186 87.4590 85.9752 84.8310 87.3381 85.8230 84.6430 

+ 0.5 

1 9.0669 8.7838 8.5365 8.9344 8.6143 8.3234 8.8000 8.4415 8.1047 

2 38.6208 37.8694 37.2717 38.4979 37.7143 37.0795 38.3745 37.5585 36.8864 

3 86.8585 85.3270 84.1405 86.7367 85.1737 83.9510 86.6147 85.0201 83.7610 

2 

- 0.5 

1 9.7095 9.6076 9.5380 9.5859 9.4529 9.3478 9.4607 9.2956 9.1536 

2 30.2809 29.8615 29.5541 30.1239 29.6645 29.3114 29.9661 29.4663 29.0666 

3 53.6075 52.8287 52.2525 53.4099 52.5807 51.9468 53.2116 52.3315 51.6392 

0 

1 8.9489 8.7655 8.6153 8.8147 8.5957 8.4042 8.6784 8.4225 8.1876 

2 29.3343 28.8130 28.4048 29.1722 28.6088 28.1522 29.0092 28.4032 27.8973 

3 52.4207 51.5140 50.8114 52.2186 51.2596 50.4969 52.0158 51.0040 50.1805 

+ 0.5 

1 8.1174 7.8335 7.5811 7.9692 7.6430 7.3403 7.8182 7.4476 7.0913 

2 28.3561 27.7248 27.2070 28.1884 27.5126 26.9432 28.0197 27.2987 26.6767 

3 51.2064 50.1648 49.3281 50.9995 49.9036 49.0042 50.7918 49.6409 48.6780 

4 

- 0.5 

1 9.0871 8.9991 8.9405 8.9550 8.8338 8.7373 8.8208 8.6653 8.5292 

2 25.5023 25.1736 24.9365 25.3157 24.9396 24.6483 25.1278 24.7034 24.3568 

3 42.3399 41.7672 41.3501 42.0895 41.4531 40.9631 41.8375 41.1366 40.5724 

0 

1 8.2696 8.0940 7.9487 8.1241 7.9098 7.7194 7.9760 7.7212 7.4831 

2 24.3708 23.9204 23.5630 24.1755 23.6741 23.2579 23.9786 23.4252 22.9487 

3 40.8268 40.0914 39.5133 40.5671 39.7640 39.1081 40.3056 39.4339 38.6987 

+ 0.5 

1 7.3617 7.0741 6.8141 7.1980 6.8625 6.5451 7.0304 6.6442 6.2647 

2 23.1842 22.5979 22.1044 22.9788 22.3370 21.7788 22.7715 22.0730 21.4483 

3 39.2555 38.3424 37.5869 38.9853 37.9999 37.1606 38.7131 37.6544 36.7295 

 

 

dimensionless frequencies of FGP beam subjected to uniform (UTR), linear (LTR) and nonlinear 

temperature rises (NLTR), respectively. It is evident from the results of the tables that increasing 

the nonlocality parameter yields the reduction in dimensionless frequencies for every material 

graduation and temperature change, which these observations mean that the small scale effects in 

the nonlocal model make FGP nanobeams more flexible. It can also be deduced from these tables 

that the first three non-dimensional frequencies decrease by increasing temperature change (UTR, 

LTR and NLTR) and it can be emphasized that temperature change has a significant effect on the 

dimensionless natural frequencies, especially for lower mode numbers. It can be stated that the 

natural frequencies predicted by UTR loading are always smaller than those evaluated by LTR and 

NLTR and this situation is more prominent for smaller nonlocality parameter. In addition, it is  
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Table 5 Effect of external electric voltage and temperature change on non-dimensional frequency of a S-S 

FGP nanobeam subjected to non-linear temperature rise (L/h=20) 

μ (nm)
2
 VE (V) i  

ΔT=20 [K] ΔT=50 [K] ΔT=80 [K] 

Gradient index Gradient index Gradient index 

0.5 1 2 0.5 1 2 0.5 1 2 

0 

- 0.5 

1 10.5120 10.3904 10.3060 10.3917 10.2374 10.1182 10.2699 10.0822 9.9268 

2 40.0510 39.4536 39.0097 39.9259 39.2943 38.8138 39.8005 39.1343 38.6168 

3 88.2909 86.9129 85.8793 88.1645 86.7518 85.6811 88.0379 86.5904 85.4824 

0 

1 9.8138 9.6171 9.4584 9.6848 9.4517 9.2534 9.5541 9.2833 9.0438 

2 39.3402 38.6661 38.1464 39.2129 38.5035 37.9460 39.0851 38.3403 37.7445 

3 87.5754 86.1200 85.0102 87.4480 85.9575 84.8099 87.3203 85.7946 84.6092 

+ 0.5 

1 9.0621 8.7760 8.5271 8.9222 8.5944 8.2991 8.7801 8.4088 8.0648 

2 38.6163 37.8622 37.2631 38.4866 37.6961 37.0579 38.3564 37.5294 36.8515 

3 86.8540 85.3199 84.1320 86.7255 85.1558 83.9297 86.5968 84.9914 83.7268 

2 

- 0.5 

1 9.7050 9.6004 9.5296 9.5745 9.4347 9.3262 9.4422 9.2660 9.1182 

2 30.2751 29.8524 29.5432 30.1095 29.6415 29.2840 29.9429 29.4291 29.0224 

3 53.6003 52.8172 52.2388 53.3918 52.5517 51.9123 53.1825 52.2849 51.5837 

0 

1 8.9440 8.7577 8.6059 8.8023 8.5757 8.3801 8.6582 8.3898 8.1481 

2 29.3284 28.8035 28.3935 29.1573 28.5849 28.1237 28.9852 28.3646 27.8512 

3 52.4133 51.5022 50.7973 52.2001 51.2299 50.4614 51.9859 50.9562 50.1234 

+ 0.5 

1 8.1120 7.8247 7.5704 7.9555 7.6205 7.3127 7.7958 7.4106 7.0456 

2 28.3500 27.7150 27.1952 28.1730 27.4877 26.9134 27.9949 27.2586 26.6258 

3 51.1988 50.1527 49.3136 50.9805 49.8730 48.9676 50.7612 49.5918 48.6191 

4 

- 0.5 

1 9.0823 8.9915 8.9315 8.9428 8.8143 8.7142 8.8010 8.6335 8.4913 

2 25.4955 25.1627 24.9236 25.2986 24.9122 24.6157 25.1001 24.6591 24.3040 

3 42.3307 41.7526 41.3328 42.0664 41.4163 40.9194 41.8004 41.0772 40.5017 

0 

1 8.2643 8.0855 7.9386 8.1106 7.8880 7.6932 7.9540 7.6855 7.4398 

2 24.3637 23.9090 23.5494 24.1575 23.6452 23.2233 23.9496 23.3784 22.8926 

3 40.8173 40.0762 39.4952 40.5432 39.7257 39.0623 40.2671 39.3720 38.6246 

+ 0.5 

1 7.3558 7.0644 6.8022 7.1828 6.8374 6.5142 7.0054 6.6027 6.2129 

2 23.1767 22.5858 22.0899 22.9598 22.3064 21.7419 22.7409 22.0234 21.3883 

3 39.2456 38.3265 37.5678 38.9604 37.9598 37.1124 38.6730 37.5896 36.6514 

 

 

indicated that increase the power indexes lead to a decrease of the dimensionless frequency. This 

is because that as increasing the value of gradient index the percentage of PZT-5H phase will rise, 

thus making such FGP nanobeams more flexible. At the same time, there is no available data for 

the natural frequency of FGP nanobeams as far as the author knows. Therefore, it is believed that 

the tabulated results can be useful reference for future studies. The fundamental frequency 

parameter versus temperature rise is presented in Figs. 2-4 for the UTR, LTR and NLTR cases of 

thermal loading, respectively. In these figures, the non-dimensional frequency of simply supported 

FGPM nanobeam is plotted as a function of the external electric voltage for the selected values of 

the nonlocal parameter (μ=0,1,2,3,4) and gradient index p=0.5 at constant slenderness ratio  
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(a) μ=0 (nm)

2
 (b) μ=1 (nm)
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(c) μ=2 (nm)

2
 (d) μ=3 (nm)
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(e) μ=4 (nm)
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Fig. 2 Effect of external electric voltage on the dimensionless frequency of the S-S FGP nanobeam with 

respect to uniform temperature rise for different values of nonlocal parameters (p=0.5, L/h=25) 
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Fig. 3 Effect of external electric voltage on the dimensionless frequency of the S-S FGP nanobeam 

with respect to linear temperature rise for different values of nonlocal parameters (p=0.5, L/h=25) 
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Fig. 4 Effect of external electric voltage on the dimensionless frequency of the S-S FGP nanobeam with 

respect to non-linear temperature rise for different values of nonlocal parameters (p=0.5, L/h=25) 
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(a) VE=−0.5 V (a) VE=−0.25 V 

  
(c) VE=0 V (d) VE=0.25 V 

 
(e) VE=0.5 V 

Fig. 5 Effect of nonlocal parameter on the dimensionless frequency of the S-S FGP nanobeam with 

respect to uniform temperature rise for different values of external electric voltage (p=1, L/h=25) 
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(a) VE=−0.5 V (a) VE=−0.25 V 

  

(c) VE=0 V (d) VE=0.25 V 

 
(e) VE=0.5 V 

Fig. 6 Effect of nonlocal parameter on the dimensionless frequency of the S-S FGP nanobeam with 

respect to linear temperature rise for different values of external electric voltage (p=1, L/h=25) 
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(a) VE=−0.5 V (a) VE=−0.25 V 

  
(c) VE=0 V (d) VE=0.25 V 

 
(e) VE=0.5 V 

Fig. 7 Effect of nonlocal parameter on the dimensionless frequency of the S-S FGP nanobeam with 

respect to non-linear temperature rise for different values of external electric voltage (p=1, L/h=25) 
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Fig. 8 Effect of aspect ratio on the dimensionless frequency of the S-S FGP nanobeam with respect to 

uniform temperature rise for different values of nonlocal parameters (p=0.5, VE=0.5 V) 
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Fig. 9 Effect of aspect ratio on the dimensionless frequency of the S-S FGP nanobeam with respect to 

linear temperature rise for different values of nonlocal parameters (p=0.5, VE=0.5 V) 
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Fig. 10 Effect of aspect ratio on the dimensionless frequency of the S-S FGP nanobeam with respect to 

non-linear temperature rise for different values of nonlocal parameters (p=0.5, VE=0.5 V) 
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(a) VE=−0.5 V (a) VE=−0.25 V 

  
(c) VE=0 V (d) VE=0.25 V 

 
(e) VE=0.5 V 

Fig. 11 Effect of gradient indexes on the dimensionless frequency of the S-S FGP nanobeam with respect 

to uniform temperature rise for different values of external electric voltage (μ=2 (nm)
2
, L/h=25) 
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(a) VE=−0.5 V (a) VE=−0.25 V 

  
(c) VE=0 V (d) VE=0.25 V 

 
(e) VE=0.5 V 

Fig. 12 Effect of gradient indexes on the dimensionless frequency of the S-S FGP nanobeam with respect 

to linear temperature rise for different values of external electric voltage (μ=2 (nm)
2
, L/h=25) 
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L/h=25. It is seen that the positive and negative electric voltage respectively decreases and 

increases the natural frequency. The reason is that compressive and tensile in-plane forces are 

generated in the graded nanobeams by imposing positive and negative voltages, respectively. In 

addition, it is observed that the dimensionless frequencies of FGP nanobeam decreases with the 

increase of temperature until it reaches to zero at the critical temperature point. This is due to the 

reduction in total stiffness of the beam, since geometrical stiffness decreases when temperature 

rises. One important observation within the range of temperature before the critical temperature, it 

is clear that the FGP nanobeams with negative value of applied voltage usually provide larger 

values of the frequency results. However, this behavior is opposite in the range of temperature 

beyond the critical temperature. It is also observable that the branching point of the FGP 

nanobeam is postponed by consideration of the positive external voltage due to the fact that the 

positive applied voltage parameters result in the decrease of stiffness of the nanostructure. But in 

order to clarify the effect of the small scale parameter and temperature change on the vibration 

frequency, Figs. 5-7 intuitively exhibit the variations of the non-dimensional frequency of nonlocal 

FGP beam with respect to various temperature changes (UTR, LTR and NLTR) for different 

values of nonlocal parameter and electric voltage at constant slenderness ratio L/h =25 and power-

law index p=1. Observing these figures, it is easily deduced for all cases of thermal loading that, 

an increase in external voltage gives rise to a decrease in the dimensionless natural frequency for 

all temperature changes. It is clearly observed that the fundamental frequency decreases by 

increasing temperature changes and it can be stated that temperature change and applied voltage 

have a notable effect on the fundamental frequency of the graded S-S nanobeam. In addition, the 

above results obtained also show that the non-dimensional frequencies of the nonlocal FGP model 

are always smaller than those of the classical graded piezoelectric beam model. With the increase 

the nonlocal parameter μ from 0 to 4 (nm)
2
, the natural frequencies decrease significantly. The 

results indicate that the nonlocal effect is tending to weaken the stiffnes of nanostructures and 

hence decreases the natural frequencies. Effects of changing length-to-thickness ratio (L/h) on the 

dimensionless frequency of FGP nanobeam for different values of nonlocality parameter and three 

types of thermal loading are investigated in Figs. 8-10. In all figures, results are prepared for p=0.5 

and VE=0.5V. It is seen that, small scale parameter, has a softening effect on nonlocal FG beam at 

pre-buckling region and a rise in small scale increases this effect. Also, regardless of the type of 

thermal loadings, it can be pointed that the values of natural frequencies decrease with the 

increasing value of the aspect ratio at a constant material distribution. That is because a higher 

length-to-thickness ratio indicates that the FGPM nanobeam is thinner with a lower stiffness. 

Finally, Figs. 11 and 12 display the variations of the first dimensionless natural frequency of the S-

S FGP nanobeams with respect to uniform and linear thermal loadings for different values of 

volume fraction indexes and applied voltage (L/h =25), “The nonlocal parameter is taken to be 

μ=2(nm)
2
. The similar conclusions are derived from these figures for the effect of the electric 

voltage parameter on the natural frequency. It can be concluded from Figs. 11 and 12 that the 

frequency decreases when the gradient index increases. On the other hand, these figures reveal that 

the natural frequency magnifies with the decrease of the power-law exponent parameter.  
 
 
6. Conclusions 

 

This study focuses on the thermo-electro-mechanical free vibration of a size-dependent FGP 

nanobeam by using Timoshenko beam theory and Eringen’s nonlocal elasticity theory. The 
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governing differential equations and related boundary conditions are derived by implementing 

Hamilton’s principle. The Navier solution method is adopted to obtain the analytical solutions of 

the governing equations of motion. Thermo-electro-mechanical properties of the FGP nanobeams 

are assumed to be function of thickness and based on power-law model. Accuracy of the results is 

examined using available data in the literature. Finally, through some parametric study and 

numerical examples, the effect of different parameters are investigated for graded piezoelectric 

nanobeams in different set of thermal loading. As shown in several numerical exercises, it is 

revealed that many parameters such as external electric voltage, small scale parameter, power-law 

gradient index, various temperature change and aspect ratio have significant impact on non-

dimensional frequencies of FGP nanobeams. As previously specified, increasing the nonlocal 

parameter yields the decrease in dimensionless frequencies for every types of thermal 

environments. However, the FGP nanobeam model produces smaller natural frequency than the 

classical beam model. Therefore, the small scale effects should be considered in the analysis of 

mechanical behavior of nanostructures. The results indicated that the dramatic reduction in 

frequencies of the nonlocal FGP beam is detected as the increase of the temperature rises and 

power-law index. Also, it was observed that the effects of external electric voltages on vibration 

behavior of graded nanobeam are dependent on their sign. 
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