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Abstract.  This paper investigates the buckling behavior of shear deformable piezoelectric (FGP) nanoscale 
beams made of functionally graded (FG) materials embedded in Winkler-Pasternak elastic medium and 
subjected to an electro-magnetic field. Magneto-electro-elastic (MEE) properties of piezoelectric nanobeam 
are supposed to be graded continuously in the thickness direction based on power-law model. To consider 
the small size effects, Eringen’s nonlocal elasticity theory is adopted. Employing Hamilton’s principle, the 
nonlocal governing equations of the embedded piezoelectric nanobeams are obtained. A Navier-type 
analytical solution is applied to anticipate the accurate buckling response of the FGP nanobeams subjected to 
electro-magnetic fields. To demonstrate the influences of various parameters such as, magnetic potential, 
external electric voltage, power-law index, nonlocal parameter, elastic foundation and slenderness ratio on 
the critical buckling loads of the size-dependent MEE-FG nanobeams, several numerical results are 
provided. Due to the shortage of same results in the literature, it is expected that the results of the present 
study will be instrumental for design of size-dependent MEE-FG nanobeams. 
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1. Introduction 
 

Magneto-electro-elastic (MEE) materials have encountered to a significant interest for their 

extensive potential applications, since the first report on a MEE composite including piezo-electric 

phase and piezo-magnetic phases in 1970s (Van Run et al. 1974). MEE materials have the 

potential to convert magnetic, electric and mechanical energies from one form to the others and 

this leads to wide application of these materials in sensing and actuating devices, control of 

structural vibrations and smart structure technology (Milazzo et al. 2009). Recently, analyzing the 

mechanical responses of MEE structural components has received a remarkable attention. A 

survey in literature shows that, mechanical behavior of MEE structures is studied by several 

researchers. Among them, Chen et al. (2005) studied free vibration of non-homogeneous 

transversely isotropic magneto-electro-elastic plates. Free vibration of multiphase and layered 

magneto-electro-elastic beam for BaTiO3-CoFe2O4 composite is carried out by Annigeri et al. 

(2007). Kumaravel et al. (2007) researched linear buckling and free vibration behavior of layered 
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and multiphase magneto‐electro‐elastic (MEE) beam under thermal environment. Transient 

dynamic response of multiphase magneto-electro-elastic cantilever beam is presented by Daga et 

al. (2009) using finite element method. Also, Liu and Chang (2010) presented a closed form 

expression for the vibration problem of a transversely isotropic magneto-electro-elastic plate. 

Razavi and Shooshtari (2015) studied nonlinear free vibration of symmetric magneto-electro-

elastic laminated rectangular plates with simply supported boundary condition. They used the first 

order shear deformation theory considering the von Karman’s nonlinear strains to obtain the 

equations of motion, whereas Maxwell equations for electrostatics and magnetostatics are used to 

model the electric and magnetic behavior. Recently, Xin and Hu (2015) investigated free vibration 

of simply supported and multilayered magneto-electro-elastic plates. 

Moreover, mechanical analysis of structures made from composition of MEEMs and FGMs 

have gained notable attentions in the last years. Pan and Han (2005) presented an exact solution for 

the multilayered rectangular plate made of FG, anisotropic, and linear magneto-electro-elastic 

materials. In this study, they supposed that the edges of the plate are under simply supported 

conditions, general mechanical, electric and magnetic boundary conditions can be applied on both 

the top and bottom surfaces of the plate. Also, Huang et al. (2007) studied the plane stress problem 

of generally anisotropic magneto-electro-elastic beams with the coefficients of elastic compliance, 

piezoelectricity, dielectric impermeability, piezomagnetism, magnetoelectricity, and magnetic 

permeability being arbitrary functions of the thickness coordinate. In another study, three-

dimensional (3D) static behavior of doubly curved FG MEE shells under the mechanical load, 

electric displacement and magnetic flux using an asymptotic approach is investigated by Wu and 

Tsai (2007). Li et al. (2008) investigated the problem of a functionally graded, transversely 

isotropic, magneto-electro-elastic circular plate acted on by a uniform load. Kattimani and Ray 

(2015) investigated active control of geometrically nonlinear vibrations of FG MEE plates. Sladek 

et al. (2015) analyzed bending of circular magneto-electro-elastic plates with functionally graded 

material properties using a meshless method. 

The significance of size effects motivated the scientific community to explore the behaviors of 

the nanostructures and nanomaterials much accurately (Alizada and Sofiyev 2011a, b, Alizada et 

al. 2012). By minimizing the size of the structure and becoming comparable to the internal 

characteristic length scale, the classical continuum mechanics is unable to model such structures in 

which size-dependent behaviors have been experimentally observed. Due to this reason, various 

higher order continuum theories such as Eringen’s nonlocal elasticity theory are suggested to 

capture the influence of small size. Ke and Wang (2014) studied the free vibration behavior of 

magneto-electro-elastic (MEE) nanobeams using nonlocal theory and Timoshenko beam theory. 

They supposed that the MEE nanobeam is subjected to the external electric potential, magnetic 

potential and uniform temperature rise. In another study, Ke et al. (2014) investigated the free 

vibration behavior of magneto-electro-elastic (MEE) nanoplates based on the nonlocal theory and 

Kirchhoff plate theory. Li et al. (2014) analyzed buckling and free vibration of magneto-electro-

elastic nanoplate resting on Pasternak foundation based on nonlocal Mindlin theory. Ansari et al. 

(2015) studied forced vibration behavior of higher order shear deformable magneto-electro-thermo 

elastic (METE) nanobeams based on the nonlocal elasticity theory in conjunction with the von 

Kármán geometric nonlinearity. Wu et al. (2015) researched surface effects on anti-plane shear 

waves propagating in nanoplates made from magneto-electro-elastic materials. As literature 

shows, there is no study investigating the small scale influence on buckling responses of MEE-FG 

nanobeams, so it is necessary to investigate the stability of such structures. By ignoring the effects 

of magnetic and electric fields only a few studies are performed to analyze mechanical behavior of 
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FG nanobeams. Among them, Şimşek and Yurtcu (2013) presented analytical solutions for 

bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam 

theory. Rahmani and Pedram (2014) Analyzed the size effect on vibration of functionally graded 

nanobeams based on nonlocal Timoshenko beam theory. Rahmani and Jandaghian (2015) studied 

buckling of functionally graded nanobeams based on a nonlocal third-order shear deformation 

theory. Also, Ebrahimi and Salari (2015 a, b) studied influences of thermal environments on 

mechanical behavior of nonlocal temperature-dependent FG nanobeams. Ebrahimi and Barati 

(2015) presented a nonlocal third order beam theory for vibration analysis of FG nanobeams. Most 

recently, Zemri et al. (2015) analyzed mechanical responses of FG nanobeams using a refined 

shear deformation theory. Mahmoud et al. (2015) investigated bending and buckling analyses of 

functionally graded material (FGM) size-dependent nanoscale beams including the thickness 

stretching effect. Also, Barati et al. (2016) investigated thermo-mechanical buckling analysis of 

embedded small size FG plates in thermal environments via an inverse cotangential theory. 

This paper present a higher order beam model for the buckling analysis of magneto-electro-

elastic FG nanobeams resting on two-parameter elastic foundation. Superiority of the present 

theory is that it consider the influences of shear deformation which is ignored in Euler-Bernoulli 

beam theory and doesn't require a shear correction factor applied in Timoshenko beam theory. The 

magneto-electro-elastic material properties of the beam is supposed to be variable in the thickness 

direction according to the power law distribution. The small size effect is captured using Eringen’s 

nonlocal elasticity theory. Nonlocal governing equations for the buckling of embedded MEE-FG 

nanobeams have been derived via Hamilton’s principle and then solved using Navier type method. 

Various numerical and illustrative results show the influences of elastic foundation, magnetic 

potential, external electric voltage, nonlocal parameter, power-law index and slenderness ratio on 

buckling behavior of MEE-FG nanobeams resting on elastic foundation.  
 

 

2. Theoretical formulations 
 

2.1 The material properties of MEE-FG nanobeams 
 

Assume a magneto-electro-elastic functionally graded nanobeam composed of BaTiO3 
and 

CoFe2O4 
materials exposed to a magnetic potential ϒ(x,z,t)

 
and electric potential Φ(x,z,t), with 

length L and uniform thickness h, as shown in Fig. 1. The effective material properties of the MEE-

FG nanobeam are supposed to change continuously in the z-axis direction (thickness direction) based 

on the power-law model. So, the effective material properties, P, can be stated in the following form 

                   2 2 1 1V VP P P 
 

(1) 

In which P1 and P2 denote the material properties of the bottom and higher surfaces, respectively. 

Also V1 and V2 are the corresponding volume fractions related by 

                    
2 1 2

1
( ) , 1

2

p V
z

V V
h
    (2) 

Therefore, according to Eqs. (1) and (2), the effective magneto-electro-elastic material properties 

of the FG beam is defined as 
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Fig. 1 Configuration of a MEE-FG nanobeam 

 

 

                     

 2 1 1

1
( )

2

p

P P P
z

z
h

P   
 
 
 

 (3) 

where p  is power-law exponent which is non-negative and estimates the material distribution 

through the thickness of the nanobeam and z is the distance from the mid-plane of the graded 

piezoelectric beam. It must be noted that, the top surface at z=+h/2 of FG nanobeam is assumed 

CoFe2O4 rich, whereas the bottom surface (z=−h/2)  is BaTiO3 
rich.  

 
2.2 Nonlocal elasticity theory for the magneto-electro-elastic materials 
 

Contrary to the constitutive equation of classical elasticity theory, Eringen’s nonlocal theory 

(Eringen 1972a, b, Eringen 1983) notes that the stress state at a point inside a body is regarded to 

be function of strains of all points in the neighbor regions. For a nonlocal magneto-electro-elastic 

solid the basic equations with zero body force may be defined as 

               
  , ( ) ( ) ( ) ( )ij ijkl kl mij m nij n

V
x x C x e E x q H x dV x            (4a) 

              
  , ( ) ( ) ( ) ( )i ikl kl im m in n

V
D x x e x s E x d H x dV x           (4b) 

              
  , ( ) ( ) ( ) ( )i ikl kl im m in n

V
B x x q x d E x H x dV x            (4c) 

where ζij, εij, Di, Ei, Bi and Hi denote the stress, strain, electric displacement, electric field 

components, magnetic induction and magnetic field and displacement components, respectively; 

Cijkl, Emij, sim, qnij, dij 
and χij are the elastic, piezoelectric, dielectric constants, piezomagnetic, 

magnetoelectric, magnetic constants, respectively; α(|x′−x|, η) is the nonlocal kernel function and 

(|x′−x| is the Euclidean distance. η=e0a/l is defined as scale coefficient, where e0 
is a material 

constant which is determined experimentally or approximated by matching the dispersion curves 

of plane waves with those of atomic lattice dynamics; and a and l are the internal and external 

characteristic length of the nanostructures, respectively. Finally it is possible to represent the 

integral constitutive relations given by Eq. (4) in an equivalent differential form as 
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2 2

0( )ij ij ijkl kl mij m nij ne a C e E q H        (5a) 

             
2 2

0( )i i ikl kl im m in nD e a D e s E d H      (5b) 

             
2 2

0( )i i ikl kl im m in nB e a B q d E H       (5c) 

where 
2

 is the Laplacian operator and e0a 
is the nonlocal parameter revealing the size influence 

on the response of nanostructures.  

 

2.3 Nonlocal magneto-electro-elastic FG nanobeam model 
 

Based on third order beam theory, the displacement field at any point of the beam are supposed 

to be in the form 

                 
    3, ( ) ( )x

w
u x z u x z x

x
z 





   (6a) 

            ( , ) ( )zu x z w x  (6b) 

in which α=4/3h
2
 and u and w are displacement components in the mid-plane along the coordinates x 

and z, respectively, while ψ denotes the total bending rotation of the cross-section. 

To satisfy Maxwell’s equation in the quasi-static approximation, the distribution of electric and 

magnetic potential along the thickness direction is supposed to change as a combination of a 

cosine and linear variation as follows 

                     

2
( , , ) cos ( ) ( , )

z
x z t z x t V

h
      (7a) 

                    

2
( , , ) cos ( ) ( , )

z
x z t z x t

h
       (7b) 

where ξ=π/h. Also, V and Ω are the initial external electric voltage and magnetic potential applied 

to the MEE-FG nanobeam. Considering strain-displacement relationships on the basis of parabolic 

beam theory, the non-zero strains can be stated as 

                      xx xx x

(0) (1) 3 (3

x

)

xxzz    
 

(8) 

                    

(0) 2 (2)

xz xz xzz   
 

(9) 

where 

                   

2
(0) (1) (3

xx xx xx

)

2
, , ( )

u w

x x x x

 
  

   
   

  


  

(10) 

                   

(0) (2), ( )xz xz

w w

x x
    

 
    
   

(11) 
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And 
2

4

h
  . 

According to the Eq. (7), the non-zero components of electric and magnetic field (Ex, Ez, Hx, 

Hz) can be obtained as 

             
, ,

2
cos ( ) , sin ( )x x z z

V
E z E z

x h


   


       


 (12a) 

            
, ,

2
cos ( ) , sin ( )x x z zH z H z

x h


   

 
       


 (12b) 

The Hamilton’s principle can be stated in the following form to obtain the governing equations 

of motion 

              0
( ) 0

t

S W dt     
(13) 

where ΠS 
is strain energy and ΠW 

is work done by external applied forces. The first variation of 

strain energy ΠS can be calculated as 

             
 

/2

0 /2

L h

S xx xx xz xz x x z z x x z z
h

D E D E B H B H dzdx         


         (14) 

Substituting Eqs. (8) and (9) into Eq. (14) yields 

      

/2

0 /2

(0) (1) (3) (0) (2)

0
xx xx xx

cos( ) sin( ) cos( ) sin( )

( )S

L h

x z x z
h

L

xz xz

D z D z B z B z dzdx
x x

N M P Q R dx

 
           

      



 

     
        

     

    

 


 (15) 

in which N, M and Q are the axial force, bending moment and shear force resultants, respectively. 

Relations between the stress resultants and stress component used in Eq. (15) are defined as 

               

3

2

, ,

,

xx xx xx
A A A

xz xz
A A

N dA M z dA P z dA

Q dA R z dA

  

 

  

 

  

 
 (16) 

The work done due to external electric voltage, ΠW, can be written in the form 

             

(0)

0

2 2
(

2

x

0)

2

x
ˆ( )

ˆ )

L

W H E b

xz w p

w w
N N N q w f u N M

x x x

w w
P Q k w k dx

x x

 
  

 
  


  

       
  

 
   

 


 (17) 

where ˆˆ ,M M P Q Q R      and q(x) and f(x) are the transverse and axial distributed loads and 

kw and kw are foundation parameters and also Nb, NB 
and NE 

are the buckling load and normal 

forces induced by magnetic potential and external electric voltage, respectively which are defined 

as 

           

/2 /2

31 31
/2 /2

2 2
,

h h

E H
h h

V
N e dz N q dz

h h 


      (18) 
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For a magneto-electro-elastic FGM nanobeam in the one dimensional case, the nonlocal 

constitutive relations (5a)-(5c) may be rewritten as 

                

2
2

0 11 31 312
( ) xx

xx xx z ze a c e E q H
x


 


   


 (19) 

               

2
2

0 55 15 152
( ) xz

xz xz x xe a c e E q H
x


 


   

  
(20) 

               

2
2

0 15 11 112
( ) x

x xz x x

D
D e a e s E d H

x



   

  
(21) 

             

2
2

0 31 33 332
( ) z

z xx z z

D
D e a e s E d H

x



   

  
(22) 

             

2
2

0 15 11 112
( ) x

x xz x x

B
B e a q d E H

x
 


   


 (23) 

             

2
2

0 31 33 332
( ) z

z xx z z

B
B e a q d E H

x
 


   


 (24) 

Inserting Eqs. (15) and (17) in Eq. (13) and integrating by parts, and gathering the coefficients 

of δu, δw, δψ, δϕ and δγ the following governing equations are obtained 

        
0

N
f

x


 


 (25) 

        

ˆ
ˆ 0

M
Q

x


 


 (26) 

        

2 2 2

2 2 2

ˆ
( ) 0H E b w p

Q w P w
q N N N k w k

x x x x


   
       

   
 (27) 

        

/2

/2
cos( ) sin( ) 0

h
x

z
h

D
z z D dz

x
  



 
  

 


 
(28) 

        

/2

/2
cos( ) sin( ) 0

h
x

z
h

B
z z B dz

x
  



 
  

 
  (29) 

By integrating Eqs. (19)-(24), over the beam’s cross-section area, the force-strain and the 

moment-strain of the nonlocal third order Reddy FG beam theory can be obtained as follows 

      

2 2

31 312 2
( ) e m

xx xx xx E H

N u w
N A B E A A N N

x x x x x

 
  

    
        

    
 (30) 

      

2 2

31 312 2
( ) e m

xx xx xx

M u w
M B D F E E

x x x x x


  

    
      

    
 (31) 
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2 2

31 312 2
( ) e m

xx xx xx

P u w
P E F H F F

x x x x x


  

    
      

      
(32) 

        

2

15 152
( )( ) e m

xz xz

Q w
Q A D E E

x x x x

 
 

   
     

   
 (33) 

       

2

15 152
( )( ) m m

xz xz

R w
R D F F F

x x x x

 
 

   
     

   
 (34) 

       

2
/2

15 15 11 112/2
cos( ) ( )( )

h
e e e mx

x
h

D w
D z dz E F F F

x x x x

 
  



    
      

    


 
(35) 

  

2 2
/2

31 31 31 31 33 332 2/2
sin( ) ( )

h
e e e e e mz

z
h

D u w
D z dz A E F F F F

x x x x


     



    
       

    


 
(36) 

        

2
/2

15 15 11 112/2
cos( ) ( )( )

h
m m m mx

x
h

B w
B z dz E F F X

x x x x

 
  



    
      

    
  (37) 

2 2
/2

31 31 31 31 33 332 2/2
sin( ) ( )

h
m m m m m mz

z
h

B u w
B z dz A E F F F X

x x x x


     



    
       

    
  (38) 

where μ=(e0a)
2
 and quantities used in above equations are defined as 
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h
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The explicit relation of the nonlocal normal force can be derived by substituting for the second 

derivative of N from Eq.(30) into Eq.(25) as follows 

        

2

31 312
( )e m

x xx xx xx E H

u w f
N A K E A A N N

x x x x
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   
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   

 
(48) 

Omitting Q̂  from Eqs. (26) and (27), we obtain the following equation 

 (49) 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 

second derivative of M̂ from Eq. (31) into Eq. (26) and using Eqs. (31) and (32) as follows 

          

2
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 (50) 

where  

       xx xx xx, ,xx xx xx xx xxx xK B D F FE I J H        (51) 

By substituting for the second derivative of Q̂  from Eq. (33) into Eq. (27), and using Eqs. (33) 

and (34) the following expression for the nonlocal shear force is derived 
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(52) 

where 

       
* * *

xz xz

* , ,xz xzxz xz xz x xz zA A A AI I DD F        (53) 

Now we use M̂ and Q̂  from Eqs. (53) and (55) and the identity 

 

(54) 

It must be cited that inserting Eqs. (28) and (29) into Eqs. (35)-(38), does not provide an 

explicit expressions for Dx and Dz. To overcome this problem, by using Eqs. (35)-(38), Eqs. (28) 

2 2 3 3 3 4 2 2
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and (29) can be re-expressed in terms of u, w, ψ and ϕ. Finally, based on third-order beam theory, 

the nonlocal equations of motion for a magneto-electro-elastic FG nanobeam can be obtained by 

substituting for N, M̂ and Q̂   from Eqs. (48), (50) and (52) into Eqs. (30)-(33) as follows 
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3. Solution procedure 
 

Here, on the basis the Navier method, an analytical solution of the governing equations for 

buckling of a simply supported magneto-electro-elastic FG nanobeam is presented. To satisfy 

governing equations of motion, the displacement variables are adopted to be of the form 
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where Un, Wn, Ψn, Φn and ϒn 
are the unknown Fourier coefficients to be determined for each n 

value.  Using Eqs. (60)-(64) the analytical solution can be obtained from the following equations 
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4. Results and discussion 
 

This section provides some numerical examples for the buckling characteristics of MEE-FG 

nanobeams. To achieve this goal, the nonlocal FG beam made of BaTiO3 
and CoFe2O4, with 

magneto-electro-elastic material properties listed in Table 1, is assumed. The beam geometry has 

the following dimensions: L (length)=10 nm and h (thickness)=varied. Also, the following relation 

is described to calculate the non-dimensional buckling loads as well as foundation parameters 

        2 4 2 4 2 4

2 4 2

11 CoFe 11 CoFe 11 CoFe

, ,
( ) ( ) ( )

bcr b w w p p

O O O

L L L
N N K k K k

c I c I c I
    (69) 

In which I=h
3
/12

 
is the moment of inertia of the cross section of the beam. To evaluate 

correctness of the present model, the buckling results are compared with those of nonlocal FGM 

Reddy beams, due to the absence of numerical results for the buckling of MEE-FG nanobeams 

based on the nonlocal elasticity theory, as provided in Table 2. In this paper, the material selection 

is carried out as follows: Em=70 GPa, vm=0.3, kgm
-3 

for Steel and Ec=390 GPa, vc=0.3, for 

Alumina. Tables 3-5, present the influences of magnetic potential (Ω), electric voltage (V), elastic 

foundation parameters (Kw, Kp), nonlocal parameter (μ), gradient index (p) and slenderness ratio 

(L/h) on the non-dimensional buckling load of the S-S MEE-FG nanobeams. 
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Table 1 Magneto-electro-elastic coefficients of material properties (Pan and Han 2005)  

Properties BaTiO3
 

CoFe2O4
 

c11 (GPa) 166 286 

c55 43 45.3 

e31 (Cm
-2

) -4.4 0 

e15 11.6 0 

q31 (N/Am) 0 580.3 

q15 0 550 

s11 (10
-9

 C
2
m

-2
N

-1
) 11.2 0.08 

s33 12.6 0.093 

χ11(10
-6

 Ns
2
C

-2
/2) 5 -590 

χ33 
10 157 

d11=d33
 

0 0 

 
Table 2 Comparison of the non-dimensional buckling load for a S-S FG nanobeam with various power-law 

index (L/h=20) 

 Nonlocal parameter 

p µ=1  µ=2  µ=3  µ=4  

 

RBT 

(Rahmani and 

Jandaghian 

2015) 

Present 

RBT 

(Rahmani and 

Jandaghian 

2015) 

Present 

RBT 

(Rahmani and 

Jandaghian 

2015) 

Present 

RBT 

 (Rahmani and 

Jandaghian 

2015) 

Present 

0 8.9258 8.925759 8.1900 8.190046 7.5663 7.566381 7.0309 7.030978 

0.1 9.7778 9.777865 8.9719 8.971916 8.2887 8.288712 7.7021 7.702196 

0.2 10.3898 10.389845 9.5334 9.533453 8.8074 8.807489 8.1842 8.184264 

0.5 11.4944 11.494448 10.5470 10.547009 9.7438 9.743863 9.0543 9.054379 

1 12.3709 12.370918 11.3512 11.351234 10.4869 10.486847 9.7447 9.744790 

2 13.1748 13.174885 12.0889 12.088934 11.1683 11.168372 10.3781 10.378089 

5 14.2363 14.236343 13.0629 13.062900 12.0682 12.068171 11.2142 11.214218 

 

 

It is obvious that for all values of magnetic potential and electric voltage nonlocal parameter 

weakens the structure of nanobeam by showing a significant reducing influence on the non-

dimensional buckling loads. Also, it is observed that elastic foundation enhances rigidity of the 

beam and leads to increasing the dimensionless buckling loads.  Another observation is that the 

buckling load results are strongly dependent on the magnitude and sign of magnetic potential and 

electric voltage. For all values of Winkler and Pasternak foundation parameters, the negative 

voltages provide higher buckling loads, while negative magnetic potentials produce lower 

buckling loads.  

The influences of magnetic potential and electric voltage on the variations of the non-

dimensional buckling load of the simply supported FG nanobeams versus power-law index at 

L/h=20 are plotted in Figs. 2 and 3, respectively. As one can see the non-dimensional buckling 

load decreases when the gradient index rises, especially for lower values of gradient index. This  
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Table 3 Variation of the dimensionless buckling load of embedded S-S FG nanobeam for various nonlocal 

parameter, magnetic potentials and electric voltages (L/h=15) 

(       µ  Ω=-0.05 Ω=0 Ω=+0.05 

   p=0.2 p=1 p=5 p=0.2 p=1 p=5 p=0.2 p=1 p=5 

(0,0) 

0 

V=-5 8.24863 7.41208 7.10613 8.93342 7.82296 7.24309 9.61822 8.23384 7.38004 

V=0 8.14478 7.10055 6.58690 8.82958 7.51142 6.72385 9.51437 7.92230 6.86081 

V=+5 8.04093 6.78901 6.06766 8.72573 7.19988 6.20462 9.41052 7.61076 6.34158 

1 

V=-5 7.45546 6.73733 6.50212 8.14026 7.14821 6.63908 8.82505 7.55909 6.77604 

V=0 7.35162 6.42579 5.98289 8.03641 6.83667 6.11985 8.72121 7.24755 6.25681 

V=+5 7.24777 6.11425 5.46366 7.93257 6.52513 5.60062 8.61736 6.93601 5.73758 

2 

V=-5 6.79306 6.17381 5.99769 7.47785 6.58469 6.13465 8.16265 6.99557 6.27161 

V=0 6.68921 5.86227 5.47846 7.37401 6.27315 5.61542 8.0588 6.68403 5.75237 

V=+5 6.58536 5.55074 4.95923 7.27016 5.96161 5.09618 7.95495 6.37249 5.23314 

(25,5) 

0 

V=-5 15.7817 14.9451 14.6392 16.4665 15.3560 14.7761 17.1512 15.7669 14.9131 

V=0 15.6778 14.6336 14.1199 16.3626 15.0445 14.2569 17.0474 15.4553 13.2854 

V=+5 15.5740 14.3220 13.6007 16.2588 14.7329 13.7377 16.9436 15.1438 13.8746 

1 

V=-5 14.9885 14.2704 14.0352 15.6733 14.6812 14.1721 16.3581 15.0921 14.3091 

V=0 14.8846 13.9588 13.5159 15.5694 14.3697 13.6529 16.2542 14.7806 13.7898 

V=+5 14.7808 13.6473 12.9967 15.4656 14.0582 13.1336 16.1504 14.469 13.2706 

2 

V=-5 14.3261 13.7068 13.5307 15.0109 14.1177 13.6677 15.6957 14.5286 13.8046 

V=0 14.2222 13.3953 13.0115 14.9070 13.8062 13.1484 15.5918 14.2171 13.2854 

V=+5 14.1184 13.0838 12.4923 14.8032 13.4946 12.6292 15.488 13.9055 12.7662 

 
Table 4 Variation of the dimensionless buckling load of embedded S-S FG nanobeam for various nonlocal 

parameter, magnetic potentials and electric voltages (L/h=20). 

(       µ  Ω=-0.05 Ω=0 Ω=+0.05 

   p=0.2 p=1 p=5 p=0.2 p=1 p=5 p=0.2 p=1 p=5 

(0,0) 

0 

V=-5 7.55085 7.34664 7.68559 9.17407 8.32057 8.01024 10.7973 9.29450 8.33488 

V=0 7.30469 6.60818 6.45483 8.92791 7.58211 6.77947 10.5511 8.55604 7.10411 

V=+5 7.05854 5.86972 5.22406 8.68176 6.84365 5.54870 10.3050 7.81758 5.87334 

1 

V=-5 6.74885 6.66554 7.07659 8.37207 7.63947 7.40124 9.99529 8.61340 7.72588 

V=0 6.50270 5.92708 5.84582 8.12592 6.90101 6.17047 9.74913 7.87494 6.49511 

V=+5 6.25655 5.18862 4.61506 7.87976 6.16255 4.93970 9.50298 7.13648 5.26434 

2 

V=-5 6.07907 6.09672 6.56799 7.70228 7.07065 6.89263 9.32550 8.04458 7.21727 

V=0 5.83291 5.35826 5.33722 7.45613 6.33219 5.66186 9.07935 7.30612 5.98651 

V=+5 5.58676 4.61980 4.10645 7.20998 5.59373 4.43109 8.83319 6.56766 4.75574 

(25,5) 

0 

V=-5 15.0839 14.8797 15.2186 16.7071 15.8536 15.5433 18.3303 16.8275 15.8679 

V=0 14.8377 14.1412 13.9879 16.4609 15.1151 14.3125 18.0842 16.0891 14.6371 

V=+5 14.5916 13.4027 12.7571 16.2148 14.3767 13.0817 17.8380 15.3506 13.4064 

1 

V=-5 14.2819 14.1986 14.6096 15.9051 15.1725 14.9343 17.5283 16.1464 15.2589 

V=0 14.0357 13.4601 13.3789 15.6589 14.4340 13.7035 17.2822 15.4080 14.0281 

V=+5 13.7896 12.7216 12.1481 15.4128 13.6956 12.4727 17.0360 14.6695 12.7974 

2 

V=-5 13.6121 13.6297 14.1010 15.2353 14.6037 14.4257 16.8585 15.5776 14.7503 

V=0 13.3659 12.8913 12.8702 14.9892 13.8652 13.1949 16.6124 14.8391 13.5195 

V=+5 13.1198 12.1528 11.6395 14.7430 13.1268 11.9641 16.3662 14.1007 12.2888 
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Table 5 Variation of the dimensionless buckling load of embedded S-S FG nanobeam for various nonlocal 

parameter, magnetic potentials and electric voltages (L/h=25) 

(       µ  Ω=-0.05 Ω=0 Ω=+0.05 

   p=0.2 p=1 p=5 p=0.2 p=1 p=5 p=0.2 p=1 p=5 

(0,0) 

0 

V=-5 6.28461 7.15540 8.57532 9.45495 9.05760 9.20939 12.6253 10.9598 9.84346 

V=0 5.80384 5.71309 6.17148 8.97418 7.61530 6.80554 12.1445 9.51750 7.43961 

V=+5 5.32307 4.27078 3.76763 8.49342 6.17299 4.40170 11.6638 8.07520 5.03577 

1 

V=-5 5.47846 6.47131 7.96398 8.64880 8.37352 8.59805 11.8191 10.2757 9.23212 

V=0 4.99769 5.02901 5.56013 8.16803 6.93121 6.19420 11.3384 8.83342 6.82827 

V=+5 4.51692 3.58670 3.15629 7.68726 5.48891 3.79036 10.8576 7.39111 4.42442 

2 

V=-5 4.80520 5.9000 7.45342 7.97554 7.80221 8.08749 11.1459 9.70442 8.72155 

V=0 4.32443 4.45770 5.04957 7.49478 6.35990 5.68364 10.6651 8.26211 6.31771 

V=+5 3.84366 3.01539 2.64572 7.01401 4.91760 3.27979 10.1844 6.81980 3.91386 

(25,5) 

0 

V=-5 13.8176 14.6884 16.1084 16.988 16.5906 16.7424 20.1583 18.4928 17.3765 

V=0 13.3369 13.2461 13.7045 16.5072 15.1483 14.3386 19.6776 17.0505 14.9726 

V=+5 12.8561 11.8038 11.3007 16.0264 13.7060 11.9347 19.1968 15.6082 12.5688 

1 

V=-5 13.0115 14.0043 15.4970 16.1818 15.9066 16.1311 19.3522 17.8088 16.7651 

V=0 12.5307 12.5620 13.0932 15.7011 14.4642 13.7272 18.8714 16.3665 14.3613 

V=+5 12.0499 11.1197 10.6893 15.2203 13.0219 11.3234 18.3906 14.9241 11.9575 

2 

V=-5 12.3382 13.4330 14.9864 15.5086 15.3352 15.6205 18.6789 17.2374 16.2546 

V=0 11.8575 11.9907 12.5826 15.0278 13.8929 13.2167 18.1982 15.7951 13.8507 

V=+5 11.3767 10.5484 10.1788 14.5470 12.4506 10.8128 17.7174 14.3528 11.4469 

 

  
(a) Kw=Kp=0 (b) Kw=25, Kp=5 

Fig. 2 Effect of external magnetic potential on the dimensionless buckling load of the S-S FG nanobeam 

with respect to gradient index (L/h=20, V=+5, µ=2) 

 

 

reduction in buckling load is more significant with respect to the positive magnetic potentials and 

external electric voltages. Moreover, it is observed that influence of larger values of gradient index  
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(a) Kw=Kp=0 (b) Kw=25, Kp=5 

Fig. 3 Effect of external electric voltage on the dimensionless buckling load of the S-S FG nanobeam with 

respect to gradient index (L/h=20, Ω =+0.05, µ=2) 

 

  
(a) Kw=Kp=0 (b) Kw=25, Kp=5 

Fig. 4 Effect of nonlocal parameter and magnetic field on the dimensionless buckling load of the S-S FG 

nanobeam (L/h=20, V=+5, µ=0.2) 

 

on the magnetic potential is less than lower gradient indexes, whereas this trend is reverse for 

electric voltage and the impact of higher gradient indexes on electric voltage is more sensible.  

The effect of nonlocal parameter on the first non-dimensional buckling load of the S-S MEE-

FG nanobeams is depicted in Fig. 4 (L/h=20, V=+5, µ=0.2). It is apparently seen that nonlocal 

parameter has a softening influence on the beam structure and reduces the buckling loads. So, 

nonlocal beam model produces smaller buckling loads compared to local beam model. Also, it is 

observed that nonlocality is independent of magnetic field. 

The variations of the dimensionless buckling load of MEE-FG nanobeams versus the Winkler 

and Pasternak parameters for various magnetic potentials and electric voltages at L/h=20, p=0.2 

and µ=2 are presented in Figs. 5 and 6, respectively. One can find that, with the increase of  
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(a) (b) 

Fig. 5 Effect of external magnetic potential and electric voltage on the dimensionless buckling load of the 

S-S FG nanobeam with respect to Winkler parameter; (a) V=+5,  (b) Ω=+0.05 (L/h=20, µ  =2, p=0.2, Kp=5) 

 

  
(a) (b) 

Fig. 6 Effect of external magnetic potential and electric voltage on the dimensionless buckling load of the S-

S FG nanobeam with respect to Pasternak parameter; (a) V=+5,  (b) Ω=+0.05 (L/h=20, µ  =2, p=0.2, Kp=25) 

 

 

Winkler and Pasternak parameters for any sign and magnitude of magnetic potential and electric 

voltage, the non-dimensional buckling load increases, due to the enhancement in stiffens of the 

MME-FG nanobeam structure. Moreover, it is clearly seen that the effect of Pasternak elastic 

parameter on the non-dimensional buckling load is more than Winkler parameter. Therefore, the 

shear layer or Pasternak parameter of elastic foundation plays an important role on the mechanical 

responses of FG structure and should be considered in their analysis. 

Figs. 7-8 demonstrate the variations the dimensionless buckling load of nonlocal FG beams 

made of magneto-electro-elastic materials with respect to external electric voltage and magnetic  

4

6

8

10

12

14

16

18

20

22

24

0 50 100

D
im

en
si

o
n

le
ss

 b
u

ck
li

n
g
 l

o
ad

 

Winkler parameter (Kw) 

Ω=-0.1 

Ω=-0.05 

Ω=0 

Ω=+0.05 

Ω=+0.1 

4

9

14

19

24

29

0 20 40 60 80 100

D
im

en
si

o
n

le
ss

 b
u

ck
li

n
g
 l

o
ad

 
Winkler parameter (Kw) 

V=-20

V=-10

V=0

V=+10

V=+20

4

9

14

19

24

29

34

0 5 10 15 20

D
im

en
si

o
n

le
ss

 b
u

ck
li

n
g
 l

o
ad

 

Pasternak parameter (Kp) 

Ω=-0.1 

Ω=-0.05 

Ω=0 

Ω=+0.05 

Ω=+0.1 

4

9

14

19

24

29

34

39

0 5 10 15 20

D
im

en
si

o
n

le
ss

 b
u

ck
li

n
g
 l

o
ad

 

Pasternak parameter (Kp) 

V=-20

V=-10

V=0

V=+10

V=+20

80



 

 

 

 

 

 

An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated... 

 
 

  
(a) Kp=5 (b) Kw=25 

Fig. 7 Effect of elastic foundation on the dimensionless buckling load of the S-S FG nanobeam with 

respect to electric voltage (L/h=20, Ω=+0.05, μ=2, p=1) 

 

  
(a) Kp=5 (b) Kw=25 

Fig. 8 Effect of elastic foundation on the dimensionless buckling load of the S-S FG nanobeam with 

respect to magnetic potential (L/h=20, V=+5, μ=2, p=1) 

 

 

potential, respectively at L/h=20 for various Winkler and Pasternak parameters. It is evident that 

external electric voltage has a decreasing influence on the buckling loads of MEE-FG nanobeams 

when it changes from negative values to positive one, whereas by varying the magnetic potential 

values from negative values to positive one, the non-dimensional buckling load rise. As a general 

consequence, it must be mentioned that the impact of magnetic field on the buckling behavior of 

FG nanobeams is more than electric field. 

Finally, Fig. 9 depicts the variations of the non-dimensional buckling load of MEE-FG 

nanobeam with respect to slenderness ratio for different magnetic potentials at power-law index  
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(a) Kw=Kp=0 (b) Kw=25, Kp=5 

Fig. 9 Effect of slenderness ratio on the dimensionless buckling load of the S-S FG nanobeam for various 

magnetic potentials (V=+5, μ=1, p=1) 

 

 
p=1 and nonlocal parameter μ=1 (nm)

2
. It is shown that slenderness ratio has a significant effect on 

the stability of MEE-FG nanobeams. Hence, the higher values of slenderness ratio have more 

influence on the dimensionless buckling load. Also, it is observable that positive values of 

magnetic potential show an increasing influence on buckling loads of FG nanobeams, whereas the 

negative ones have a reducing impact. This is due to the reason that compressive and tensile in-

plane forces are generated in the nanobeam when positive and negative magnetic potentials are 

applied, respectively. 

 

 

5. Conclusions 
 
This paper presents a nonlocal higher-order beam model for buckling analysis of magneto-

electro-elastic FG nanobeams resting on two-parameter elastic foundation including linear springs 

and a shear layer. Governing equations obtained using Hamilton’s principle as well as nonlocal 

elasticity theory which captures the small size influences are solved applying Navier solution 

method. Magneto-electro-elastic properties of the FG nanobeams are supposed to be varied 

continuously through the thickness direction according to power-law model. A detailed parametric 

study is conducted to study the influences of the magnetic potential, electric voltage, elastic 

foundation, nonlocal parameter, material composition and slenderness ratio on the buckling 

responses of the MEE-FG nanobeams. It is deduced that nonlocality and power-law exponent 

yields in reduction on both rigidity of the nanobeam structure and buckling loads. But with an 

increment in value of Winkler or Pasternak parameters the rigidity of the MEE-FG nanobeam and 

buckling load growth. Also, it is observed that the magnitude and sign of magnetic potential and 

electric voltage have a notable influence on the buckling loads of MEE-FG nanobeams.  
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