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Abstract.  This paper investigates the effects of thermal load and shear force on the buckling of 
nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the 
critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and 
Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence 
at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling 
configurations are derived for proposed beam theories. This would be helpful for those who work in the 
mechanical analysis of nanobeams especially experimentalists working in the field. Results show that 
thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it 
has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it 
does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are 
identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko 
beam theory is sufficient to analyze buckling in nanobeams. 
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1. Introduction 
 

Classical continuum mechanics approaches are commonly adopted in the analysis of nano 

devices because of their low computational cost, compared to molecular dynamics, and their 

ability to explain experimental results. Nonlocal elasticity (Eringen 1983, Peddieson et al. 2003) 

has also been adopted within this framework to account for lattice structure discontinuities, which 

become significant at nano-scale. Whereas continuum mechanics assumes a continuous material 

distribution and a point-to-point mapping between the stress and strain fields, nonlocal elasticity 

assumes that the stress field at a point is a function of the strain field at all points in the domain.  

The classical Euler-Bernoulli beam theory (CBT) augmented with Eringen nonlocal elasticity 

model has been widely deployed to study the stability of nanobeams. Sudak (2003) and Adali 

(2008) used this approach to study the buckling of multi-walled carbon nanotubes (MWCNTs). 

Ghasemi et al. (2013) used it to study buckling and post-buckling of fluid-conveying MCNTs. 
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Setoodeh et al. (2011) presented exact analytical solutions for the post-buckling configurations of 

single-walled carbon nanotube (SWNTs) subject to various support conditions. Ansari et al. (2013) 

studied post-buckling behavior of SWCNTs under thermal loads for various boundary conditions. 

Wang et al. (2008), Zhen and Fang (2010), Chang (2011, 2012) developed models including 

thermal effects to study the stability of fluid-conveying SWNTs. Murmu and Pradhan (2010) 

investigated the thermal stability of CNTs embedded in an elastic medium. Janghorban (2012) 

compared the static response of nonlocal microbeams under thermal loads obtained using two 

differential quadrature methods. Lim et al. (2012) investigated buckling of nanobeams, nanorods, 

and nanotubes in a temperature field. Eltaher et al. (2014) studied the static stability of nanowires 

with initial curvature under thermal loads. Besseghier et al. (2015) investigated nonlinear vibration 

of an embedded zigzag CNTs in a polymer matrix by using nonlocal CBT and energy-equivalent 

model.    

Adali (2012) introduced nonlocal elasticity into Timoshenko beam theory (TBT) to analyze the 

buckling of MCNTs. Heireche et al. (2008) studied a wave propagation in nonlocal Timoshenko 

beam of single-walled CNTs. Tounsi et al. (2013) presented nonlocal effects on thermal buckling 

TBT of double-walled CNTs. Benguediab et al. (2014) used the same theory to investigate the 

effects of scale and chirality on buckling of zigzag CNTs. Narendar and Gopalakrishnan (2011), 

Pradhan and Mandal (2013), and Amirian et al. (2013) applied it to the buckling and vibrations of 

SWCNTs under thermal loads. Reddy and El-Borgi (2014) develop the nonlinear finite element 

models for nonlocal CBT and TBT that account for moderate rotations and modified von Kármán 

nonlinear strains.  

Reddy (2007) augmented CBT, TBT, Reddy shear beam theory (RSBT), and Levinson beam 

theory with nonlocal elasticity to study buckling, static and dynamic behaviors of nanostructures.  

Emam (2013) compared static stability predictions for nanobeams obtained from CBT, TBT, and 

RSBT. Tounsi et al. (2013) studied buckling of nonlocal nanobeams under thermal loads based on 

a six-order shear deformation theory. A review on the state-of-the-art on nonlocal analysis for the 

static stability of CNTs is given in Wang et al. (2010). Eltaher et al. (2016) presented a review on 

nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale 

beams.  

The applicability of higher order shear theories in plate analysis is presented by many authors. 

Houari et al. (2013) developed a sin shear deformation assumption to simulate the thermoelastic 

bending of FG plates. Meziane et al. (2014) exploited previous model to study vibration and 

buckling of exponentially FG sandwich plate resting on elastic foundations. Tounsi et al. (2013) 

presented a refined trigonometric shear deformation theory for thermoelastic bending of FG 

sandwich plates. Bessaim et al. (2013), Belabed et al. (2014) and Hebali et al. (2014) studied 

bending and free vibration of FG plates with hyperbolic shear function. Zidi et al. (2014) 

presented the bending response of functionally graded material (FGM) plate resting on elastic 

foundation and subjected to hygro-thermo-mechanical loading using a four variable refined plate 

theory.  

Thus far, the literature lacks a comprehensive study for the significance of implementing 

nonlocal elasticity models into the various available beam theories. The present work tries to fill 

this gap by comparing the results obtained for the static stability of nanobeams using six different 

beam theories adapted with Eringen nonlocal elasticity model, namely CBT, TBT, RSBT, Touratier 

shear beam theory (TSBT), Soldatos shear beam theory (SSBT), and Karama shear beam theory 

(KSBT). The beam models, developed in Section 2, account for the nonlinear von Kármán strain 

to allow for moderate deformations. Analytical solutions are presented in Section 3 for the  
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Table 1 Shear strain distribution function ϕ(z) for each beam theory 

Theory Abbreviation ϕ(z) 

Euler Beam Theory CBT 0 

Timoshenko Beam Theory TBT z 
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buckling loads of simply-supported and clamped-clamped beams. The impact of scale effects, 

slenderness ratio, shear distribution, and thermal loads on the critical buckling load are 

investigated in Section 4. Concluding remarks are summarized in Section 5. 

 

 

2. Theory and formulation 
 

2.1 Kinematics assumptions 
 

The axial u, and transverse w components of the beam displacement field can be described by 

Simsek (2010) 
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where x is the position along the beam axis, v(x) is the transverse shear strain, and ϕ(z) describes 

the shear strain distribution along the beam cross-section. The assumed shear function depends on 

the beam theory as listed in Table 1. 

Adding von Kármán strain and thermal strain to the strain filed results in 
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  is the section strain due 

to bending.  
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2.2 Equilibrium equations 
 

For a symmetric cross-section, the internal axial N and shear Qs forces can be written as 

 
A

xx EAdAEN 0                          (3a) 
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A
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where A is the cross sectional area A, b is the beam width, E is Young’s modulus, G is the shear 

modulus, and η is defined as Emam (2013) 
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The resultant moment due to bending M and shear Ms can be written as 

x

v
EbEIkdAzEM xxx

A 


              (4a) 

x

b
EbkEbdAEzM xxx

A
s




   )(                     (4b) 

where I is the second area moment and the parameters α, β are defined as Emam (2013) 
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Using the principle of virtual displacement, we can write 
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where q is the transverse distributed force and P  is axial compressive force applied at the 

boundaries. Substituting Eqs. (3) and (4) into Eq. (5), the following equilibrium equations can be 

obtained 

0




x

N
                           (6a) 

0
2

2





















Pq

x

M

x

w
N

x
                     (6b) 

0



s

s Q
x

M
                             (6c) 

 
2.3 Nonlocal elasticity equations 
 

The nonlocal integral constitutive equation of Eringen model can be transformed to the 
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following differential form (Reddy 2007, Eltaher et al. 2013, 2014) 
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where 
2
 is the Laplacian operator, σc and σ are the classical and nonlocal stress tensors, μ=e0a is a 

scale-effect parameter, e0 is an experimentally determined material constant, and a is a material 

characteristic length. For a beam, the nonlocal constitutive equation can be reduced to 
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Transforming the resultants forces and moments, Eq. (3) and (4), to nonlocal domain using the 

differential operator of Eringen, Eq. (7), we obtain 
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Substituting Eqs. (3) into Eq. (6), and using Eqs. (9), and performing integration by parts, the 

nonlocal equilibrium equations for nanobeams under thermal loads can be written as  
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To simplify the equations and generalize the response, the nondimensional variables x̂ =x/L, 

ŵ =w/r are assumed, where AIr /  is the radius of gyration. Substituting into Eqs. (10) 

assuming no distributed transverse forces, the nondimensional equilibrium equation is obtained as 

(hats removed for simplicity) 

55



 

 

 

 

 

 

M.A. Eltaher, M.E. Khater, S. Park, E. Abdel-Rahman and M. Yavuz 

0
2

1

2

1
1

3

3

2

22
1

04

42
1

0

















































































  x

v

I

b

x

w
dx

x

w
NP

x

w
dx

x

w
NP thth


   (11a) 

0
2

2

2

3

3










v

EI

GL

x

w

Ix

w

I


                        (11b) 

where 
EI

LP
P

L

2

2
 , 


 , and 

2

2

r

TL
N th

th





 .  

 
 
3. Analytical solutions 

 
An explicit solution of critical buckling as a function of geometrical parameters, material 

constants, thermal load, and nonlocal scale parameter is presented in this section. The assumed 

displacement field in the case of simply-supported beams can be described by the following 

harmonic functions that satisfy the boundary conditions (Nayfeh and Emam 2008) 
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where a1 and a2 are, respectively, the amplitudes of maximum deflection and shear deformation of 

the beam that occur at midspan. Substituting Eq. (14) into the equilibrium equation, Eq. (13), 

yields 
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Solving for a1 yields a1=0, and two stable buckling configurations 
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The critical buckling initiates where the two stable solution branches meet at a1=0. Thus 
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In case of clamped-clamped boundary conditions, the displacement field can be assumed as  

 w(x)=a1 [1−cos(2πx)]     (16a) 
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Table 2 Critical buckling load for different beam theories 
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v(x)=a2 sin(2πx)               (16b) 

Substituting Eq. (16) into the equilibrium equation and solving for a1 results in a1=0 and two 

stable solutions described by 
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The critical buckling is then derived as 
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Table 2 summarizes the critical buckling loads for simply-supported and clamped-clamped 

nanobeams implementing different beam theories. 

where the error function Erf (n) is defined as 
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Table 3 Critical buckling load for S-S nanobeam with different L/h and   at Nth=0 

L/h   CBT TBT RBST TSBT SSBT KSBT 

100 

0 9.8696 9.86707 9.86707 9.86708 9.86707 9.86709 

0.01 8.98302 8.98071 8.98071 8.98072 8.98071 8.98073 

0.02 8.24258 8.24047 8.24047 8.24047 8.24047 8.24048 

0.03 7.61492 7.61296 7.61296 7.61297 7.61296 7.61298 

0.04 7.07608 7.07426 7.07426 7.07427 7.07426 7.07428 

0.05 6.60846 6.60676 6.60676 6.60677 6.60676 6.60677 

10 

0 9.8696 9.62268 9.62275 9.62312 9.62275 9.62422 

0.01 8.98302 8.75827 8.75834 8.75867 8.75834 8.75968 

0.02 8.24258 8.03636 8.03642 8.03673 8.03643 8.03765 

0.03 7.61492 7.4244 7.42446 7.42474 7.42446 7.42559 

0.04 7.07608 6.89904 6.8991 6.89936 6.8991 6.90015 

0.05 6.60846 6.44312 6.44317 6.44342 6.44317 6.44416 

 

 

Fig. 1 Effect of slenderness ratio on a critical buckling load for C-C beam at μ=0.05 

 

 

4. Results 
 

Numerical results presented in this section show the effects of shear deformation functions, 

nonlocal parameter, thermal load, slenderness ratio, and boundary conditions on the critical 

buckling loads and their amplitudes. The material and geometry parameters assumed throughout 

the analysis are E=30 GPa, v=0.3, h=1 nm, b=1 nm, a=23.1×10
-6

 1/K for slenderness ratio L/h=10 

and 100. 

 

4.1 Zero thermal load analysis 
 

Table 3 illustrates the variation of critical buckling with respect to nonlocal scale parameter, 

proposed theories, and slenderness ratios. For all theories, it is noted that the buckling load 

decreases as the nonlocal parameter increases at a specified slenderness ratio. Moreover, for high 
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slenderness (L/h=100) ratio, all theories are approximately identical in predicting the buckling 

load, which confirms the accuracy of the simple Euler-Bernoulli theory in the case of thin 

nanobeams. However, the discrepancy between Euler theory and other theories is noticeable for a 

moderately thick beam (L/h=10). On the other hand, the results obtained using the Timoshenko 

beam theory (TBT) coincide with those obtained using higher-order theories suggesting the 

accuracy of using TBT for the case of moderately thick beams. Our results are in good agreement 

with those obtained by Emam (2013) for Euler, Timoshenko, and Reddy beam theories. 

Fig. 1 illustrates the effect of slenderness ratio on the buckling of clamped-clamped beam at 

μ=0.05. As depicted in the figure, all theories are identical in the region 50≤L/h≤100. However, 

critical buckling of CBT is overestimated in the region L/h≤50. The deviation between CBT and 

shear deformation theories increases as L/h decreases. This deviation increases smoothly from 0 % 

to 9.3% as L/h decreases from 50 to 10. However, this deviation increased exponentially for 

moderated thick beams (5< L/h<10). 

The effects of nonlocal parameter on the post-buckling amplitude for S-S and C-C moderately 

thick nanobeams (L/h=10) are presented in Figs. 2 and 3, respectively. It is noted that as the 

nonlocal parameter increases, the critical buckling decreases and amplitude of post-buckling 

increases for both S-S and C-C nanobeam. However, the effect of nonlocal parameter is more 

significant in case of C-C nanobeam than that in S-S beams as illustrated in Figs. 2 and 3. 

 

 

 

Fig. 2 Effect of nonlocal parameter on a postbuckling amplitude for S-S TBT at L/h=10 

 

 

Fig. 3 Effect of nonlocal parameter on a postbuckling amplitude for C-C TBT at L/h=10 

59



 

 

 

 

 

 

M.A. Eltaher, M.E. Khater, S. Park, E. Abdel-Rahman and M. Yavuz 

 

Table 4 Critical buckling load for a S-S nanobeam with L/h=10 

ΔT μ CBT TBT RBST TSBT SSBT KSBT 

0 

0 9.8696 9.62268 9.62275 9.62312 9.62275 9.62422 

0.01 8.98302 8.75827 8.75834 8.75867 8.75834 8.75968 

0.02 8.24258 8.03636 8.03642 8.03673 8.03643 8.03765 

0.03 7.61492 7.4244 7.42446 7.42474 7.42446 7.42559 

25 

0 9.1766 8.92968 8.92975 8.93012 8.92975 8.93122 

0.01 8.29002 8.06527 8.06534 8.06567 8.06534 8.06668 

0.02 7.54958 7.34336 7.34342 7.34373 7.34343 7.34465 

0.03 6.92192 6.7314 6.73146 6.73174 6.73146 6.73259 

50 

0 8.4836 8.23668 8.23675 8.23712 8.23675 8.23822 

0.01 7.59702 7.37227 7.37234 7.37267 7.37234 7.37368 

0.02 6.85658 6.65036 6.65042 6.65073 6.65043 6.65165 

0.03 6.22892 6.0384 6.03846 6.03874 6.03846 6.03959 

 

 

Fig. 4 Effect of temperature on a critical buckling at different  for S-S TBT at L/h=10 

 

 

4.2 Thermal load effect 
 

This section is devoted to studying the effect of thermal load on the critical buckling load and 

post-buckling amplitudes for both S-S and C-C nanobeams under different beam theories. Table 4 

illustrates the variation of buckling loads with temperature, which indicates a decrease in buckling 

load with increase in temperature difference ΔT. The percentage change in critical buckling load 

with respect to thermal load is presented in Fig. 4, which shows a linear decrease in buckling load 

with respect to temperature difference. The critical buckling decreases to 29 % when ΔT increases 

by a 100. However, the buckling load decreases to 25% as the nonlocal parameter increases from 0 

to 0.03. Fig. 5 illustrates the effect of temperature difference on post-buckling amplitudes, which 

indicates a small temperature effect on the amplitude in the case of S-S nanobeams. 
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Fig. 5 Effect of ΔT on a post-buckling amplitude for S-S TBT at L/h=10 and μ=0.03 

 
Table 5 Critical buckling load for a C-C nanobeam with L/h=10 

ΔT μ CBT TBT RBST TSBT SSBT KSBT 

0 

0 39.4784 35.8034 35.8075 35.8132 35.8074 35.8293 

0.01 28.3043 25.6695 25.6724 25.6765 25.6724 25.6881 

0.02 22.0603 20.0067 20.009 20.0122 20.009 20.0212 

0.03 18.0733 16.3909 16.3927 16.3954 16.3927 16.4027 

20 

0 38.7854 35.1104 35.1145 35.1202 35.1144 35.1363 

0.01 27.6113 24.9765 24.9794 24.9835 24.9794 24.9951 

0.02 21.3673 19.3137 19.316 19.3192 19.316 19.3282 

0.03 17.3803 15.6979 15.6997 15.7024 15.6997 15.7097 

50 

0 38.0924 34.4174 34.4215 34.4272 34.4214 34.4433 

0.01 26.9183 24.2835 24.2864 24.2905 24.2864 24.3021 

0.02 20.6743 18.6207 18.623 18.6262 18.623 18.6352 

0.03 16.6873 15.0049 15.0067 15.0094 15.0067 15.0167 

 

 

The effect of temperature on the critical buckling load for C-C nanobeam is presented in Table 

5. The table shows a decrease in the buckling load with increase in temperature which highlights 

the significance of temperature on the buckling loads. The qualitative representation of Table 5 

describing the percentage change in critical buckling load with respect to temperature change and 

length-scale effect is presented in Fig. 6. It is noticed that, by fixing the temperature and varying 

the nonlocal parameter from 0 to 0.01, 29% reduction in critical buckling load is observed. 

However, increasing the nonlocal parameter from 0.02 to 0.03 results in 10% decrease in critical 

buckling load. So, it can be concluded that the buckling load is highly increased with higher values 

of the nonlocal parameter. For the case in hand, changing the temperature by 100 causes a decrease 

in buckling load by 19%. Fig. 7 shows the effect of temperature difference on the amplitude of 

post-buckling for C-C nanobeams. 
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Fig. 6 Effect of temperature on a critical buckling at different μ for C-C TBT at L/h=10 

 

 

Fig. 7 Effect of ΔT on a post-buckling amplitude for C-C TBT at L/h=10 and μ=0.03 

 
 
5. Conclusions 
 

The buckling loads and post-buckling amplitudes of nonlocal nanobeams under mechanical and 

thermal loads are analytically obtained using higher-order beam theories and compared against 

Euler and Timoshenko theories results. The nonlocal Eringen’s elasticity model is adopted to 

account for small-scale effects. The critical buckling loads and post-buckling amplitudes of a 

nanobeam with varying nonlocal parameter, slenderness ratio, shear distribution, thermal loads for 

simply-supported and clamped-clamped nanobeams are presented. The results show that the 

nonlocal parameter has a notable effect on the buckling loads and post-buckling amplitudes where 

the nonlocal effect is more significant for clamped-clamped beams than for simply-supported 

beams. It was observed that the thermal load tends to decrease the critical buckling load, thus 

reflecting the effect of environment temperature on the behavior of nanobeams. Comparing the 

results obtained by the different beam theories, it was found that the classical Euler beam theory is 

62



 

 

 

 

 

 

On the static stability of nonlocal nanobeams using higher-order beam theories 

accurate for high slenderness ratios (50≤L/h≤100), whereas Timoshenko beam theory is more 

accurate for moderately thick beams (L/h≤50) with negligible improvement by higher-order 

theories.  
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