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Abstract.  The present paper investigate the elastic buckling of chiral double-walled carbon nanotubes 

(DWCNTs) under axial compression. Using the non-local elasticity theory, Timoshenko beam model has 

been implemented. According to the governing equations of non-local theory, the analytical solution is 

derived and the solution for non-local critical buckling loads is obtained. The numerical results show the 

influence of non-local small-scale coefficient, the vibrational mode number, the chirality of carbon nanotube 

and aspect ratio of the (DWCNTs) on non-local critical buckling loads of the (DWCNTs). The results 

indicate the dependence of non-local critical buckling loads on the chirality of single-walled carbon 

nanotube with increase the non-local small-scale coefficient, the vibrational mode number and aspect ratio 

of length to diameter. 
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1. Introduction 
 

The single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) were 

first discovered by Iijima (1991), Iijima and Ichihashi (1993). Recent studies indicated that carbon 

nanotubes (CNTs) have a mechanical and thermal properties (Dresselhaus and Avouris 2001, 

Zidour et al. 2015), possess superior electronic, others studies have showed that they have good 

properties Recently CNT can be used in nanocomposite structures (carbon nanotube-reinforced 

composite (CNTRC)) (Tagrara et al. 2015, Aydogdu 2014), can be used for nanoelectronics and 

nanodevices (Dai et al. 1996, Baghdadi et al. 2015, Besseghier et al. 2015).   

Due the limited to systems computation of molecular dynamics (MD) simulations and the 

difficulties encountered in experimental methods to predict the responses of nanostructures under 

different loading conditions, the continuum mechanics methods are often used to investigate the 

behaviour of carbon nanotubes (CNTs) (Bouazza et al. 2015, Zidour et al. 2014). Recently, the 
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continuum mechanics approach has been widely used to study the responses of micro and 

nanostructures, such as the static and dynamic (Belabed et al. 2013, Bourada et al. 2015, Ait Yahia 

et al. 2015, Benzair et al. 2008, Mahi et al. 2015, Hebali et al. 2014), the buckling and thermo-

mechanical analysis of (CNTs) (Ait Amar Meziane et al.  2014, Amara et al. 2010, Hamidi et al. 

2015, Zidi et al.  2014, Bouderba et al. 2013, Tounsi et al. 2013 ). More recently, Yakobson et al. 

(1996) utilize a continuum shell model to predict the buckling of a single-walled carbon nanotube 

and their results are compared with molecular dynamics simulations. Murmu and Adhikari (2010) 

have analyzed the longitudinal vibration of double nanorod systems using the non-local elasticity.  

Continuum elastic-beam models have been widely used to study the critical buckling loads in 

(CNTs). For example, Semmah et al. (2014) presented the effect of the chirality on critical 

Buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum 

theory. Their results indicated that the critical buckling temperature can be overestimated by the 

local beam model if the small-scale effect is overlooked for long nanotubes. In addition, 

significant dependence of the critical buckling temperatures on the chirality of zigzag carbon 

nanotube is confirmed. Mohammadimehr et al. (2011) investigated the Buckling analysis of 

double-walled carbon nanotubes embedded in an elastic medium under axial compression using 

non-local Timoshenko beam theory. A molecular dynamics simulation is also utilized by Odegard 

et al. (2002), Zhang et al. (2007) to investigate the buckling behavior of nanotubes.  

The Young’s moduli used in this study of three types of single-walled carbon nanotubes 

(SWCNTs), armchair, zigzag and chiral tubules, are calculated by Bao et al. (2004) based on 

molecular dynamics (MD) simulation. They numeric results are in good agreement with the 

existing experimental ones (Liu et al. 2001, Tombler et al. 2000). This approach represents the 

dynamics of atoms or molecules of the materials by a discrete solution of Newton’s classical 

equations of motion. The inter-atomic forces required for the equations of motions are obtained on 

the basis of interaction energy functions. Cornwell and Wille (1997) used the (MD) with the 

Tersoff-Brenner potential (1990) to obtain the Young’s modulus of (SWCNTs) about 0.8 TPa. Jin 

et al. (2003) used (MD) and force-constant approach and reported the Young’s modulus of 

(SWCNTs) to be about 1236±7 GPa. 

The present study is concerned with the use of the non-local Timoshenko beam model to 

analyse the non-local critical buckling loads of double-walled carbon nanotubes (DWCNTs). The 

solution for critical loads is obtained. Influence of the chirality of carbon nanotube, aspect ratio of 

the (SWCNTs), non-local small-scale coefficient and the vibrational mode number, are studied and 

discussed. 

 

 

2. Single-walled carbon nanotube (SWCNT) 
  

A single-walled carbon nanotube (SWCNT) is theoretically assumed to be made by rolling a  

graphene sheet (Fig. 1). In terms of the chiral vector (


hC ), the fundamental structure of carbon 

nanotubes can be classified into three categories as zigzag, armchair and chiral shown in (Fig. 1).  

The chiral vector can be expressed in terms of base vectors (


1a ) and (


2a ) 

     



 21 anamCh  (1) 

where the integer pair (n, m) are the indices of translation. 

According to different values of integers (n, m), (SWCNTs) can be classified into zigzag ((n or  
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Fig. 1 Schematic the chiral vector of carbon nanotube 

 

 

m)=0), armchair (n=m) and chiral (n≠m) (Fig. 1). 

The diameter of (SWCNTs) can be expressed in terms of integers (n, m) (Tokio 1995) 

,/)(3 22 nmmnad   (2) 

where (a) is the length of the carbon-carbon bond which is (1.42 A°). 

 

 

3. Nonlocal Timoshenko beam models of (SWCNTs) 
 

The nonlocal continuum elasticity theory assumed that the stress at a reference point is 

considered to be a functional of the strain field at every point in the body (Eringen 1983). The 

nonlocal elasticity theory is applied in various types of nanostructures (nano FGM structures, 

nanotube..) such as the static (Zemri et al. 2015, Aissani et al 2015), the buckling (Larbi Chaht et 

al. 2015), free vibration (Belkorissat et al. 2015), wave propagation (Heireche et al. 2008) and 

thermo-mechanical analysis of (CNTs) (Tounsi et al. 2013).The local or classical theory of 

elasticity is obtained when the effects of strains at points other than x are neglected. For 

homogeneous and isotropic elastic solids, the constitutive equation of non-local elasticity can be 

given by Eringen. Non-local stress tensor (t) at point (x′) is defined by 

     

 ijjiij

klijklij

jij
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Where (Cijkl) is the classical, macroscopic stress tensor at point x′, σij and εij are stress and strain 

tensors respectively. K(|x−x′|, τ) is the kernel function and (τ=e0a/l) is a material constant that 

depends on internal and external characteristic length (such as the lattice spacing and wavelength), 

where (e0) is a constant appropriate to each material, a is an internal characteristic length, e.g., 

length of (C-C) bond, lattice parameter, granular distance, and (l) is an external characteristic 

length. 

Non-local constitutive relations for present nano beams can be approximated to a one-

dimensional form as 

     







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where E and G are the Young’s and shear modulus, respectively, ψ is the rotation angle of cross-

section of the beam and w is the transverse displacement. Thus, the scale coefficient (e0a) in the 

modelling will lead to small-scale effect on the response of structures at nano size. In addition, e0 

is a constant appropriate to each material, and a is an internal characteristic length of the material 

(e.g., length of C-C bond, lattice spacing, granular distance).  

The shear force and the bending moment can be defined by 

     

A

xdAzM 
   ,    

A

xydAT   (6)
 

The force equilibrium equations in vertical direction and the moment on the one-dimensional 

structure can be easily provided From the free body diagram of an infinitesimal element of a beam 

structure subjected to an axial loading P. 

 xq
dx

dT


 
 and 

 

dx

dw
PT

dx

dM
  (7)

 

where M and V are the resultant bending moment and the resultant shear force, respectively, P is 

the axial compression. 

Based on the Eqs. (4), (5), (6) and (7), the shear force T and the bending moment M for the 

non-local model can be expressed as 

     

 
dx

xdq
Pae

dx

dw
AGT 20








   (8)
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2
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dx

wd
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d
EIM


 (9)

 

where A is the cross-section area of the beam, ( 
A

dAzI 2

) is the moment of inertia, and β a 

correction factor depending on the shape of the cross-section of the considered beam.  
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Substituting Eqs. (8) and (9) into Eq. (7) and eliminating ψ yield the following differential 

equation of a non-local Timoshenko beam theory. 

      

  0101
2

2

2

2

2

2
2

4

4



































dx

wd
Pxq

dx

d

AG

EI

dx

d
ae

dx

wd
EI


 (10)

 

 

 

4. Nonlocal Timoshenko beam models of (DWCNTs) 
 

The above equation is the equilibrium equation of a Timoshenko beam considering the non-

local effects.  

The double-walled carbon nanotubes are distinguished from traditional elastic beam by their 

hollow two-layer structures and associated with van der Waals interaction forces.  

Assuming that the inner and outer tubes have the same effective material constants and layer 

thickness, the Eq. (10) can be used to each of the inner and outer tubes of the double-walled 

carbon nanotubes. 
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where subscripts 1 and 2 are used to denote the quantities associated with the inner and outer 

tubes, respectively, q12 and q21 denote the van der Waals pressure per unit axial length. 

The deflection of two tubes is coupled through the van der Waals force (Reulet et al. 2000). 

Based on the Lennard-Jones model the van der Waals interaction potential as a function of the 

interlayer spacing between two adjacent tubes. The interlayer interaction potential between two 

adjacent tubes can be approximated by the potential obtained for two flat graphite monolayers, 

denoted by g(Δ), where Δ is the interlayer spacing (Girifalco and Lad 1956, Girifalco and Chem 

1991). The van der Waals pressure should be a linear function of the difference of the deflections 

of the two adjacent layers at the point as follows 

     )( 1212 wwtcq 
 ,   )( 12

2

1
21 wwtc

R

R
q   (12)

 

where R1 and R2 are the radius of the inner and the outer tube, respectively. c is the intertube 

interaction coefficient per unit length between two tubes, which can be estimated by (Sudak 2003). 

     
) 142.0(  

 16.0

/ )2( 320
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cmergR
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Let us assume the buckling modes as 
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The above equations satisfy the simply supported boundary conditions which are 

0
2

2


dx

wd
w i

i  
 at 

 Lx   ,0
  

)2 ,1( i  (15)
 

Replacing Eq. (14) into Eq. (11), one can easily obtain the homogeneous system 

      

0
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 (16) 

By setting the determinant of coefficients equal to zero, the non-trivial solution for the 

homogeneous system (19) can be obtained.  

Solving equation yields the buckling pressure of the DWCNT in which the effects of different 

parameters are shown. 

      
  





  nnnP  4

2

1 2  (17)
 

where αn  and βn in Eq. (17) are defined as 
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If neither the rotary inertial nor the shear deformation is taken into account, the Solving 

equation yields the buckling pressure of the DWCNT using nonlocal elastic Euler beam as 

follows: 
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5. Results and discussions 
 

The Young’s moduli used in this study of three types of single-walled carbon nanotubes 

(SWCNTs), armchair, zigzag and chiral tubules, are calculated by Bao et al. (2004) based on 

molecular dynamics (MD) simulation. They numeric results are in good agreement with the 

existing experimental ones (Liu et al. 2001, Tombler et al. 2000). 

Tu and Ou-Yang (2002) indicated that the relation between Young’s modulus of multi-walled 

carbon nanotubes (MWCNTs) and the layer number N′ can be expressed as 

SWNTMWNT E
h

t

htN

N
E






1
 (18)
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where EMWNT, ESWNT, t, N′and h are Young’s modulus of multi-walled nanotubes, Young’s modulus 

of single-walled nanotubes, effective wall thickness of single-walled nanotubes, number of layers 

and layer distance. In the case of single-walled carbon nanotubes, N′=1 and EMWNT=ESWNT. 

Based on the formulations obtained above with the nonlocal Timoshenko beam models, the 

critical buckling loads of double-walled carbon nanotubes (DWCNT's) are discussed here. To 

investigate the critical buckling loads of (DWCNTs), the results including the aspect ratio of the 

(DWCNTs), the vibrational mode number and effect of nonlocal small-scale coefficient. In 

addition, to explore the effect of chirality, the critical buckling loads of different chiral of 

(DWCNTs) are compared. The parameters used in calculations of (DWCNT) are given as follows: 

the effective thickness of (CNTs) taken to be 0.285 nm, the mass density  

ρ=2.3 g/cm
3
, layer distance h=0.34 nm and poisson ratio υ=0.19. (Naceri et al. 2011, Boumia 

et al. 2014). 

The Young’s modulus of (SWCNTs) and (DWCNTs) employed in this study (Table 1), are 

calculated by Bai et al. (2004), Tu and Ou-Yang (2002) respectively. The results show the 

decreasing of Young’s modulus (DWCNTs) for some chirality nanotube. The reason for this 

phenomenon is attributed to the weak van der Waals forces between the inner and outer tube.    

 

 
Table 1 lists the values of Young’s modulus of single and double carbon nanotube for different chirality’s 

(n,m) 
Young’s modulus (SWNT) (GPa) 

Bao Wen Xing et al. (2004) 

Young’s modulus (DWNT) (GPa) 

Tu and Ou-Yang (2002) 

Armchair 

(8,8) (12,12) 934.960 852.684 

(10,10) (15,15) 935.470 853.149 

(12,12) (17,17) 935.462 853.141 

(14,14) (19,19) 935.454 853.134 

(16,16) (21,21) 939.515 856.838 

(18,18) (23,23) 934.727 852.471 

(20,20) (25,25) 935.048 852.764 

Zigzag 

(14,0) (23,0) 939.032 856.397 

(17,0) (26,0) 938.553 855.960 

(21,0) (30,0) 936.936 854.486 

(24,0) (33,0) 934.201 851.991 

(28,0) (37,0) 932.626 850.555 

(31,0) (40,0) 932.598 850.529 

(35,0) (44,0) 933.061 850.952 

Chiral 

(12,6) (18,10) 927.671 846.036 

(14,6) (20,10) 921.616 840.514 

(16,8) (22,12) 928.013 846.348 

(18,9) (24,13) 927.113 845.527 

(20,12) (26,16) 904.353 824.770 

(24,11) (30,15) 910.605 830.472 

(30,8) (36,12) 908.792 828.818 
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Fig. 2 The values of ratios (PE/PT) of carbon nanotube, with respect ratio using the nonlocal 

Timoshenko beam model (PT) and nonlocal Euler beam model (PE); The scale coefficient is (e0a=2 nm) 
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Fig. 3 Relation between the critical buckling load and the scale coefficients (e0a) of double carbon 

nanotube; The value of (L/d) is 10 

 

 

To analyse the deference between the nonlocal Timoshenko (NTB) and nonlocal Euler (NEB) 

beam model in the present study, the (Fig. 2) depicts The critical buckling loads ratios (PE/PT) of 

three types of double-walled carbon nanotubes (DWCNTs), armchair, zigzag and chiral 

tubules,with respect to length-to-diameter ratio. It can be concluded that when (L/d>20) the 

difference between the results predicted by (NTB) and (NEB) is negligible. This is due to the fact 

that the shear effect is negligible for long nanotubes. 

In the present study, the (Fig. 3) illustrate the dependence of the non-local critical buckling load  
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Fig. 4 Relation between the non-local critical buckling load and the mode number (N) of double 

carbon nanotube; The value of (L/d) is 10 
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Fig. 5 Effect of aspect ratio and chirality of double carbon nanotube on the Non-local critical 

buckling load in fundamental mode and scale coefficient (e0a=2 nm) 

 

 

on the chirality of double-walled carbon nanotubes (DWCNTs), armchair, zigzag and chiral for 

different values of small-scale coefficient. The ratio of the length to the diameter, L/d, is 10. It is 

clearly seen from (Fig. 3) that the ranges of the non-local critical buckling loads for these chirality 

of double-walled carbon nanotubes (DWCNTs) are quite different, the range is the smallest for 

zigzag (14,0) (23,0), but the range is the largest for armchair (20,20) (25,25). The reason for this 

difference perhaps is attributed to the increasing or decreasing of carbon nanotube diameter. In 

additional, when the small scale effects is not considered (e0a=0), the local Timoshenko beam 

model give a higher values for the critical buckling load. Therefore, it is clear that the critical loads  

201



 

 

 

 

 

 

Awda Chemi et al. 

Table 2 lists the values of non-local critical buckling load for different armchair chirality’s, mode number 

(N) and aspect ratios (L/d) of carbon nanotube, when the value of scale coefficients (e0a) is 2 nm 

Armchair 
L/d=5 L/d=10 

N=1 N=6 N=1 N=6 

(8,8) (12,12) 55.1875 136.5681 18.7654 122.2091 

(10,10) (15,15) 72.5996 211.1002 23.2310 183.0479 

(12,12) (17,17) 91.0246 308.8093 27.8344 258.5388 

(14,14) (19,19) 110.1593 432.1884 32.5434 348.4674 

(16,16) (21,21) 130.3348 585.5184 37.4919 453.9389 

(18,18) (23,23) 149.6086 762.7478 42.1415 568.0853 

(20,20) (25,25) 169.8218 973.1429 47.0423 696.1516 

 
Table 3 lists the values of non-local critical buckling load for different Chiral chirality’s, mode number (N) 

and aspect ratios (L/d) of carbon nanotube, when the value of scale coefficients (e0a) is 2 nm 

Chiral 
L/d=5 L/d=10 

N=1 N=6 N=1 N=6 

(12,6) (18,10) 64.6583 175.9445 21.1724 154.6661 

(14,6) (20,10) 73.8794 219.4681 23.4770 189.4703 

(16,8) (22,12) 92.3700 318.7122 28.1228 265.7540 

(18,9) (24,13) 106.7662 411.7080 31.6601 333.5611 

(20,12) (26,16) 127.0945 578.7193 36.4763 447.0672 

(24,11) (30,15) 144.7845 735.0185 40.8128 548.4167 

(30,8) (36,12) 165.4185 951.8376 45.8015 680.1950 

 
Table 4 lists the values of non-local critical buckling load for different Zigzag chirality’s, mode number (N) 

and aspect ratios (L/d) of carbon nanotube, when the value of scale coefficients (e0a) is 2 nm 

Zigzag 
L/d=5 L/d=10 

N=1 N=6 N=1 N=6 

(14,0) (23,0) 56.1207 139.8065 19.0286 124.9510 

(17,0) (26,0) 71.1717 203.9082 22.8868 177.3549 

(21,0) (30,0) 92.3398 316.1741 28.1687 264.1026 

(24,0) (33,0) 108.6232 421.9061 32.1594 341.1178 

(28,0) (37,0) 131.0270 595.3372 37.6157 460.0075 

(31,0) (40,0) 148.2492 751.2628 41.7978 560.6713 

(35,0) (44,0) 171.5586 994.7399 47.4497 708.6199 

 

 
decrease for increasing values of small-scale coefficient. This variation demonstrate the precision 

of the nonlocal theory.   

 The effect of mode number (N) on the non-local critical buckling loads for various chirality of 

double-carbon nanotube is demonstrated in (Fig. 4) with aspect ratio (L/d=10) and small-scale 

coefficient (e0a=2 nm). In this figure, it is observed that as the mode number increases, the critical 
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buckling load increases and the difference becomes obvious between the three types of double-

walled carbon nanotubes (DWCNTs), armchair, zigzag and chiral. This significance in higher 

modes is attributed to the diameter and the influence of small wavelength. For smaller 

wavelengths, interactions between atoms are increasing and these loads to an increase in the 

nonlocal effects. 

The (Fig. 5) show the effect of aspect ratio (L/d) on the non-local critical buckling loads for 

various chirality of double-walled carbon nanotubes (DWCNTs), armchair, zigzag and chiral with 

small-scale coefficient (e0a=2 nm) and fundamental mode number. In these figure, we present the 

effect of long and diameter of double-walled carbon nanotubes (DWCNTs) on the non-local 

critical buckling loads. The critical buckling load gets reduced as one transit from the armchair 

(20,20) to the chiral (16,8) and then, zigzag (14,0) chirality, when the diameter of nanotube is 

decreasing. This reduction in the critical buckling load is most pronounced when the nanotube is 

short. However, it is observed, that the non-local critical buckling loads is more affected by the 

long of nanotube. The reason for this phenomenon is that a carbon nanotube with larger long or 

smaller diameter has a larger curvature, which results in a more significant distortion of (C-C) 

bonds and low critical loads. 

The variation of non-local critical buckling loads of double-walled carbon nanotubes 

(DWCNTs) armchair, chiral and zigzag chirality for the first and the sixth modes with different 

length-to-diameter ratios based on the non-local Timoshenko beam model are listed in (Table 2). 

The effects of chirality, mode number and aspect ratio presented in (Figs. 3-5) are detailed in this 

table for various chirality nanotube. The results show the dependence of the different chirality’s of 

carbon nanotube, Aspect Ratio and, vibrational mode number on the non-local critical buckling 

loads. 

 

 

6. Conclusions 
 

This paper studies the Influence of non-local small-scale coefficient, the vibrational mode 

number, the aspect ratio and the chirality of double-carbon nanotube (DWCNTs) on the nonlocal 

critical buckling loads using non-local Timoshenko beam theory. The theoretical formulations 

include the different parameters, the governing equations and the boundary conditions for the 

(DWCNTs) are solved and the non-local critical buckling loads are obtained.  

According to the study, the results showed the dependence of the nonlocal critical buckling 

loads on the different parameters (chirality of carbon nanotube, small-scale coefficients, Aspect 

Ratio and mode number). However, it is observed that as the mode number or diameter of 

(DWCNTs) increases, the nonlocal critical buckling loads increases. The reason of this increases is 

attributed to the influence of small wavelength when the interactions between atoms are increasing 

and the large diameter.   

In addition, the critical loads also are affected by the increasing or decreasing of small-scale 

coefficients and long of (DWCNTs). This affection in the critical buckling load is most 

pronounced in higher values of small-scale coefficients and for short nanotube. The reason for this 

phenomenon is that a carbon nanotube with higher long has a larger curvature, which results in a 

more significant distortion of (C-C) bonds and low critical loads. 

The presente study may be is helpful in the use of (DWCNTs), such as nanocomposites 

nanodevices, nanoelectronics and mechanical sensors. 
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