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Abstract.  ZnO nanostructures of rod-like, faceted bar, cup-end bars, and spindle shaped morphologies 
could be grown by a low power ultrasonic synthesis process. pH of the reaction mixture seems to plays an 
important role for defining the final morphology of ZnO nanostructures. While the solution pH as low as 7 
produces long, uniform rod-like nanostructures of mixed phase (ZnO and Zn(OH)2), higher pH of the 
reaction mixture produces ZnO nanostructures of different morphologies in pure hexagonal wurtzite phase. 
pH of the reaction as high as 10 produces bar shaped uniform nanostructures with lower specific surface area 
and lower surface and lattice defects, reducing the defect emissions of ZnO in the visible region of their 
photoluminescence spectra. 
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1. Introduction 
 

Size and shape controlled synthesis of semiconductor nanostructures has attracted considerable 
attention recent yeras as their physical and chemical properties depend strongly on morphology, 
size, and dimensions (Alivisatos et al. 1996, Xia et al. 2003, Zhang et al. 2002). ZnO is one of the 
most promising multifunctional semiconductors with wide direct band gap energy (3.37 eV at 300 
K) and large exciton binding energy (60 meV). In nanostructure form, ZnO reveals a wide range of 
growth morphologies, such as nanoring, nanowire, nanotube, nanohelix, nanobelt, nanocage, 
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nanosphere, nanorod, and nanodisk (Pal et al. 2005, Xu et al. 2004, Escobedo-Morales et al. 
2008). ZnO nanostructures have received broad attention due to their distinguished performance in 
the fields of electronics, optics, photonics and catalysis, particularly for applications such as light 
emitting diode, laser, field emission device, chemical sensor, and catalyst (Lee et al. 2005, Huang 
et al. 2001, Zhu et al. 2003, Fan et al. 2005, Morales-Flores et al. 2011). Several methods have 
been applied to synthesize ZnO nanostructures of different morphologies including wet chemical 
methods, thermal evaporation, physical vapor deposition, metal–organic chemical vapor 
deposition (MOCVD), molecular beam epitaxy (MBE), pulsed laser deposition and sputtering 
(Laudise et al. 1960, Pal et al. 2001, Yao et al. 2002, Chiou et al. 2003, Venkatachalam et al. 
2010). 

Recently, sonochemical method has been proposed as a promising alternative technique for the 
fabrication of ZnO nanostructures under ambient conditions (Zhang et al. 2005, Pu et al. 2007, 
Bhattacharyya et al. 2008, Pal et al. 2009). The method is fast, simple, economical, and 
environmentally benign (Suslick et al. 1996, Mishra et al. 2009, Dhas et al. 2005). In 
sonochemical synthesis, the chemical effects of ultrasound arise from acoustic cavitation 
phenomena, i.e., the formation, growth and implosive collapse of the bubbles in liquid media 
(Kumar et al. 2000). The implosive collapse of the bubbles generates localized hot spots 
(temperature ≈ 5000 K, pressure ≥1000 atm, and cooling rate >109 K/s).  

In this article, we report on the synthesis of ZnO nanostructures of different morphologies 
using a low power sonochemical technique utilizing water as solvent. Effects of pH variation on 
the morphology, structure and photoluminescence (PL) characteristics of the nanostructures have 
been discussed.  

 
 

2. Experimental 
 

ZnO nanostructures were synthesized through a facile sonochemical route. For this purpose,  a 
0.068 M zinc acetate solution was prepared by dissolving 3g of zinc acetate dihydrate 
[Zn(CH3COO)2•2H2O, Baker, 99.9%] in 200mL of deionized (DI) water at room temperature 
under vigorous stirring. Then an appropriate amount of ammonium hydroxide (NH4OH) was 
slowly added into it until the pH of the mixture solution reaches a desired value. The solution was 
kept under stirring for another 15min. The resulting solution was kept under ultrasonic irradiation 
using a T-horn ultrasonic processor (UP400S, Hielscher, 400 Watt, 24 kHz) at 40W dissipated 
power under argon gas flow for 3 h. Finally, the obtained product was centrifuged and washed 
several times with ethanol at 8000rpm for 10 minutes and dried at 70°C for 6 hours in a muffle 
furnace, obtaining powder samples. Several samples were prepared under similar conditions 
varying only the pH value of the reaction mixture in between 7 and 10.  

All the samples were analyzed by scanning electron microscopy (JEOL JSM 5600LV), X-ray 
diffraction (XRD) (Bruker AXS D8 Discover diffractometer, with monochromatic CuK 
radiation, =1.5406 Å, operating at 40 kV, 40 mA), diffuse reflectance spectroscopy (DRS) in UV-
Vis spectral range, and room temperature Raman spectroscopy (LabRAM HR-Olympus Micro 
Raman system) in backscattering configuration using the 633 nm line of a He-Ne laser as 
excitation source. The room temperature photoluminescence (PL) spectra of the samples were 
recorded using a 1m long ScienceTech monochromator and 325 nm emission of a He-Cd laser as 
excitation source (5mW). A Hamamtsu (model PMH-04) photomultiplier tube was utilized as 
detector. For determining the specific surface area of the samples, their nitrogen adsorption-
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desorption isotherms at 77K were recorded in a Belsorp-Mini II (BEL Japan, Inc) analyzer. Before 
recording their isotherms, the samples were degassed at 250°C for 5h in vacuum prior to the 
measurements. 
 
 

3. Results and discussion 
 
Fig. 1 shows typical SEM images of the ZnO nanostructures grown at different pH values (7-

10) of the reaction mixture. A strong influence of solution pH on the growth morphology of the 
nanostructures can be clearly observed from the micrographs. While ZnO nanorods of about 86 nm 
average width and 1200 nm average length were formed (Fig. 1(a)) for pH 7 of the reaction 
mixture, formation of faceted nanobars and nanocups of 250-430 nm average lengths and 180-280 
nm average widths could be observed for the higher pH values (Figs. 1(b)-1(d)). As can be seen, 
the morphology and the average size of the nanostructures change drastically with the increase of 
solution pH.  
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Typical SEM micrographs of the ZnO nanostructures grown at (a) pH 7, (b) pH 7.5, (c) pH 8, d) pH 9, 
and (e) pH 10 of the reaction mixture 

(a) (b) 

(c) (d) 

(e) 
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   Fig. 2 shows the XRD patterns of the ZnO nanostructures grown at different pH values of the 
reaction mixture. The diffraction patterns exhibit all the characteristic peaks of ZnO in hexagonal 
wurtzite phase (JCPDS card # 089-1397). However, for the sample prepared at pH 7, there 
appeared several diffraction peaks associated to Zn(OH)2 phase, indicating the formation of 
Zn(OH)2 in neutral reaction condition. At neutral pH condition of the reaction mixture, a large 
quantity of zinc hydroxide nuclei are produced, while the number of available growth units is 
small to obtain ZnO nanostructures (Xu et al. 2011, Demianets et al. 2002). No characteristic 
diffraction peaks associated to other structural phase or impurity could be detected in the samples 
grown in between pH 7.5 and pH 10 of the reaction mixture. The intensity of the diffraction peaks 
is found to increase with the increase of pH value, suggesting that higher pH value helps the 
nucleation and grain growth of ZnO nanostructures.  

The crystallite size (t) in the ZnO nanostructures was calculated using Debye Scherer formula 
(Cullity 1956) on their (101) diffraction peaks 

                                               



cosB

K
t                                                                  (1) 
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Fig. 2 XRD patterns of the ZnO nanostructures grown at different pH values 
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Fig. 3 Williamson-Hall plots for the ZnO nanostructures grown at different pH values of the reaction 
mixture 
 
 
 Table 1 SEM estimated dimensions, XRD estimated average particle size and microstrain, and BET specific 
 surface area of the ZnO nanostructures grown at different pH values of the reaction mixture 

pH of the 
reaction 
mixture 

Observed 
morphology 

Avg. length 
(nm) 

Avg. width 
(nm) 

Avg. 
crystallite 
size (nm) 

BET specific 
surface area 

(m2/g) 
Microstrain

pH 7.0 rods-like 1182±285 86±19 38 ---- ---- 
pH 7.5 faceted bars 431±73 183±8 38 4.48 0.00108 
pH 8.0 Cup-end bars 389±30 135±7 35 6.15 0.00134 
pH 9.0 spindles 256±33 95±13 23 12.61 0.00161 
pH 10.0 faceted bars 407±23 278±34 38 4.29 0.00112 

 
 
where K is the shape factor (depends on the shape of the particles), considered to be  0.9,  is the 
wavelength of used X-ray (=1.5406 Å), B is the full width at half maximum (FWHM) of the 
(101) peak, and θ is the Bragg angle. Estimated average crystallite size values for the ZnO 
nanostructures grown at pH 7, 7.5, 8, 9 and 10 were about 38, 38, 35, 23 and 38 nm, respectively 
(Table 1). 
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To monitor the effect of solution pH on the lattice deformation, microstrain and crystallite size 
of each sample, we utilized Williamson-Hall equation (Venkateswara et al. 2008) 

         
,sin2cos  

t

K
B

 
(2)

where B, θ, , t and K are the same parameters utilized in equation 1, and  is the microstrain in the 
nanocrystals. Using Williamson-Hall plots (B cosθ vs. 4 sinθ, Fig. 3) the microstrain vales for the 
samples prepared at different pH values were estimated and presented in Table 1. As can be 
observed, on increasing the pH of the reaction solution, average crystallite size of the samples 
decreases and microstrain in their crystal lattice increases gradually up to pH 9. However, a sudden 
increase of crystallite size and a decrease of microstrain were observed for the sample grown at pH 
10. Obtained results clearly indicate that the pH variation affects the crystal lattice, increasing 
tensile strain in the ZnO nanostructures with the increase of basicity of reaction solution. Variation 
of ZnO nanostructure morphology with the variation of solution pH has already been demonstrated 
by several researchers (Pal and Santiago 2005, Wahab et al. 2009) and explained through the 
variations of H+ and OH- ion concentration in reaction solution and their effects on the growth 
rates of different polar and nonpolar planes. However, in the present case, not only the pH of the 
reaction mixture was varied, the hydrolysis process was performed under the influence of 
ultrasonic irradiation, and the obtained ZnO nanostructures had quite different morphologies than 
the morphologies reported by non-ultrasonic processes.      

On the other hand, to estimate the texture properties, nitrogen adsorption-desorption isotherms 
of the samples were recorded (Fig. 4). N2 adsorption-desorption behaviors of all the samples 
corresponded to type III isotherm in Brunauer classification. The characteristic feature of these 
curves is their hysteresis loop, which does not exhibit any limiting adsorption at high relative 
pressures (Jing et al. 2008). The Brunauer-Emmett-Teller (BET) specific surface area of the 
nanostructures were calculated to be 4.48, 6.15, 12.61 and 4.29 m2 g-1 for the samples grown at pH 
values 7.5, 8, 9, and 10, respectively (Table 1). As can be seen, on increasing the pH of the 
reaction mixture (up to 9) while the crystallite size of the samples decreases, their BET specific 
surface area increases as one can expect. However, a sudden decrease of BET specific surface area 
is observed for the sample grown at pH 10. 

 Fig. 5 presents Raman spectra of the ZnO nanostructures grown at different pH values of the 
reaction mixture. For wurtzite ZnO, occurrence of six first-order vibrational modes, named A1, E1, 
2E2, and 2B1 can be expected near the  point of its first Brillouin zone (Arguello et al. 1969). The 
A1 and E1 modes are polar in nature, and split into transverse- (TO) and longitudinal optical (LO) 

phonon modes. The E2 modes ( lowE2 , highE2 ) are non-polar and Raman active. The B1 modes are 
infrared active, normally do not reveal in Raman spectra. The Raman spectrum of the ZnO sample 
prepared at pH 7 revealed peaks located at about 375 and 445 cm−1, which are attributed to the 
A1(TO) and E2H modes of wurtzite ZnO, respectively (Fig. 5(a)). There appeared five more peaks, 
located at about 220, 266, 486, 554 and 725 cm−1 which correspond to Zn(OH)2 phase (Vargas-
Hernández et al. 2009, Zhou et al. 2002). Raman spectra of the samples prepared at higher pH 
values (7.5- 10) revealed seven peaks (Fig. 5(b)), located at about 100, 205, 333, 380, 439, 572 and 
665 cm−1. While the peak centered at about 100 cm−1 is attributed to E2L mode of wurtzite ZnO, the 
peaks revealed around 439 and 572 cm−1 are attributed to the E2H and A1(LO) modes of wurtzite 
ZnO, respectively. The peaks centered at about 205 and 333 cm−1 have been previously observed 
in ZnO by several researchers (Phan et al. 2008, Kumar Yadav et al. 2007, Serrano et al. 2004), 
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and were attributed to higher order fundamental modes or multiphonon modes. The peak located at 
665 cm−1 was attributed to (TA+LO) mode of ZnO (Wang et al. 2007, Jang et al. 2009). In the 
nanostructures, the E2H Raman peak associated to oxygen sub-lattice of ZnO became broader and 
less intense with the increase of pH value, which might be due to the incorporation of disorder in 
ZnO lattice during the their growth at faster rate at higher pH values. 

The UV-Vis diffuse reflectance spectra of the ZnO samples grown at different pH values are 
presented in Fig. 6. All the spectra revealed a sharp absorption edge at around 375 nm, 
characteristic of crystalline ZnO. While the position of absorption edge did not change noticeably, 
the reflectance of the samples in the visible spectral range (500-700 nm) decreased gradually with 
the increase of pH value of the reaction mixture. The band gap energy (Eg) of the samples was 
estimated from the intersection of the linear fits of the Kubelka–Munk (KM) transformation of 
their reflectance spectra (Fig. 6(b)) with the energy axis (Escobedo-Morales et al. 2007). As can be 
seen from figure 6b, the pH of the reaction mixture has no significant influence on the band gap 
energy of the ZnO nanostructures. The band gap energy estimated for the samples grown at 
solution pH 7, 7.5, 9, and 10 were 3.31, 3.28, 3.31 and 3.27 eV, respectively. 

Fig. 7 shows the room temperature PL spectra of ZnO nanostructures grown at different pH 
 
 
  

  

Fig. 4 N2 adsorption/desorption isotherms of the ZnO nanostructures grown at different pH values 
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values, normalized to their excitonic (UV) emissions. PL spectra of all the samples revealed two 
emission bands. While the ultraviolet (UV) emission around 380 nm generally assigned as the near 
band edge emission attributed to excitonic transition, the broad and intense emission in the visible 
region (centered around 580 nm) is associated with structural defects and impurities of different 
natures. Commonly this broad visible emission contains several components assigned as red (1.75 
eV), orange (1.95 eV), yellow (2.20 eV), green (2.40 eV), and blue (2.60 eV) emissions; each 
associated to particular defect or defect complex in the electronic band gap of ZnO. While the 
green emission has been associated to oxygen vacancies (VO), the orange emission has been 
associated to oxygen in excess or interstitial oxygen (Oi), interstitial zinc (Zni), and impurities like 
Li ions (Hsu et al. 2006, Studenikin et al. 1998). Origins of red and blue emissions are not very 
clear and controversial. However, they are believed to be associated with the shallow VO and Zni 
levels, respectively (Wei et al. 2007, Jannoti et al. 2007). On the other hand, the yellow emission 
has been suggested to be associated with interstitial oxygen Oi

- (Wu et al. 2001). 
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Fig. 5 Raman spectra of the ZnO nanostructures grown at (a) pH 7, and (b) other pH values of the reaction 
mixture 
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From the normalized PL spectra presented in Fig. 7, we can see that the relative intensity of the 
visible emission increases with pH value up to pH 9 and then suddenly decreases for pH 10 of the 
reaction mixture. The variation of intensity ratio (IVis/IUV) with pH value presented as the inset of 
Fig. 7 clearly indicates that on increasing the pH of the reaction solution a higher amount of 
structural defects are incorporated into the ZnO nanostructures, in agreement with their XRD 
results presented earlier. Generally the nanostructures with higher specific surface area contain 
higher density of surface defects.  On illuminating those nanostructures, photgenerated holes in the 
valence band are possibly trapped into the surface defects and are increasingly returned to the 
oxygen vacancies, causing an increase in the intensity of visible emission. Therefore, the increase 
in the intensity of the visible emission is probably due to higher  surface area of the sample grown 
at pH 7.5, 8 and 9 (Table 1). The decreases in visible emission intensity for the sample grown at 
pH 10 is also in accordance with the reduction of its surface area as estimated from its adsorption-
desorption isotherm. In fact, Samaele et al. (2010) have studied the effect of reaction solution pH 
on the morphology and optical properties of ZnO particles, observing a similar increase of visible 
PL emission with the increase of pH value, which they attributed to an increase of surface area due 
to morphology change (Samaele et al. 2010). On the other hand, Sharma et al. (2009) have studied 
the relationship between oxygen defects as oxygen vacancy (VO

+) and O2
- superoxide ions in their 

ZnO nanoparticles through PL spectroscopy, observing a similar trend as that of Samaele et al. 
(2010).  
 
 
4. Conclusions 

 
ZnO nanostructures of different morphologies could be fabricated by ultrasonic hydrolysis of 

zinc acetate in aqueous solution by controlling its hydrolysis rate through pH adjustment. While a 
solution pH 7 or lower produces impure ZnO nanostructures mixed with Zn(OH)2 phase, higher 
pH values of the reaction mixture produce ZnO nanostructures in pure hexagonal phase. 
Controlling solution pH in between 7.5 and 10, phase pure ZnO nanostructures of varied 
morphology could be produced and the concentration of their structural and surface defects could 
be controlled. Utilization of low power ultrasound for the chemical synthesis of ZnO 
nanostructures efficiently has been demonstrated.   
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