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Abstract.  In this article, the buckling responses of functionally graded curved (spherical, cylindrical, 
hyperbolic and elliptical) shell panels under elevated temperature load are investigated numerically 
using finite element steps. The effective material properties of the functionally graded shell panel are 
evaluated using Voigt’s micromechanical model through the power-law distribution with and without 
temperature dependent properties. The mathematical model is developed using the higher-order shear 
deformation theory in conjunction with Green-Lagrange type nonlinear strain to consider large 
geometrical distortion under thermal load. The efficacy of the proposed model has been checked and 
the effects of various geometrical and material parameters on the buckling load are analysed in details. 
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1. Introduction 
 

Functionally graded material (FGM) is microscopically heterogeneous which is achieved 

through the gradation of two or more materials from one surface to another. The typical FGM 

constituents are metal/alloy and ceramic materials. The advantages of these materials, such as high 

fracture toughness in metal and high heat-resistant in ceramic, make FGM be the one of the 

promising material under severe environmental conditions. The structures made up of FGM are 

more significant in aerospace, defence, energy, etc. for thermal barrier applications. The FGM 

structures exposed to the high-temperature environment cause the instability in geometry. 

Therefore, it has become the necessity that the buckling behaviour of FGM structures under the 

thermal environment has to be analysed. In this regard, many studies on the stability of FGM 

structures like flat/curved panels are presented in past. 

Some of the contributions to the closed-form solutions of the buckling load parameter of the 
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functionally graded (FG) flat panels are presented by taking the geometrical imperfections under 

various mechanical and thermal loading conditions (Javaheri and Eslami 2002a, b, c, Shariat et al. 

2005, Shariat and Eslami 2005, 2006, 2007, Lanhe 2004). The mathematical models in the above-

discussed studies are developed using various mid-plane kinematics such as the classical plate 

theory (CPT), the first-order shear deformation theory (FSDT) and the higher-order shear 

deformation theory (HSDT) and von-Karman type geometrical distortion due to thermal load. Na 

and Kim (2004) examined the thermal buckling behaviour of the FG plate using finite element 

method (FEM) through a 3D eight noded solid element. Shahsiah and Eslami (2003) studied the 

buckling behaviour of simply-supported FG cylindrical shell panel using the FSDT and Sander’s 

nonlinear kinematics. Mahi et al. (2015) proposed a new hyperbolic shear deformation theory to 

investigate the static and the free vibration behaviour of isotropic/layered/sandwich/FG composite 

plates. Ganapathi and his co-workers (Ganapathi and Prakash 2006 and Ganapathi et al. 2006) 

investigated the buckling behaviour of simply-supported FG skew plate under thermal and 

mechanical load using the FSDT mid-plane kinematics and finite element (FE) approach. Zhao et 

al. (2009) reported the buckling load parameter of the FG flat panel using the element-free kp-Ritz 

method in the framework of the FSDT kinematics. Owing to the simplicity in formulation and 

effective computational ability various HSDTs are more popularly applied to FG structures in 

comparison to other existing layer wise theories in recent past (Bouderba et al. 2013, Tounsi et al. 

2013, Hebali et al. 2014, Meziane et al. 2014, Bousahla et al. 2014, Belabed et al. 2014, Bourada 

et al. 2015, Yahia et al. 2015, Hamidi et al. 2015, Daouadji et al. 2016, Bennoun et al. 2016, 

Bourada et al. 2016, Bellifa et al. 2016, Bounouara et al. 2016). In addition to these, we also note 

that many researchers have put forward numerous efficient refined HSDTs to analyse the buckling 

and vibration responses of FG plates (Bouiadjra et al. 2012, Thai and Choi 2012, Zidi et al. 2014, 

Tounsi et al. 2016, Houari et al. 2016). Ghannadpour et al. (2012) employed finite strip method to 

analyse the buckling behaviour of FG plate under thermal environment using Green’s strain. 

Abdelhak et al. (2015) analysed thermal buckling behaviour of FGM plate using an nth order four 

variable theory. Pradyumna and Bandyopadhyay (2010) reported the FEM solutions of the free 

vibration and the buckling responses of the FG curved shell panel under temperature field using 

the HSDT mid-plane kinematics. Topal and Uzman (2009) reported thermal buckling optimisation 

of symmetrically laminated cylindrical shell panel using the FSDT kinematics under uniform 

thermal load. Bourada et al. (2011) reported a new four parameter based hyperbolic shear 

deformable theory for the analysis of the thermal buckling behaviour of the FGM structure. In 

addition, some of the research related to the buckling and postbuckling strength of the laminated 

structures under the elevated thermal environment including the effect of smart layers are reported 

using the HSDT kinematics and Green-Lagrange nonlinearity by Panda and his co-authors. (2009, 

2010a, 2010b, 2011, 2013, 2013a, 2013b, 2013c, 2015, 2015a, 2015b, 2015) 

From the above review, it is observed that most of the studies on the buckling behaviour are 

presented for the FG flat panel with von-Karman type nonlinear kinematics instead of the curved 

panel and Green-Lagrange type nonlinearity. In this present article, authors’ aim to analyse the 

buckling behaviour of FG shell panels of different shell geometries (spherical, cylindrical, 

hyperbolic and elliptical panels) under two types of temperature field (uniform and linear). In this 

study, the FG shell panel properties are evaluated using Voigt’s rule of mixture in conjunction with 

the power law of distribution by taking temperature-dependent (TD) and temperature-independent 

(TID) properties. The mathematical model is developed based on the HSDT and Green-Lagrange 

type nonlinear strain kinematics for the geometrical distortion under temperature load. In addition, 

all the nonlinear higher terms are included in the geometry matrix to count the large geometrical 
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distortions under different thermal environment and predict the exact buckling strength of the FG 

shell panels of different geometries. The buckling load parameter of the present FG shell panel is 

computed numerically with the help of presently developed FE model in conjunction with the 

homemade computer code developed in MATLAB environment. The efficacy of the present 

numerical results has been checked by comparing the responses with those available published 

results as well as the simulation values. The simulation results are computed using the commercial 

FE tool (ANSYS) with the help of ANSYS parametric design language (APDL) code. Finally, the 

importance of the proposed higher-order model with Green-Lagrange type of nonlinear strain 

kinematics for the evaluation of the geometry matrix has been highlighted in details by solving 

numerous examples. 

 

 
2. Theoretical development and finite element formulation 

 
In this present study, a general mathematical model is developed for the single/doubly curved 

shell panel with principal radii of curvatures say, Rx (with respect to the x- direction), Ry (with 

respect to the y- direction) and Rxy (twist radius/ in-plane radius as infinite). The shell geometries 

such as spherical, cylindrical, hyperbolic and elliptical panels are defined from the general doubly 

curved shell panel as Rx=Ry=R; Rx=R, Ry=∞; Rx=R, Ry=-R and Rx=R, Ry=2R, respectively as in Fig. 

1. Here, R is any constant value for the radius of curvature. The total thickness of the shell panel is 

assumed to be h. The planar form of the curved shell panel on the xy plane is considered in the 

rectangular form of length ‘a’ and width ‘b’. 

 

2.1 Kinematic model 
 

In this study, the displacement field of the FG curved shell panel is derived based on the HSDT 

kinematics in the mid-plane of the shell panel (at z=0). The global displacements (u, v, w) are  

 

 
 

 

 

Fig. 1 A doubly curved FG shell panel 
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defined in the following polynomial form of nine unknown parameters as in Kar and Panda (2015) 

2 * 3 * 2 * 3 *

0 0 0 0 0; ;x x y yu u z z u z v v z z v z w w                       (1) 

where, (u0, v0, w0) denote the mid-plane displacements along (x, y, z) coordinates, respectively. θy 

and θx are the shear rotations about the x- and y-axis, respectively and  * * * *

0 0, , ,x yu v   are the 

higher-order terms defined in the mid-plane of the curved panel. These nine unknowns can be 

defined in the mid-plane, i.e., at z=0 as u0=u(x,y,t), v0=v(x,y,t), w0=w(x,y,t), 
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2.2 Strain-displacement relations 
 

The strain tensor (ɛ) at any point for the FG doubly curved panel is given by 
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Eq. (2) can also be rewritten in the mid-plane form as 
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where, [T] is the thickness coordinate matrix (1, z, z2, z3) associated with the mid-plane strain 

terms  . The individual strain vectors are given by as follows 
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2.3 Effective material properties of FGM 
 

As discussed earlier, the present FGM shell panel properties are varying gradually from the 

bottom surface (z=-h/2) to the top surface (z=+h/2). The ceramic and the metals are the two 

constituents of the present FGM shell at the top and the bottom of the panel, respectively. The 

properties of the FGM constituents are assumed to be temperature-dependent (Reddy and Chin 

1998) and expressed as 

1 2 3

, 0 1 1 2 3( ) ( 1 )c m T T T T T     

                       (5) 

where, subscript ‘c’ and ‘m’ represent the ceramic and the metal constituents, respectively. ξ0, ξ-1, 

ξ1, ξ2 and ξ3 are the coefficients of temperature (T).  

The volume fraction of FGM constituents ( c  and m ) are evaluated by incorporating the 

power-law distribution across the thickness direction and expressed as Shen (2009) 

n
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
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1
)(  and 1( ) ( )m cz z                    (6) 

where, n represents the power-law index that varies from n=0 (complete ceramic phase) to n=∞ 

(full metal phase). 

Finally, the material properties of the FGM (ξ) such as Young’s modulus (E), Poisson’s ratio (υ) 

and coefficient of thermal expansion (α) are computed using Voigt’s micromechanical model as in 

(Gibshon et al. 1995) 

)()())()((),( TξzTξTξzTξ mcmc                     (7) 

In this study, two different types of temperature field namely, uniform and linear temperature 

distributions across the thickness direction of the FG curved panel are considered. The bottom 

surface temperature (Tm) of the FG panel (also referred as reference temperature) is assumed to be 

at ambient temperature, i.e., 300K. The FG panel is exposed to the elevated temperature (T) either 

uniformly or linearly distributed in the thickness coordinate. The temperature function of the FG 

panel is expressed in the following form for uniform temperature load 

mT T T      or     cT T                      (8) 

where, ∆T is the temperature difference between the final and the reference temperature, i.e., 

∆T=Tc-Tm. 

In the similar fashion, the temperature profile for linear thermal load across the thickness 

direction is expressed as in the following equation 

1
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m c m
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2.4 Constitutive relations 
 

The stress tensor at any point within the FG single/doubly curved panel is given by  
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where, Q11=Q22=E/(1-υ2), Q12=Q21=E*υ/(1-υ2), Q33=Q44=Q55=E/2*(1+υ). 

Now, the Eq. (10) is rewritten as 

       thQ Q                             (11) 

where, [Q] is the reduced stiffness matrix and {εth}=[11000]TαΔT is the thermal strain tensor.  

The total strain energy of the FG curved panel is given by 
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The FG curved panel is subjected to the different thermal load and the total external work done 

(WT) due to the in-plane thermal force resultant {NT} can be expressed as in Cook et al. (2009) 

   

 

2 2 2 2 2 21 1
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

2 2

, , , , , ,

x x x T x y y y Ty

T

v
x y x y x y Txy

u v w N u v w N
W dv

u u v v w w N

 
     


 
    

 (13) 

where,    11 12( ) 1 1 0
T T

Tx Ty TxyN N N Q Q T    is the thermal force resultant. 

Now 
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where,  G and [ ]GD are the in-plane strain vector and the material property matrix, respectively. 
 

2.5 Finite element formulation 
 

In this study, the developed higher-order model of the FG curved shell panel is discretised 

using suitable FE steps. For the discretisation purpose, a nine-noded isoparametric quadrilateral 

Lagrangian element with eighty-one degrees of freedom per node is employed. The mid-plane 

displacement field variables can be expressed in the nodal displacement field and their respective 

shape function as follows 
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where, iN  is the interpolating function of each node and the nodal displacement vector for any  

ith node is represented as 
T*

y

*

x

**

yx iiiiiiiiii
θθvuθθwvuδ ][}{ 000000  . The details of the shape function can 

be seen in Cook et al. (2009).  

The total mid-plane and geometry strain vectors of the FG curved panel can be expressed as 

follows 

    0  B   and     0  G GB                 (16) 

where, [B] and [BG] are the product form of the differential operator matrix and the corresponding 

shape functions, respectively. 

 

2.6 System governing equation 
 

The governing equation for the FG curved panel under the thermal environment is derived 

using variational principle as  

( ) 0TU W                              (17) 

Now, by substituting Eqs. (12) to (16) into Eq. (17), the final form of the governing equation of 

the FG curved panel is conceded to the following form 

  [ ] [ ] 0cr GK K                           (18) 

where, [ ] [ ] [ ][ ]TK B D B  and [ ] [ ] [ ][ ]T

G G G GK B D B  are the system stiffness matrix and the  

geometrical stiffness matrix, respectively and λcr is the critical buckling temperature load. 

 

 

3. Results and discussions 
 

In this section, the critical buckling temperature load parameter of the FG curved panel is 

computed under uniform and linear temperature field through a homemade computer code 

developed in MATLAB environment based on the proposed HSDT finite element model. In this  

 

 
Table 1 Material property of the FGM constituents (Reddy 1998) 

Material Properties 
TD properties TID Properties at 

300 K ξ0 ξ-1 ξ1 ξ2 ξ3 

SUS304 

E (Pa) 2.0104×1011 0 3.079×10-4 -6.534×10-7 0 2.08×1011

 
υ 0.3262 0 -2.0×10-4 3.8×10-7 0 0.318 

α (K-1) 1.233×10-5 0 8.086×10-4 0 0 1.53×10-5

 

Si3N4 

E 3.4843×1011 0 -3.07×10-4 2.16×10-7 -8.946×10-11 3.22×1011

 
υ 0.24 0 0 0 0 0.24

 
α 5.8723×10-6 0 9.095×10-4 0 0 7.47×10-6
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Table 2 Different types of support conditions 

CCCC 
* * * *

0 0 0 0 0?x y x yu v w u v          θy
* * * *

0 0 0 0 0?x y x yu v w u v            at x=0, a and y=0, b 

SSSS v0=w0=θy
* *

0 0 0? y yv w v      at x=0, a; u0=w0=θx
* *

0 0 0? x xu w u      at y=0, b 

SCSC 
v0=w0=θy

* *

0 0 0? y yv w v       at x=0, a; 

u0=v0=w0=θx=θy
* * * *

0 0 0 0 0?x y x yu v w u v           at y=0, b 

CFCF u0=v0=w0=θx=θy
* * * *

0 0 0 0 0?x y x yu v w u v           at x=0, a 

 

 

study, the ceramic and the metal material properties are assumed to be temperature-dependent and 

the details are presented in Table 1. For the computational purpose, different support conditions are 

employed and detailed in Table 2. The support conditions are not only restricted the rigid body 

motion but also reduces the total number of unknowns from the desired governing equation. 

 

3.1 Convergence and comparison study 
 

The efficacy and the competency of the developed numerical model have been checked initially 

using the material properties (Em=150 GPa, υm=0.3 and αm=23.0×10-6 K-1, for Al and Ec=380 GPa, 

υc=0.3 and αm=7.4×10-6 K-1 for Al2O3, respectively) and support conditions as used by Zhao et al. 

(2009). The convergence behaviour of the buckling load parameters of the square simply-

supported FG flat panel (a/h=50) is computed for different mesh size and presented in Fig. 2. In 

this example, the responses of the flat panels are computed for TID material properties. It can be 

observed that the present results are converging well and a (6×6) mesh is sufficient to compute the 

further responses.  
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Fig. 2 Convergence behaviour of thermal buckling load parameter of FG 

(Al/Al2O3) panel (a/h=50) for different power-law indices 
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Now, the present model is extended for the validation purpose to show the efficacy of the 

proposed FG shell panel model. The critical buckling temperature of the simply-supported FG flat 

panels is computed for two thickness ratios a/h=50 and 100 and presented in Fig. 3. The responses 

are compared with Zhao et al. (2009) and the simulation model developed in ANSYS using APDL 

code. It is clearly observed that the differences between the reference, ANSYS and present results 

are very insignificant. It is also interesting to note that the present results are showing higher 

values as compared to the reference and ANSYS. This is because of the fact that the geometrical 

stiffness matrix has been modeled based on Green-Lagrange type geometrical nonlinearity 

including all the nonlinear higher-order terms to capture the geometrical distortion due to the 

elevated thermal environment which makes the model more flexible as compared to the reference 

and the simulation cases. 

 

3.2 Numerical illustrations 
 
In this section, the effect different material, geometrical and temperature field on the FG shell 

panel is analysed using the TD and TID properties of silicon nitride (Si3N4) and stainless steel 

(SUS304) material as in Table 1. The buckling load parameters are computed for four shell 

geometries by varying the parameters say, power-law indices (n), thickness ratios (a/h), curvature 

ratios (R/a), aspect ratios (a/b) and support conditions. The top and the bottom surface 

temperatures are assumed to be Tc=500°K and Tm=300°K, respectively throughout the analysis if 

not stated otherwise. The critical thermal buckling load parameter is nondimensionalized 

as: 0( )cr cr c mT T    , where α0=1×10-6 K-1. 

 

3.2.1 Effect of power-law indices  
The critical buckling load parameter of simply-supported FG curved shell panel (a/b=1, 

a/h=10, R/a=5) under the uniform and the linear temperature field with TD and TID properties are 

computed for four power-law indices (n=0.5, 1, 2, 5) and four shell geometries. The responses are 

presented in Figs. 4(a)-(b) for the uniform and linear temperature field, respectively. It is 
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Fig. 3 Comparison study of critical buckling temperature load of FG (Al/Al2O3) panel (a/h=50 and 100) 
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clearly observed that the critical load parameters are decreasing as the power-law indices increase 

irrespective of the panel geometries. It is because as the power-law index increases the FGM turns 

to metal-rich. It is also true that the ceramic has comparatively higher stiffness than the metal and 

the responses are within the expected line. The buckling responses are increasing in an ascending 

order from hyperbolic to spherical i.e., hyperbolic, cylindrical, elliptical, and spherical panel, 

respectively. The critical buckling load parameters of the FG shell panels are higher for the linear 

temperature field in comparison to the uniform temperature field irrespective of the geometry and 

other parameters. 
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Fig. 4 Nondimensional buckling temperature load parameter of FG curved panels for different power-law 

indices (n=0.5, 1, 2, 5) (a) uniform temperature field (b) linear temperature field 
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Fig. 6 Effect of thickness ratios (a/h=20, 50 and 100) on nondimensional buckling load parameter of FG 

curved panels (a) uniform temperature field (b) linear temperature field 

 
 
3.2.2 Effect of aspect ratio 
The effect of aspect ratios (a/b=1, 1.5, 2, 2.5) on the critical buckling load parameter of simply-

supported FG curved panel (a/h=10, n=2, R/a=5) is computed for different temperature field and 

presented in Figs. 5(a)-(b) for uniform and linear thermal field, respectively. It is noted that the 

differences in the buckling responses for different FG shell geometries (spherical, cylindrical, 

hyperbolic and elliptical) are insignificant after a/b=2. 

 

3.2.3 Effect of thickness ratio 
Figs. 6(a)-(b) demonstrate the effect of three thickness ratios (a/h=20, 50 and 100) on the 

critical buckling temperature load of simply-supported FG curved panels (a/b=1, n=2, R/a=5) 

under the uniform and the linear temperature fields, respectively. The buckling load parameter of 

the FG curved panel decreases as the thickness ratio increases irrespective of panel geometry. It is 

also observed that the TD properties of the FG panels have the considerable effect on the buckling 

responses. 

 

3.2.4 Effect of curvature ratio 
Table 3 show the effect of curvature ratio (R/a=10, 20, 50, 100) on the critical buckling load 

parameter of simply-supported FG curved panels (n=2, a/h=10, a/b=1) under the uniform and the 

linear temperature field. The buckling load parameter of the FG curved panel reduces with the 

increment of the curvature ratio except for the hyperbolic panel (may be due to the unequal 

curvature). The maximum and minimum buckling load parameters are obtained for the spherical 

and the hyperbolic shell panel, respectively. It is also observed that the buckling load parameters 

decrease as the curvature ratio increases. It is because as the curvature ratio increases the curved 

panel approaches to flat one, and the curved panels have higher membrane energy than the flat 

panels. 

 

3.2.5 Effect of support conditions 
It is well known that the buckling behaviour of any structure/structural component largely 
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Table 3 Effect of curvature ratio (R/a) on the critical buckling temperature load 

Shell geometries Curvature ratio (R/a) 
Uniform temperature rise Linear temperature rise 

TID TD TID TD 

Spherical panel 

(Rx=Ry=R) 

10 5.0175 4.4290 10.3783 9.5917 

20 4.9118 4.3357 10.1708 9.4006 

50 4.8820 4.3094 10.1159 9.3500 

100 4.8777 4.3056 10.1091 9.3439 

Cylindrical panel 

(Rx=R; Ry=∞) 

10 4.9105 4.3346 10.1683 9.3983 

20 4.8849 4.3120 10.1208 9.3546 

50 4.8776 4.3055 10.1091 9.3438 

100 4.8765 4.3046 10.1079 9.3428 

Hyperbolic panel 

(Rx=R; Ry=-R) 

10 4.8712 4.2998 10.0981 9.3338 

20 4.8749 4.3031 10.1057 9.3408 

50 4.8759 4.3040 10.1078 9.3428 

100 4.8761 4.3042 10.1081 9.3430 

Elliptical panel 

(Rx=R; Ry=2R) 

10 4.9556 4.3743 10.2558 9.4789 

20 4.8962 4.3220 10.1415 9.3735 

50 4.8795 4.3072 10.1118 9.3463 

100 4.8770 4.3050 10.1084 9.3432 

 
Table 4 Effect of support conditions on the critical buckling temperature load of FG curved panels 

Shell geometries Support conditions 
Uniform temperature rise Linear temperature rise 

TID TD TID TD 

Spherical panel 

(Rx=Ry=R) 

CCCC 12.2467 10.8100 25.3660 23.4330 

SCSC 9.2807 8.1920 19.1953 17.7351 

CFCF 6.2973 5.5585 12.9735 11.9857 

Cylindrical panel 

(Rx=R; Ry=∞) 

CCCC 11.8070 10.4220 24.5041 22.6393 

SCSC 8.8062 7.7732 18.2567 16.8700 

CFCF 6.0618 5.3507 12.5250 11.5730 

Hyperbolic panel 

(Rx=R; Ry=-R) 

CCCC 11.9574 10.5548 24.8663 22.9750 

SCSC 9.0404 7.9801 18.7870 17.3606 

CFCF 6.3112 5.5709 13.0778 12.0843 

Elliptical panel 

(Rx=R; Ry=2R) 

CCCC 11.9542 10.5518 24.7848 22.8975 

SCSC 8.9554 7.9049 18.5442 17.1348 

CFCF 6.1197 5.4018 12.6261 11.6658 

 
 

depends on the type of support condition. In this example, the influence of three different support 

conditions (CCCC, SCSC and CFCF) on the buckling responses of FG single/doubly curved shell 

panels (n=2, a/h=10, a/b=1, R/a=5) are computed for the uniform and the linear temperature fields 

and presented in Table 4. It is observed that the buckling responses are increasing in the ascending 

order of CFCF, SCSC, CCCC, i.e., the increase in the number of support restrictions increases the 
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critical buckling load parameter and the responses are within the expected line. It is also noted that 

the buckling responses are increasing in an ascending order of the cylindrical, the elliptical, the 

hyperbolic and the spherical panels. 

 

3.2.5 Buckling mode shapes 
Fig. 7(a)-(f) show the buckling mode shapes (first and second) of the FG spherical shell panel 

(a/h=10, R/a=5, n=2) for three support conditions (SSSS, CCCC and CFCF). The results are 

computed for the TD material properties under linear temperature field. 

 
 

 
(a) 1st mode (SSSS) 

 
(b) 2nd mode (SSSS) 

 
(c) 1st mode (CCCC) 

 (d) 2nd 

mode (CCCC) 

 
(e) 1st mode (CFCF) 

 
(f) 2nd mode (CFCF) 

Fig. 7 First and second buckling mode shapes of FG spherical panel under three different support condition 

(a) 1st Mode (SSSS) (b) 2nd Mode (SSSS) (c) 1st Mode (CCCC) (d) 2nd Mode (CCCC) and (e) 1st Mode 

(CFCF) (f) 2nd Mode (CFCF) 
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4. Conclusions 
 

The buckling responses of FG single/doubly curved shell panels (spherical, cylindrical, 

hyperbolic and elliptical) under the uniform and the linear temperature fields across the thickness 

direction are examined in this article. The FG shell panel model is developed mathematically using 

the higher-order kinematic model in conjunction with Green-Lagrange type geometrical nonlinear 

strain. The material properties of the FGM constituents are considered to be temperature 

dependent. The effective material properties of the FGM are evaluated using Voigt’s 

micromechanical model via power-law distribution. The governing equation of FG curved panel is 

derived using variational principle and the desired responses are computed numerically using the 

FE steps. The efficacy of the present model has been shown by comparing the responses with 

available published literature and simulation model developed in commercial finite element 

package (ANSYS) using APDL code. Finally, the comprehensive behaviour of the present model 

has been shown by computing various numerical examples for different geometrical and material 

parameters. The following few concluding remarks are made on the numerical experimentation.  

• The convergence and comparison study indicate the efficacy of the proposed higher-order 

model in conjunction with Green-Lagrange nonlinearity for the thermal distortion. 

• It is also observed that the temperature dependent material properties have the considerable 

effect on the buckling behaviour of FG structure under various type of thermal loading. 

• The critical buckling load parameters of the FG curved panels are obtained minimum for thin 

panels, square geometry and fully metal-rich. In addition, it is also seen that the responses are 

minimum for CFCF support as compared to other support cases.  

• It is clear from the analysis that, the critical buckling load parameters are the maximum for 

spherical shell panels in comparison to all the other geometries are analysed.  

• Finally, it is understood that the critical buckling load parameters of the FG curved panels are 

almost doubled under the linear thermal field in comparison to the uniform field across the 

thickness direction. 
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