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Abstract.  This paper introduces the process for Multi-objective Optimization Framework (MOF) which 

mediates multiple conflicting design targets. Even though the extensive researches have shown the benefits 

of optimization in engineering and design disciplines, most optimizations have been limited to the 

performance-related targets or the single-objective optimization which seek optimum solution within one 

design parameter. In design practice, however, designers should consider the multiple parameters whose 

resultant purposes are conflicting. 

The MOF is a BIM-integrated and simulation-based parametric workflow capable of optimizing the 

configuration of building components by using performance and non-performance driven measure to satisfy 

requirements including build programs, climate-based daylighting, occupant’s experience, construction cost 

and etc. The MOF will generate, evaluate all different possible configurations within the predefined each 

parameter, present the most optimized set of solution, and then feed BIM environment to minimize data loss 

across software platform.  This paper illustrates how Multi-objective optimization methodology can be 

utilized in design practice by integrating advanced simulation, optimization algorithm and BIM. 
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1. Introduction 
 

High-performance architecture has been using optimization to find the building form, 

orientation, window size and etc. relating to a design target to reach optimized performance. There 

have been, however, few researches that optimize the conflicting multiple variables, in particular 

the performance-based measure and non-performance driven design targets because they provide a 

direct conflict in the design process, which make it more difficult to satisfy multiple constraints in 

architectural practice. But the non-performance driven design targets such as occupant’s view 

experience and building cost are critical aspects in practical design decision, and in some cases 

they are considered more important than performance-based measure. When considering multiple 

variables, compromises must be made in the context of contradictory interests. The complex 
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networks of dependencies and correlations that often exists between these interests often restrains 

the designer and their ability to find an optimal solution. Such conflicting variables mentioned 

above such as daylight, construction costs, occupant views, etc., can be major opponents in the 

design of a building which need to be analyzed holistically, especially in their relations to each 

other. 

In recent years, architects’ techniques and design tools used to approach design practice have 

changed significantly. With the adoption of contemporary technology, the regular use of BIM as a 

process for creating and managing a project’s information has given way to analytical approaches 

of quantification and computer aided design technologies. Such adaptations allow for a more 

flexible process of design and storing building information, as well as creating platforms for 

numerical methods which enable quicker analysis of more complex systems. (Hoffman 2013) 

We’ve seen wide adoption of integrated parametrically defined analysis modeling techniques 

allowing for parametric associative modeling techniques where representation is generated by a set 

of rules that relate to one another (Thiele 2009). Such data includes everything from geometric 

models, BIM, to structural, solar modeling-anything that can be analyzed and represented within a 

clearly defined metric. These methodologies dependent on the very data that is easily altered as 

inputs create a desire for a single process generation utilizing a set of compatible variables, a 

process that is still cumbersome and not utilized.  As an application based on Autodesk’s Revit, 

the most widely used BIM software in practice, generation of complex geometry is limited and 

data representation is prescribed to application settings. There are also limitations for modeling 

large-scale projects such as master planning design (Roudsari et al. 2013). In addition, such 

environmental analysis software packages, have limitations in certain conditions including the loss 

of BIM data. On the other hand, Rhinoceros, a popular CAD program’s lack of BIM modeling 

capabilities makes optimization exploration significantly faster making it an ideal platform for 

environmental analysis, but requiring additional steps for documentation. 

Given two limitations mentioned above, this paper proposes Multi-objective Optimization 

Framework (MOF). MOF is a BIM-integrated and simulation-based parametric workflow capable 

of optimizing the configuration of building components by using performance and non-

performance driven measure to satisfy the requirements including build programs, climate-based 

daylighting, occupant’s experience, construction cost and etc. Traditionally, the design process to 

realize these variables requires a designer's experience and intuition, often relying on trial and 

error approaches that become inappropriate beyond similar design parameters including program, 

typologies, and climates.  Instead, the MOF will generate, evaluate all different possible 

configurations within the each predefined parameter, present the most optimized set of solution, 

and then feed BIM environment to reduce the amount of time and information lost from model 

sharing while optimizing multiple variables. Compared to the workflow of other findings that 

intended to assist designers in the early stage of design, MOF can be applied to any stage of design 

depending on the design parameters designers set. This paper illustrates how Multi-objective 

optimization methodology can be utilized in design practice by integrating advanced simulation, 

optimization algorithm and BIM. Section 2 explores the literature of optimization techniques and 

the imminent demand of multi-objective optimization in architectural practice. Section 3 describes 

the genetic algorithm as an optimizer for this research. In Section 4, two case studies show the 

overall workflow of MOF and demonstrate how MOF is applied to the architectural practice. 

Finally, a discussion on the future research direction is provided along with a conclusion. 
 
 

2. Optimization and optimizer 
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Fig. 1 Pareto-front 

 

 

2.1 Single-objective vs. multi-objective optimization 
 

Optimization means to seek minima or maxima of a function within a given defined domain 

(Hofmann 2013). Among several types of techniques for architects to discover an “optimal” 

solution, “passive” optimization is what many designers think they are doing by creating three of 

four options, mentally testing them against past experience, and then intuitively determining a 

“best” solution (Sukreet and Kensek 2014). Although some architects can be very good at this, 

especially if they have a lot of experience with passive strategies, sometimes their intuition is 

wrong (Konis et al. 2015). To be able to make a justified decision, the designer needs to know 

about 1. The extreme trade-off configurations and 2. The relations that are causing the necessity 

for trade-offs. Traditionally, the process to gain this knowledge relies on a designer’s experience 

and, depending on the complexity and uncertainty of the task, additional trial-and-error to unveil 

the relational nature of a design’s sub-problems (Thiele et al. 2009). In order to achieve the 

reliable results that are not based on designer’s intuition or experience, a computer-aided 

simulation method will be safer mode. From that sense most recent researches utilized computer-

aided optimization method to generate and evaluate all different possible configurations within the 

predefined limits of each parameter, and present the most optimized set of solutions to achieve 

high-performance building. Most of them, however, are the single-objective method which 

addresses a single variable, e.g., building orientation for minimum energy load, fenestration 

configuration for maximum daylight and etc. A vast number of factors determine the final design 

of a building. Many of them in general conflict between different targets. In all affairs, beyond the 

realm of design alone, trade-offs have to be accepted in the context of contradictory interests. A 

complex network of dependencies and correlations between interests exists, which restrains, in our 

case, the designers in finding a good solution easily (Vierlinger and Hofmann 2013). Multi-

objective optimization, MOF, can be applied to the case where optimal decisions need to be made 

in the presence of trade-offs between two more or conflicting objectives respectively. In practical 

design process where multiple objectives need to be explored, multi-objective optimization is 

considered more relevant than single-objective optimization. When balancing multi-objective 

optimizations, Pareto-optimality of a solution occurs when an optimal trade-off between two or 

more contradicting objectives, where one goal cannot be improved without degrading the others. 

The theoretical sum of all Pareto-optimal solution is called the Pareto-front (Fig. 1), which can be 

thought of as a hypersurface in n-dimensional space where n is either the number of parameters of  
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Fig. 2 Overall workflow of Genetic algorithm 

 

 

the number of objectives respectively (York 2013). Since the parameter and objective space can 

correlate in highly complex ways, a main effort of algorithms for search and optimization is to 

overcome non-linear relations imposed by the algorithmic definition, which connects the 

parameter to objective space (Bader 2010, Zitzler 2001).   

 

2.2 Genetic algorithm as optimizer 
 

The Genetic algorithm (GA) is utilized as an optimizer of multi-objective optimization in this 

study. GA mimics the theory of evolution employing the same trial-and-error methods that nature 

uses in order to arrive at optimized results. When automated for specific parameters and results, 

this technique becomes an effective way to computationally drive controlled results within the 

iterative design process-allowing designers to produce optimized parameters resulting in a form, 

graphic or piece data that best meets design criteria (Kilian 2006). Analogous to an open-ended 

design process, the evolution process of a GA never reaches a final state, but also at each point 

yields something that can be considered a result (Vierlinger and Hofmann 2013). This section will 

briefly introduce the concept of GA in order to provide the better understanding on how GA can fit 

into MOF within the context of architectural practice. 

GA is a stochastic global search method that mimics the metaphor of natural biological 

evolution. GA operates on a population of potential solutions applying the principle of survival of 

the fittest to produce better and better approximations to a solution (Chipperfield et al. 1995). At 

each generation, a new set of approximations is created by the process of selecting individuals,  i.e. 

chromosomes, according to their level of fitness in the problem domain, and breeding them 

together using operators borrowed from natural genetics. This adapted GA process leads to the 

evolution of populations of individuals that are better suited to their environment than the 

individuals from which they were derived, just as in natural adaptation.  Then the GA process can  
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Fig. 3 Overall workflow of multi-objective optimization framework 

 

 

be subdivided into three parts: population, evaluation, and reproduction. It begins with an initial 

population that may be a random combination of individuals. Next, it goes through a process in 

which each individual in the population group will be evaluated. The GA then assigns every 

individual a grade based on its characteristics-also called the fitness function. This fitness will be 

taken into account in order to decide each population member’s eligibility of reproducing. 

Generally, the better performing individual with a higher correlating fitness function will adapt to 

the new generation more than lower performing individuals. Part of the initial population gives 

place to the new population; this process is called “breeding” of the initial population. The cycle 

will continuously run until some numbers of generations are completed or until some condition is 

satisfied as shown in Fig. 2.  

Though the evolution process of a GA never reaches a final state, it converges and yields a 

optimal solution. The evolutionary optimization algorithm runs through different random 

iterations, looping through and selecting the best-fit individuals for reproduction, breeding through 

different operators, evaluating the fitness of new offspring and replacing a part of the population 

with the fittest offspring until the convergence criteria is reached (Vierlinger and Hofmann 2013). 

Genetic algorithm can be used for complex design, a problem that requires many iterations, 

producing a myriad of variations and alternatives and provide graphical methods of evaluation. 

“Using these tools, the parametric system becomes the genomes, the fields of alternatives becomes 

the population, and the architect’s design goal becomes the fitness criteria” (Miller 2011). 

 

 

3. Overall workflow of MOF (multi-objective optimization framework) 
 

Design methods in the built environment are subject to constant change and evolution requiring 

techniques and tools developed to be highly adaptable and applicable to other parametric modeling 

platforms. MOF looks to bridge these needs by  

1. Developing multi-objective strategies in parametric design 

2. Create an adaptable interface depending on design case 

3. Implementing and evaluation of performa 

As described above, Revit, the most widely used BIM software in practice excels in 

documentation and tracking the necessary information, but it lacks the capability of generating  
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Fig. 4 Example of kinetic shading device Fig. 5 Example of fixed shading device 

 

 

complex geometry as well as evaluation through analyzing real-time simulations in parametric 

model.  Rhinoceros along with its visual scripting platform Grasshopper and other native and non-

native plug-ins, is superior in analysis through simulation in parametric model and generation of 

solutions, however, lacks in BIM and documentation, requiring significant efforts for adequate 

project documentation.   

MOF intends to integrate the benefits of the two different platforms as shown in Fig. 3. Firstly, 

the same geometry is shared between Revit and Rhinoceros by exporting geometry from Revit to 

Rhino in a mesh format. Next, the parameters to control the geometry of architectural components 

are set up in Revit and Rhinoceros as appropriate. The following step is to create a compatible 

parametric model with those parameters by using Grasshopper to take advantage of the platform’s 

superior parametric environment  which enables different modifications without the need of 

regenerating the entire model every time. This study utilizes Octopus, a plug-in of Grasshopper as 

a multi-objective optimizer as well as other plug-ins for environmental analysis tools such as 

Ladybug, Honeybee and DIVA depending on the design specific targets. The optimal solution 

through simulation based on fitness function is presented in numerical data that can be extracted to 

Excel. The numerical data in Excel are then fed into Revit via Dynamo, a visual script language 

for Revit to control the parameters of Revit Family components.  The numerical data result in the 

same behavior in Revit Family component as those in Grasshopper because both models utilize the 

same parameters set up in Revit and Rhino during the first and second step. This prevents data loss 

during modeling, simulation and analysis across the two different platforms. In the following 

section, we will explore how MOF works to illustrate the principles during specific practical 

examples. 

 

 

4. Case studies 
 

4.1 Case study-1: Interior illumination vs. occupant’s view experience 
  

4.1.1 Overview 
Kinetic shading devices are inherently adaptive, ideal in the changing environmental conditions 

throughout the year as shown in Fig. 4. Sensors and internal and external mechanisms allow for 

kinetic shading devices to continuously adapt to environmental conditions and block unwanted 

sunlight. A bright day in the summer would inherently create a different shading strategy from an  
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Fig. 6 Problems and design parameters of Case-1 

 

 

overcast grey day. However, many choose to instead use fixed solutions due to the high cost of 

installation and maintenance (Reinhart 2001). Fixed shading devices lack the intricate moving 

parts that require consistent maintenance and overall issue of operability and malfunction. Though 

attractive in that respect, they pose a problem to the internal users of the designed space. Fixed 

shades which most often lack of a certain porosity, creates a barrier between a building occupant 

and the environment beyond the buildings envelope. Though a shading device might adequately 

block unwanted sunlight, if it fails to allow an occupant to connect with a view, it fundamentally 

fails as an extension of a window façade (Fig. 5).  

With all these considerations in mind, designing and installing a fixed shading solution that 

does not continuously adapt to the immediate environmental conditions, but is optimized to a 

certain set of parameters could help to bridge the efficacy and cost of kinetic and fixed shading 

devices. As such, it is necessary to find a way to resolve the inherent conflict between creating a 

shading device that works like a kinetic shading device without the drawbacks of a kinetic system. 

The fixed shading device needs to 1. Perform adequately in minimizing unwanted direct sunlight 

and 2. Minimize blocking the building occupant’s view to the outside environment.  

 

4.1.2 Problem considered and workflow  
The problem considered in this study is a hypothetical building of the southern facade is fully 

glazed with fixed shading devices that can possibly block views to exterior. As shown in Fig. 6, a 

building is trapezoidal shape and has transparent material at South and opaque material at other 

sides. The building program is assumed to be a typical HVAC ventilated office building with 

occupancy hours between 9am and 5pm. Indoor comfort determined by the Percentage of Time 

Comfortable is calculated using the Predicted Mean Vote, the predicted thermal comfort for the 

average hypothetical human given a set of climate conditions. ASHRAE standards of 68.5F to 75F 

in summer months and 75F to 80F in the winter months, both at 50% relative humidity and typical 

clothing levels and metabolic rates from sitting are used as input conditions for which the occupant 

is comfortable (Bazjanac 2008). Shading devices of 3-meter high and 1-meter wide perforated 

metal panel will have varying angle and opacity.   

Target view is located in front of the glazed facade in the distance, directly conflicting with the  
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Fig. 7 Workflow Diagram of Case-1 

 

 

amount of passive solar gains for this study.  To test these, the study was set to include three 

different target views: Target View 1, Target View 2, and Target View 3 as represented in Fig. 6. 

As shown in Fig. 7, our workflow employs two modes of information transfer between BIM 

(Building Information Model) and energy model. The first mode relies on the content of the Revit 

model elements and parameters to create the input geometry for the energy model in Ladybug and 

Honeybee/EnergyPlus. In Revit, we create a building and shading device using primitive 

geometry. Using the shading devices’ angle and opacity as instance parameters in a family, the 

input data creates an individually adaptive family. The primitive geometry is then exported in 

Mesh to Rhino and using Grasshopper’s visual programming converted into Honeybee/EnergyPlus 

geometry definitions: Zones. Honeybee Zones contain the schedule and internal gain criteria 

necessary to represent thermal zones, and construction surfaces of Floors, Ceilings, Walls, and 

Windows. The specific Zones contain material definitions and adjacency relationship to other 

interior Zones and to the exterior, which thereby form the boundary conditions necessary for 

Honeybee/EnergyPlus to define for its heat balance algorithms (Garcia 2015).   

Given that one point of interest is to understand the relationship between the viewer’s 

experience and the buildings energy use in relation to its passive heat gain, we set the energy 

model to calculate the number of heating and cooling days required for the building geometry in 

Boston, a heating dominant climate that requires a particular shading strategy. We use Octopus, a 

multi-variable evolutionary optimization algorithm, to minimize the total number of heating and 

cooling days while maximizing the building occupant’s view per case analyzed above. Heating 

and cooling days were used as a function to evaluate when a certain amount of passive daylight 

would be “useful” and “harmful,” further developing a concept of Useable Daylight for this case. 

For the GA’s gene pool, we assign the shading devices angle from 0 to 180 degrees in 10-degree 

increments while constraining the panel’s opacity between 30 and 70 percent, restricted by the 

structural integrity of a porous panel, in 10 percent increments, limiting an exhaustive simulation. 

The results are then extracted through a custom data write script through excel and then imported 

back into Dynamo to define the individual panels in Revit. The consistent BIM data assured by 

this workflow provides a natural framework for incorporating evolutionary optimization results 

back into the Revit model. 
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 Table 1 Comparative visualization of Optimization results showing daylight and view experience 

Case Sun only View 1 Only View 2 Only View 3 Only 

Exterior View 

    

Useable 

Daylight 

Index 
    

View from 

Position A 

    

View from 

Position B 

    

View from 

Position C 

    

 

 

4.1.3 Result and analysis 
Using Boston as our test climate and 3 different Target Views, we are able to create 3 different 

optimization scenarios and compare them against single variable optimizations shown in Appendix 

1. The single variable optimization scenarios-view and daylight-show the conflicting nature of the 

objectives. The results show that the genetic algorithms can be used to design individual shading 

device angles and opacities to optimize and balance building’s energy and viewer’s experience 

across unique conditions. Table 1 illustrates the seven different scenarios run with MOF. In order 

to adequately compare the different scenarios and test our parameters within the MOF workflow, 

Case-Sun only is the first run with a benchmark single objective optimization utilizing the Sun as 

the only parameter. The results show that optimizing for the sun only blocks views from all 

positions A, B, and C. Next, we run the simulation to optimize for the three different views only, 

which showed how inadequate the passive daylight performance is in all different cases. Finally, to 

illustrate the strength of MOF and utilizing multiple variables, adequate daylight levels and 

optimal views to each designated viewpoint V1, V2, and V3. The results of the three multi-

variable simulations show shading angles that do not obstruct each viewpoint as well as showing 

adequate levels of daylight permissivity within the space.  
 

4.2 Case study-2: Interior illumination vs. construction cost 
 

4.2.1 Overview 
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Table 1 Continued 

Case Sun + V1 Sun + V2 Sun + V3  

Exterior View 

   

 

UDI 

   

 

View from 

Position A 

   

 

View from 

Position B 

   

 

View from 

Position C 

   

 

 

After successfully optimizing Case 1 which looks to design the ideal space for the user’s view 

experience and shading the space when necessary, we look to adapt MOF to other parameters that 

designers face in practice. A common passive lighting technique used in large open spaces are 

large skylights that filter light in for both passive daylighting and heating during heating dominant 

times of the year. In order to address this, there needs to be an individualized approach to skylights 

depending on the program needs and the existing environment as noted in Fig. 8, which best 

practices fail to address. Current skylight best practices include orienting the glazing to the north 

to reduce over-exposure at certain times of the day A skylight should instead take the total needs 

of a space at a more holistic, annual approach as illustrated in Fig. 9. Assuming that a skylight 

system optimized for daylight would adequately suffice the programmatic needs of a space, a 

significant concern with individualized skylight optimization that needs to be considered also 

includes a system’s high capital cost. Skylights often are static modular systems to reduce 

fabrication and maintenance costs, and an individualized system requiring multiple fabrication 

process. With all these considerations in mind, the question then poses: how do you optimally 

design a low cost, high performance, project specific skylight system? To reduce the total cost of 

the system, two main factors that remain constant are the number of modular variations and the 

total material cost of the module itself. Fabrication costs would be lowest if all skylights were the 

same module and the total area of skylight, thus material cost of the skylights, are minimized. As 

shown in Fig. 10, if two different skylight scenarios provided the same daylight performance, the 

lower material cost will be rewarded. Thus, this case study looked to try and quantify an optimal  
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Fig. 8 Different Daylight level requirement  

per building program 

Fig. 9 Different Daylight level throughout  

a day/a year 

 

Fig. 10 Different material amount of skylight device for the same daylight performance 
 

 
Fig. 11 Problems and design parameters of Case-2 

 

 

solution for balancing useable daylight with the overall construction cost based on material 

quantity using MOF. 

 

4.2.2 Problem considered 
The problem considered in this study is a hypothetical building of which roof has a cluster of 

fixed skylights located at Monterrey, Mexico.  As shown in Fig. 11, a building is 70’ (W)×90’ 

(L)×49’ (H) of a rectangular box rotated by 49 degree from the true north. A unit of skylight is 

approximately 20’×20’ that can fit into roof structure grid.  

There are many ways to approach Daylighting Metrics. Often, many will choose 3 point-in-

time simulations to illustrate a quick and approximate approach to understanding sun patterns 

throughout the year. Another approach is to use Annual calculations, which takes every hour of the  
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Fig. 12 Workflow diagram of Case-2 

 

 

year and presents a more complete picture of total number of day lit hours throughout the year. 

Given the computational capabilities accessible through the cloud in addition to our desire to most 

accurately model daylight conditions, we chose to use the annual calculations. Within the realm of 

annual daylight metrics, there are a few different ways to quantify daylight.  The most common 

metrics used to quantify daylight is Daylight Autonomy. Daylight Autonomy, or DA, is the 

percentage of the time-in-use that a certain user-designed lux threshold is reached throughout the 

use of just daylight. The main advantage of DA is that it can be used to assess the quantitative 

daylight performance of a design-in contrast to a point-in-time calculation that only deals with the 

worst case scenario. The limitation of DA is that it is solely a quantitative measure. DA is by 

definition incremental and does not give partial credit for daylight levels below the user-defined 

lux. Continuous Daylight Autonomy (cDA) is similar to DA, but unlike DA, cDA awards partial 

credit for daylight levels below a user-defined threshold in a linear fashion. 

Like DA, cDA only awards daylight that hits a minimum of the user-defined lux level which 

fails to address the possibility of over-lighting a space. Useful Daylight Illuminance (UDI) is a 

modification of Daylight Autonomy, which tries to address the potential glare or overheating 

defined as beyond 2,000 lux. Like DA and cDA, the user can define the cutoff lux level, but it 

starts to introduce the concept of over exposing a space to daylight and create parameters for 

adequate light levels.  

For our research, we choose to highlight useable daylight, adequate light without permitting 

over exposure, so choose to use the metric UDI. In the different simulations, we choose 2 different 

building typologies, Athletic and Library, to highlight how design changes based on different lux 

levels. Because we are looking to define useable daylight, we also set our occupied hours to 8am 

to 8 pm all year round. A library space is defined as requiring 300-500 lux, whereas the Athletic 

Gym is defined as requiring 200-300 lux. In order to address building costs, we choose a 

simplified metric of overall material area to calculate total material cost. 

In this case study, we start our modeling process in Rhino using parameters created in 

Grasshopper. We have five parameters to define the geometry of skylight unit that will result in  
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Table 2 Comparative visualization of Optimization results showing daylight and view experience 

Case 1-Sports/Recreation center 

 Case 1-Base/UDI only 
Case 1-Base 

/Min. Material 

Case 1-UDI 

+Min. Material 

Parameters    

(θx, θy ,θz ) (50
o
, -90

o
, -25

o
) (-50

o
, 35

o
, 65

o
) (45

o
, -80

o
, -70

o
) 

(Po, Ph) (2 m, 3 m) (1.5 m, 0 m) (1.5 m, 2.4 m) 

UDI 

   
(% time) 14.30% 9.52% 12.38% 

Area of material (m
2
) 664 m

2
 438 m

2
 594 m

2
 

Case 2-Library 

 Case 2-Base/UDI only 
Case 2-Base 

/ Min. Material 

Case 2-UDI 

+Min. Material 

Parameters    

(θx, θy ,θz ) (-10
o
, -20

o
, -10

o
) (-50

o
, 35

o
, 65

o
) (20

o
, -80

o
, 5

o
) 

(Po, Ph) (2.5 m, 3 m) (1.5 m, 0 m) (1.5 m, 2.4 m) 

UDI 

   
(% time) 19.57% 13.70% 16.17% 

Area of material (m
2
) 689 m

2
 438 m

2
 585 m

2
 

 
 

 

different daylight and amount of material as shown in Fig. 11: 
 

1. Panel Width Offset 

2. Panel Height Offset 

3. Panel Rotation Angle along X-Axis 

4. Panel Rotation Angle along Y-Axis 

5. Panel Rotation Angle along Z-Axis 
 

We again use Octopus utilizing a custom fitness function to evaluate the maximum Useable 

Daylight and minimum total material quantity. Results are verified by the higher total UDI metric 
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and the lower total material area each compared to the base studies that optimized one variable 

only. The final data which are notated across the five different parameters above are exported from 

Grasshopper and imported into Revit which contains the parameters of the original 

Rhino/Grasshopper Model. This workflow shown in Fig. 12 captures and transfers the data from 

Grasshopper seamlessly into Revit, showing another way to optimize using MOF with more than 

one variable.  

 
4.2.3 Result and analysis 
Table 2 illustrates the six different Case 2 scenarios run with MOF. In order to adequately 

compare the different scenarios and test our parameters within this MOF workflow, Case 2 is first 

run with a benchmark single objective optimization utilizing the UDI as the only parameter for two 

different programs with corresponding lux level ranges. The results show that maximization for 

UDI only created a wide range of total material area. Next, we ran the simulation to minimize total 

material area, which shows how inadequate the total UDI number is in all different cases. Finally, 

to illustrate the optimization process of MOF’s ability to utilize multiple variables, we considered 

maximizing UDI and minimizing material costs for the two different programmatic daylight levels 

defined by lux requirements. The results of the two multi-variable simulations show UDI numbers 

that provide adequate levels of daylight within the space and low total material area.  

 

 

5. Conclusion and future research 
 

Compared to the typical optimization method in high-performance architecture to seek a design 

target that relies on single parameter, the Multi-objective Optimization Framework (MOF) 

proposed in this paper is a BIM-integrated and simulation-based parametric workflow to optimize 

conflicting multiple variables. In particular, MOF excels in working with performance-based 

measure and non-performance driven design targets that would provide a direct conflict in the 

design process, which make it more difficult to satisfy multiple constraints simultaneously in 

architectural practice. 

The MOF integrates the project documentation capability in BIM and the rapid simulation in 

Rhino, Grasshopper and other plugins, which maximize the benefits of each platform. Two case 

studies show how the MOF can generate and evaluate all different possible configurations within 

the predefined each parameter while presenting the most optimized solution and feeding it to BIM 

environment to reduce lost time and model information. The significance of this research lies in 

that design practice can be more scientific and automatic by integrating advanced simulation, 

optimizing algorithm and BIM rather than the exhaustive trial and errors based on a designer's 

experience and intuition. In this research, the multiple parameters have the same weight, which 

does not address the current practice where a designer gives certain parameters precedence. Future 

research can investigate the optimization method with the weighted value per design intents and 

the user-friendly visualization method. 
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Appendix: Angle and opacity of optimized shading panels at case study 1 

 

 
Sun V1 Only V2 Only V3 Only Sun + V1 Sun + V2 Sun + V3 

θ T (%) θ T (%) θ T (%) θ T (%) θ T (%) θ T (%) θ T (%) 

P1 20 70 60 30 -80 30 -40 30 20 60 -40 50 90 60 

P2 20 70 60 30 -80 30 -40 30 20 60 -50 50 90 60 

P3 20 70 60 30 -80 30 -40 30 10 60 -30 50 90 60 

P4 20 70 60 30 -70 30 -40 30 20 60 -30 50 90 60 

P5 20 70 60 30 -70 30 -40 30 10 50 -30 50 90 60 

P6 20 70 60 30 -70 30 -40 30 10 60 -30 50 90 60 

P7 20 70 60 30 -70 30 -40 30 20 60 -30 50 90 60 

P8 20 70 60 30 -70 30 -40 30 20 50 -40 40 90 60 

P9 20 70 60 30 -70 30 -40 30 20 50 -50 50 70 40 

P10 20 70 60 30 -70 30 -40 30 20 40 -50 50 70 50 

P11 -30 70 10 30 60 30 90 30 0 50 -70 40 -50 50 

P12 -30 70 10 30 60 30 90 30 0 40 -70 40 -30 40 

P13 -30 70 10 30 60 30 90 30 -10 50 -70 40 -20 60 

P14 -30 70 10 30 60 30 90 30 -10 40 -70 40 -30 50 

P15 -30 70 10 30 60 30 90 30 -10 30 -70 40 -30 50 

P16 -30 70 10 30 60 30 90 30 -20 40 -70 50 -40 40 

P17 -30 70 10 30 60 30 90 30 -10 50 -80 60 -40 60 

P18 -30 70 10 30 60 30 90 30 -10 50 -80 60 -20 60 
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