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Abstract.  Damage detection and localisation in structures is essential since it can be a means for preventive 

maintenance of those structures under service conditions. The use of structural modal data for detecting the 

damage is one of the most efficient methods. This paper presents comparative performance of various state-

of-the-art meta-heuristics for use in structural damage detection based on changes in modal data. The meta-

heuristics include differential evolution (DE), artificial bee colony algorithm (ABC), real-code ant colony 

optimisation (ACOR), charged system search (ChSS), league championship algorithm (LCA), simulated 

annealing (SA), particle swarm optimisation (PSO), evolution strategies (ES), teaching-learning-based 

optimisation (TLBO), adaptive differential evolution (JADE), evolution strategy with covariance matrix 

adaptation (CMAES), success-history based adaptive differential evolution (SHADE) and SHADE with 

linear population size reduction (L-SHADE). Three truss structures are used to pose several test problems 

for structural damage detection. The meta-heuristics are then used to solve the test problems treated as 

optimisation problems. Comparative performance is carried out where the statistically best algorithms are 

identified. 
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1. Introduction 
 

Damage in structures can be caused by several reasons e.g. defects in structural elements, 

cracks from fatigue, and wears. Such a phenomenon always shortens structural service life. Over 

the years, many techniques have been developed to prevent this undesirable occurrence. Some 

causes may be able to detect by using visual inspection. Cracks inside the structures may be found 

by using X-ray scan. However, assessment of damage with one effective type of measurement is 

more wanted since it reduces time and cost while increasing reliability. This is often called 

structural health monitoring, usually referring to the use of a non-destructive testing technique for 

predicting the damage of structures under service loadings. Structural health monitoring can have 

three steps as identifying the presence of structural damage, localising the damage, and predicting 

its severity (Sinou 2009). 
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One of the most popular and efficient ways to perform damage detection in structures is using 

changes in structural model information e.g., natural frequencies, mode shapes, and damping 

ratios. The direct use of the modal data has been presented by many researchers (Lifshitz and 

Rotem 1969, Hearn and Testa 1991, Messina et al. 1998, Koh and Dyke 2007). The use of soft 

computing techniques has also been invented such as fuzzy logic systems (Buchholz et al. 2007, 

Agarwalla et al. 2015, Jiao et al. 2015) and neural networks (Abdeljaber and Avci 2016, Alavi et 

al. 2016, Sidibe et al. 2016). In recent years, meta-heuristics (MHs) have been introduced to solve 

a structural damage detection inverse problem. The problem is treated to be an optimisation 

problem where structural natural frequencies and mode shapes play a vital role. Several problems 

were formulated and solved using a genetic algorithm (Chou and Ghaboussi 2001), particle swarm 

optimisation (Pal and Banerjee 2015), an artificial bee colony algorithm (Xu et al. 2015, Ding et 

al. 2016), a differential evolution algorithm (Fu and Yu 2014), an evolutionary strategy (Jafarkhani 

and Masri 2011), an artificial immune algorithm (Chen and Zang 2009), an ant colony 

optimization algorithm (Majumdar et al. 2012) and a charged system search algorithm (Kaveh and 

Zolghadr 2015). Nevertheless, in the field of meta-heuristics, there have been recently many state-

of-the-art algorithms that have not been tested with this problem. 

Therefore, this paper is an attempt to bridge the gap between two research fields, one who 

employs MHs for structural damage detection and another who mainly focuses on developing MH 

algorithms. Three truss structures are used as numerical test problems to assess the performance of 

a number of MHs for solving structural damage detection and localisation. The results obtained are 

compared and discussed. 

 

 

2. Formulation of damage detection based on natural frequency 
 

In this study, a truss structure is modelled as a linear dynamic system. Damage of the structure 

can be identified by detecting variation of its natural frequency in any mode. The natural 

frequency can be calculated from an eigenvalue problem 

      0 jjj  MK                              (1) 

where [K] is a structural stiffness matrix which is expressed as the summation or assembly of 

element stiffness matrices [ke] 
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where i and ne are the ith element and the total number of elements. [M] is a structural mass matrix 

obtained in a similar fashion as with the stiffness matrix. {ϕj} and λj are the  mode normalized 

eigenvector and eigenvalue respectively. The natural frequency of any mode shape (ωj) can be 

calculated by 

jj   j=1,2,3,…, n                             (3) 

where j is the jth mode shape. 

The damage on structural elements is assumed to affect the structural stiffness matrix and 

consequently alter structural natural frequencies. The stiffness matrix of the damaged structure, 
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denoted by [Kd], can be calculated as 
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where pi is percentage of damage in the ith element. The mode shapes and natural frequencies of 

the damaged structure can be calculated by solving Eqs. (1) and (3) after replacing [K] by [Kd]. It 

should be note that only reduction of the element stiffness is considered in this study. The mass 

matrix of the structure is not considered to change.  

To identify the damage of the structural elements, an optimisation problem is formulated to 

find the optimum solution for the percentages of damage on each element (pi) whilst minimising 

the root mean square error (RMSE) between natural frequencies measured from the damaged 

structure and those from solving (1) - (4) with the given pi. The objective function is then defined 

as follows 
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where ωj,damage and ωj,computed are the structural natural frequency of mode j obtained from a 

damaged structure and that from solving (1) - (4) (with the independent variables x={p1, …, 

pnele}
T) respectively. The values of pi determine the location of damaged elements. Note that only 6 

vibration modes are used for calculation. In practice, the first nmode mode shapes and natural 

frequencies of the normal structure should be measured and used to dynamically update the finite 

element model in Eq. (1) (provided that the measured data is reliable). Once damage on the 

structure takes place, the natural frequencies are altered which can be detected by measuring the 

structure in a scheduled period or online. The changed natural frequencies are used for calculation 

in (5). 

 

 

3. Test problems with trusses 
 

To investigate the performance of various MHs on solving the optimisation problem of damage 

detection of truss structures, three truss structures are used in this study. For simplicity, structural 

damage is simulated while the natural frequencies of the undamaged and damaged structures are 

obtained from finite element analysis rather than performing experimental modal analysis of real 

structures.  

 

3.1 Nine-bar truss 
 
The structure is shown in Fig. 1 (Majumdar et al. 2012). The cross sections of all bar elements 

are set to be 0.0025 m2. Material density and modulus of elasticity are 7,850 kg/m3 and 200 GPa, 

respectively. Two case studies are simulated for the 9 bar truss: Case I 50% damage at element 

number 2, and Case II 50% damage at element number 2 and 25% damage at element number 9. 

The data of natural frequencies of the undamaged and damaged 9-bar structures are shown in 

Table 1. 
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Fig. 1 Nine bar truss 

 
Table 1 Natural frequencies (Hz) of damaged and undamaged of 9-bar structure 

Mode Undamaged 50 %damage at element number 2 
50 %damage at element number 2 and 

25 %damage at element number 9 

1 38.3606 36.0103 35.0257 

2 74.5226 66.3895 66.2781 

3 117.8257 104.8556 101.6319 

4 198.0133 194.2126 188.2125 

5 260.1367 256.4372 255.9724 

6 334.7825 334.7771 334.7585 

 

 
3.2 Twenty-five-bar truss 
 
The structure is shown in Fig. 2 (Majumdar et al. 2012). The cross sections of all bar elements 

are set to be 6.4165 mm2 .Material density and modulus of elasticity are 7,850 kg/m3 and 200 GPa, 

respectively. Two case studies are simulated for the 25 bar truss :Case I 35% damage at element 

number 7, and Case II 35% damage at element number 7 and 40% damage at element number 9 .

The data of natural frequencies of the undamaged and damaged 25-bar truss structures are shown 

in Table 2. 

 

 

 
Fig. 2 Twenty-five bar truss 
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Table 2 Natural frequencies (Hz) of damaged and undamaged of 25 bar structure 

Mode Undamaged 
35% damage at element 

number 7 

35% damage at element number 7 

and 40% damage at element 

number 9 

1 69.7818 69.1393 68.5203 

2 72.8217 72.2006 71.3167 

3 95.8756 95.3372 94.5625 

4 120.1437 119.8852 119.6514 

5 121.5017 121.4774 121.4253 

6 125.0132 125.0130 125.0129 

 

 

3.3 Seventy-two-bar truss 
 

The structure is shown in Fig. 3 (Kaveh and Zolghadr 2015) .Four non-structural 

masses of 2270 kg are attached to the top nodes. The cross sections of all bar elements are 

set to be 0.0025 m2. Material density and modulus of elasticity are 2,770 kg/m3 and 

6.98×1010 Pa, respectively. Two case studies are simulated for the 72-bar truss :Case I, 

15% damage at element number 55 (15% damage in element number 56, 57, or 58 results 

in the same set of natural frequencies), and Case II, 10% damage at element number 4 and 

15% damage at element number 58 (90, 180, and 270 degrees rotation along the z axis 

lead to the same set of natural frequencies). The data of natural frequencies of the 

undamaged and damaged 72-bar truss structure are shown in Table 3. 

 

 

 
Fig. 3 Seventy-two bar truss 
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Table 3 Natural frequencies (Hz) of damaged and undamaged of 72 bar structure 

Mode Undamaged 
15 damage at element 

number 55 

15 damage at element 

number 58 and 

10 damage at element 

number 4 

1 6 0455 5 9553 5 9530 

2 6 0455 6 0455 6 0455 

3 10 4764 10 4764 10 4764 

4 18 2297 18 1448 18 0921 

5 25 4939 25 4903 25 2437 

6 25 4939 25 4939 25 4939 

 

 
4. Numerical experiment 
 

In this work, a comparative study of thirteen MHs search performance on solving the truss 

damage detection problems is conducted. Those methods are said to be established and some of 

them are considered the currently best optimisers. Given that nP is a population size, the MHs and 

their optimisation parameter settings used in this study (details of notations can be found in the 

corresponding references of each method) are detailed as: 

• Differential evolution (DE) (Storn and Price 1997): a DE/best/2/bin strategy was used. A 

scaling factor, crossover rate and probability of choosing elements of mutant vectors are 0.5, 0.7, 

and 0.8 respectively. 

• Artificial bee colony algorithm (ABC) (Karaboga and Basturk 2007): The number of food 

sources for employed bees is set to be nP/2. A trial counter to discard a food source is 100. 

• Real-code ant colony optimisation (ACOR) (Socha and Dorigo 2008): The parameter settings 

are q=0.2, and =1. 

• Charged system search (ChSS) (Kaveh and Talatahari 2010): The number of solutions in the 

charge memory is 0.2×nP. The charged moving considering rate and the parameter PAR are set to 

be 0.75 and 0.5 respectively. 

• League championship algorithm (LCA) (Husseinzadeh Kashan 2011): The probability of 

success Pc and the decreasing rate to decrease Pc are set to be 0.9999 and 0.9995, respectively.  

• Simulated annealing (SA) (Bureerat and Limtragool 2008): Starting and ending temperatures 

are 10 and 0.001 respectively. For each loop, nele candidates are created by mutating on the 

current best solution while other nele candidates are created from mutating the current parent. The 

best of those 2nmode solutions are set as an offspring to be compared with the parent. 

• Particle swarm optimisation (PSO) (Pal and Banerjee 2015): The starting inertia weight, 

ending inertia weight, cognitive learning factor, and social learning factor are assigned as 0.5, 

0.01, 0.5 and 0.5 respectively. 

• Evolution strategies (ES) (Back 1996): The algorithm uses a binary tournament selection 

operator and a simple mutation without the effect of rotation angles. 

• Teaching-learning-based optimisation (TLBO) (Rao et al. 2011): Parameter settings are not 

required. 

• Adaptive differential evolution (JADE) (Zhang and Sanderson 2009): The parameters are 

self-adapted during an optimisation process. 
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• Evolution strategy with covariance matrix adaptation (CMAES) (Hansen et al. 2003): The 

parameters are self-adapted during an optimisation process. 

• Success-History Based Adaptive Differential Evolution (SHADE) (Tanabe and Fukunaga 

2013): The parameters are self-adapted during an optimisation process. 

• SHADE with Linear Population Size Reduction (L-SHADE) (Tanabe and Fukunaga 2014): 

The parameters are self-adapted during an optimisation process. 

Each optimiser is used to solve each problem for 30 optimisation runs. The population size is 

set to be 20, 30 and 50 for the 9-bar, 25-bar and 72-bar trusses, respectively, whereas the number 

of iterations is 100 for all case studies. For the optimisers using different population sizes, their 

search processes are terminated with the total number of functions evaluations (FEs) equal to 

20×100, 30×100 and 50×100 for the 9-bar, 25-bar and 72-bar trusses, respectively. Another 

termination criterion is when one of the members in the current population has an objective 

function value of 1×10-3 or lower. It should be noted that the total FEs used in this study can be 

considered insufficient for some meta-heuristics according to the literature; nevertheless, this value 

is set so as to look for really powerful algorithms. 

 

 
5. Results and discussions 
 

After solving the truss damage detection problems for 30 optimisation runs, the results are 

illustrated in Tables 4-9. The mean and standard deviation (STD) values of the objective function 

are used to measure the search convergence and consistency of the algorithms. 

 

 
Table 4 Results for 9 bar truss with 50% damage at element 2 

Optimisers 
Objective function Values No .of successful runs 

from 30 runs 
Mean of FEs 

Mean STD Min Max 

DE 0.0008 0.0002 0.0004 0.0013 29 1366 

ABC 0.0712 0.0540 0.0045 0.2113 0 2000 

ACOR 0.0616 0.0296 0.0132 0.1250 0 2000 

ChSS 0.1547 0.0780 0.0020 0.3110 0 2000 

LCA 0.3197 0.1260 0.0590 0.6193 0 2000 

SA 0.1069 0.0759 0.0023 0.2369 0 2000 

TLBO 0.0205 0.0341 0.0001 0.1267 17 1516 

CMAES 0.0020 0.0050 0.0005 0.0250 28 1479 

ES 0.1178 0.1122 0.0004 0.4380 6 1782 

PSO 0.9249 0.3183 0.0142 1.4527 0 2000 

JADE 0.0094 0.0117 0.0019 0.0604 0 2000 

SHADE 0.0030 0.0044 0.0003 0.0194 14 1890 

LSHADE 0.0008 0.0002 0.0001 0.0016 29 903 
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Table 5 Results for 9 bar truss with 50 %damage at element 2 and 25 %damage at element number 9 

Optimisers 
Objective function Values No. of successful runs 

from 30 runs 
Mean of FEs 

Mean STD Min Max 

DE 0.0008 0.0003 0.0003 0.0017 28 1435 

ABC 0.0493 0.0300 0.0020 0.1214 0 2000 

ACOR 0.1036 0.0476 0.0246 0.1916 0 2000 

ChSS 0.0197 0.0217 0.0009 0.0914 2 1989 

LCA 0.1347 0.0902 0.0156 0.3823 0 2000 

SA 0.1159 0.1097 0.0026 0.4351 0 2000 

TLBO 0.0224 0.1190 0.0003 0.6526 29 1267 

CMAES 0.0008 0.0002 0.0003 0.0010 30 1282 

ES 0.0055 0.0176 0.0002 0.0956 23 1167 

PSO 0.4017 0.3391 0.0008 1.1933 2 1894 

JADE 0.0114 0.0074 0.0010 0.0353 1 1974 

SHADE 0.0037 0.0039 0.0005 0.0125 10 1941 

LSHADE 0.0008 0.0002 0.0004 0.0011 29 1056 

 

 

5.1 Nine-bar truss 
 

For the 9 bar truss with 5% damage at element 2, the results are illustrated in Table 4. The best 

performer based on the mean value of the objective function is DE and L-SHADE while the 

second best and the third best are CMAES and SHADE, respectably .Based on the STD of the 

objective function, the most consistent optimisers are DE and L-SHADE while the second best is 

SHADE .When looking at the number of successful runs (obtained objective function value lower 

than 1×10-3), only six from thirteen optimisers including DE, TLBO, CMAES, ES, SHADE and L-

SHADE can detect the true damage of the structure for, in that order, 29, 17, 28, 6, 14 and 29 times 

from totally 30 optimisation runs. The average numbers of function evaluations for convergence 

results of the five algorithms, DE, TLBO, CMAES, ES, SHADE and L-SHADE are 1366, 1516, 

1479, 1782, 1890 and 903, respectively. 

For the results of the 9-bar truss with 5% damage at element 2 and 25% damage at element 

number 9 in Table 5, the best performers based on the objective mean values are DE, L-SHADE 

and CMAES which obtained the same mean objective function values while the fourth best is 

SHADE. Based on STD, the best performers is CMAES and L-SHADE which obtained the same 

STD values while the third best is DE. For this case, four optimisers including ABC, ACOR, LCA 

and SA cannot detect the damage of the structure. The most efficient optimisers which can detect 

the damage of structure for 28, 29, 30 and 29 times from 30 runs with average numbers of FEs 

1435, 1267, 1282 and 1056 are DE, TLBO, CMAES and L-SHADE respectively. 

 

5.2 Twenty-five-bar truss 
 

For the 25-bar truss with 35 %damage at element 7, the results are given in Table 6 .The best 

performers based on the mean objective function values are TLBO and ES which obtained the 

same results while the third best methods are DE and L-SHADE which also obtained the same 
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results. Based on the STD value. There are four optimisers which obtained the same best values 

including: DE, TLBO, ES and L-SHADE. When considering the number of successful runs, five 

optimisers including ABC, ACOR, ChSS, LCA and PSO cannot detect the damage of the structure .

The most efficient optimisers which can detect the damage of the structure for 30 runs with 

average numbers of function evaluations of 1733, 1400, 1592 and 937 are DE, TLBO, ES and L-

SHADE, respectively. 

For the 25 bar truss with 35% damage at element 7 and 40 %damage at element number 9, the  

 

 
Table 6 Results for 25 bar truss with 35% damage at element number 7 

Optimisers 
Objective function Values No. of successful runs 

from 30 runs 
Mean of FEs 

Mean STD Min Max 

DE 0.0008 0.0002 0.0003 0.0010 30 1733 

ABC 0.4780 0.5089 0.0096 2.1914 0 3000 

ACOR 0.0078 0.0027 0.0041 0.0145 0 3000 

ChSS 0.3992 0.1379 0.1766 0.7438 0 3000 

LCA 4.2594 0.6234 2.8640 5.3094 0 3000 

SA 0.0047 0.0058 0.0004 0.0208 10 2611 

TLBO 0.0007 0.0002 0.0004 0.0010 30 1400 

CMAES 0.0024 0.0024 0.0003 0.0080 18 2680 

ES 0.0007 0.0002 0.0001 0.0010 30 1592 

PSO 7.3405 1.1242 5.0301 9.5734 0 3000 

JADE 0.0021 0.0009 0.0005 0.0039 2 2957 

SHADE 0.0012 0.0005 0.0006 0.0025 14 2875 

LSHADE 0.0008 0.0002 0.0003 0.0010 30 937 

 

Table 7 Results for 25 bar truss with 35 %damage at element number 7 and 40% damage at element number 9 

Optimisers 
Objective function Values No of successful runs 

from 30 runs 
Mean of FEs 

Mean STD Min Max 

DE 0 0007 0 0002 0 0002 0 0010 30 2018 

ABC 0 3272 0 2745 0 0368 1 0296 0 3000 

ACOR 0 0176 0 0069 0 0019 0 0313 0 3000 

ChSS 0 1111 0 0534 0 0414 0 2951 0 3000 

LCA 3 5560 0 7799 1 5968 4 8099 0 3000 

SA 0 0069 0 0051 0 0012 0 0230 0 3000 

TLBO 0 0019 0 0044 0 0003 0 0236 26 1910 

CMAES 0 0060 0 0056 0 0006 0 0273 5 2938 

ES 0 0029 0 0120 0 0003 0 0667 29 1742 

PSO 6 5441 1 1249 3 2461 8 3184 0 3000 

JADE 0 0039 0 0021 0 0005 0 0094 1 2993 

SHADE 0 0024 0 0009 0 0008 0 0050 2 2959 

LSHADE 0 0008 0 0002 0 0003 0 0010 30 948 
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results are illustrated in Table 7. The best performer based on mean values is DE while the second 

best and the third best are L-SHADE and TLBO, respectably. Based on the STD values, the best 

performer is DE and L-SHADE which obtained the same results while the third best is SHADE. 

When examining the number of successful runs, seven from thirteen optimisers including DE, 

TLBO, CMAES, ES, JADE, SHADE and L-SHADE can detect the damage of the structure for 30, 

26, 5, 29, 1, 2 and 30 runs, respectively. The average numbers of function evaluations for 

convergence results of the seven algorithms, DE, TLBO, CMAES, ES, JADE, SHADE and L-

SHADE are 2018, 1910, 2938, 1742, 2993, 2959, and 948 in that order. 

Overall, it was found that the most efficient optimiser for damage detection of the 25-bar truss 

for both simulation cases is L-SHADE. 

 

5.3 Seventy-two-bar truss 
 

For the 72-bar truss with 15% damage at element 5, the results are given in Table 8 .The best 

and the second best performers based on both mean and STD of objective function values are 

TLBO and L-SHADE, respectively. When looking at the number of successful runs (f reaching 

1×10-3 or lower), only three method including DE, TLBO and L-SHADE can detect the damage of 

the structure for 3, 29, and 6 times from totally 30 optimisation runs .The average numbers of 

function evaluations for convergence results of the three algorithms, DE, TLBO, and L-SHADE 

are 4893,2722, and 4868, in that order.  

For the 72 bar truss with 15% damage at element number 58 and 10% damage at element 

number 4, the results are given in Table 9 .The best and second best performer based on both mean 

and STD of objective function values are TLBO and L-SHADE, respectively. Only three 

optimisers including DE, TLBO and L-SHADE can detect the damage of the structure for 5, 27 

and 5 times from totally 30 optimisation runs .The average numbers of function evaluations for 

convergence results of the three algorithms, DE, TLBO, and L-SHADE are 4934, 3036, and 4856,  

 

 
Table 8 Results for 72 bar truss with 15% damage at element number 55 

Optimisers 
Objective function Values No. of successful runs 

from 30 runs 
Mean of FEs 

Mean STD Min Max 

DE 0.0061 0.0151 0.0009 0.0837 3 4893 

ABC 0.6413 0.0842 0.4711 0.7926 0 5000 

ACOR 0.0111 0.0022 0.0077 0.0161 0 5000 

ChSS 0.2317 0.0237 0.1783 0.2710 0 5000 

LCA 0.9111 0.0344 0.8592 0.9695 0 5000 

SA 0.1094 0.0218 0.0740 0.1466 0 5000 

TLBO 0.0008 0.0002 0.0002 0.0011 29 2722 

CMAES 0.0047 0.0013 0.0025 0.0087 0 5000 

ES 0.0043 0.0013 0.0016 0.0066 0 5000 

PSO 0.8870 0.0631 0.7702 0.9959 0 5000 

JADE 0.0200 0.0026 0.0155 0.0247 0 5000 

SHADE 0.0076 0.0014 0.0051 0.0111 0 5000 

LSHADE 0.0018 0.0012 0.0010 0.0059 6 4868 
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Table 9 Results for 72 bar truss with 15% damage at element number 58 and 10% damage at element number 4 

Optimisers 
Objective function Values No. of successful runs 

from 30 runs 
Mean of FEs 

Mean STD Min Max 

DE 0.0063 0.0152 0.0009 0.0857 5 4934 

ABC 0.6506 0.0780 0.4437 0.8062 0 5000 

ACOR 0.0104 0.0019 0.0074 0.0156 0 5000 

ChSS 0.2318 0.0172 0.2042 0.2691 0 5000 

LCA 0.8691 0.0483 0.7418 0.9447 0 5000 

SA 0.1094 0.0226 0.0659 0.1491 0 5000 

TLBO 0.0009 0.0001 0.0006 0.0014 27 3036 

CMAES 0.0044 0.0014 0.0022 0.0085 0 5000 

ES 0.0044 0.0013 0.0024 0.0084 0 5000 

PSO 0.9015 0.0621 0.7368 1.0140 0 5000 

JADE 0.0207 0.0031 0.0131 0.0262 0 5000 

SHADE 0.0079 0.0015 0.0058 0.0119 0 5000 

LSHADE 0.0021 0.0011 0.0009 0.0051 5 4856 

 

 

respectively. 

Overall, TLBO is the best performer for the 72-bar truss problem which is a large scale 

problem. 

The comparative results show that the overall best optimizer are DE, TLBO and L-SHADE. 

For the small-scale 9-bar truss and the medium-scale 25 bar truss, the overall best optimisers are 

L-SHADE and DE. For the large-scale 72-bar truss, TLBO is the best performer. The maximum 

number of function evaluations assigned for the 72-bar truss problems is not sufficient but it is 

enough to show the best performers. TLBO is good at solving a large-scale problem as 

demonstrated in (Pholdee et al. 2015). 

 

 

6. Conclusions 
 

The various meta-heuristic optimisers were tested for the problems of damage detection in 

trusses. The damage detection problems are based on vibration measurement, which can be treated 

as an inverse optimisation problem. The comparative results reveal that the currently top meta-

heuristics DE, TLBO and L-SHADE are the overall best method where TLBO is outstanding for a 

large-scale problem. The results obtained from TLBO can be used as the baseline for future 

investigation of structural damage detection using meta-heuristics. 
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