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Abstract.  The damage level in structures (global scale), elements (intermediate scale) and sections (local 
scale) can be evaluated using a single parameter called the “Damage Index”. Part of the damage attributed to 
the local scale relates to the damage sustained by the materials of which the section is made. This study 
investigates the damage of concrete subjected to monotonic compressive loading using four different 
damage models – one proposed here for the first time and three other well-known models. The analytical 
results show that the proposed model is promising yet simple and effective for evaluating the damage of 
concrete. The proposed damage model of concrete with its promising characteristics indicated, appears to be 
a useful tool in the damage assessment of structures made of concrete. 
 

Keywords:   damage model; concrete; damage assessment 

 
 
1. Introduction 

 
It is common to evaluate the damage level in structures (global scale), elements (intermediate 

scale) and sections (local scale) (Amziane and Dubé 2008) with a single parameter called the 

“Damage Index” (DI). In the local scale, the damage can be addressed based on the damage of 

materials of which sections are made (Amziane and Dubé 2008, Paredes et al. 2011). Concrete is 

one of the most common materials used in construction due to its many useful characteristics such 

as durability, forming convenience, etc. However, high compressive strength of concrete is 

probably its most striking feature which allows the construction of buildings, bridges, even today’s 

high-rises with ease when combined with steel as tensile reinforcing or prestressing element. In 

some structural members where concrete is the major player such as columns subjected to large 

axial loads, or beams-columns with high compressive loads and low bending moments, the load 

capacity mainly depends on the concrete. Hence, the damage mechanism of these members relates 

mostly to the concrete. Damage of concrete has been studied over the past years by many 

researchers such as Cao and Chung (2001), Puri and Weiss (2006) and recently Malecot et al. 

(2010), Markovich et al. (2011) and Poinard et al. (2010). 

Available damage models for concrete in the literature include those of Yu et al. (2010), Soh 

and Bhalla (2005), Chen et al. (2011), Amziane and Dubé (2008), as reviewed in Section 3.1. The 

parameters employed in these damage models are stress, stiffness and modulus. Instead of using  
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Fig. 1 Hognestad (1951) model 

 

 
Fig. 2 Kent and Park (1971) model for concrete confined by rectangular hoops 

 

 

these parameters, in this paper, the single parameter of “energy” is used. The proposed model is 

then used alongside other available models to evaluate the damage of concrete elements based on 

the compressive stress testing results on concrete specimens. It is shown that the proposed damage 

model can be utilised as a useful tool for the damage assessment of structures made from concrete. 

 

 

2. Behaviour of concrete 

 
For concrete, the stress–strain curve before maximum stress is widely approximated as a 

second–degree parabola (Park and Paulay 1975). Hognestad (1951) model as shown in Fig. 1 is a 
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widely used parabola described by Eqs. (1) and (2), where, εc is the strain; εo is the strain at 

maximum stress; '

cf  is the maximum stress reached in concrete which may differ from the 

cylinder strength and Ec is the modulus of elasticity. 
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Region AB: After the maximum stress, the relation between stress and strain is linear. The 

stress reduces 15% comparing to '

cf  when the strain reaches its ultimate value of 0.0038. 

The transverse reinforcement may confine the concrete depending on the levels of stress and 

the spacing of steel spirals or hoops. The strength of concrete increases significantly when 

confined. However, confinement by transverse reinforcement has little effect on the stress–strain 

curve until the uni-axial strength of concrete is reached (Park and Paulay 1975). Richart et al. 

(1929) seems to be the pioneer studying the compressive behaviour of concrete with the effect of 

transverse reinforcement. Based on their tests using lateral fluid pressure, which was thought to be 

the same as the confining effect of transverse reinforcement, they proposed a relationship for the 

compression concrete strength ( ''

cf ) with transverse pressure, the concrete strength ( '

cf ) without 

transverse pressure and the transverse pressure ( lf ) as shown in Eq. (3). 

'' ' 4.1c c lf f f                                (3) 

For concrete confined by circular spirals, the lateral pressure shown in Eq. (4) can be obtained 

from equilibrium of the forces acting on the half turn of spiral (Park and Paulay 1975). This 

pressure depends on the diameter of the spiral (ds), the area of spiral bar (Asp), the pitch of spiral (s) 

and the yield strength of transverse reinforcement (
yhf ). 

2 yh sp

l

s

f A
f

d s
                                (4) 

Concrete confined by rectangular hoops has been extensively studied by researchers (Baker and 

Amarakone, 1964; Blume et al. 1961, Chan 1955, Roy and Sozen 1964, Sargin et al. 1971, 

Soliman and Yu 1967). These stress–strain models have their own features which had been 

combined in the model proposed by Kent and Park (1971) as shown in Fig. 2. The stress–strain 

relationship up to maximum stress is the same as that of Hognestad (1951) model, however, the 

strain at the maximum stress is 0.002. This is also the same for unconfined and confined concrete. 

The difference between those types of concrete in their model is the falling branch after the 

maximum stress. However, Kent and Park (1971) model is conservative in most cases because it 

does not take into account the increase in maximum stress of confined concrete (Park and Paulay 

1975). 
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Fig. 3 Modified Kent and Park (1971) model done by Park et al. (1982) 

 

     
Fig. 4 Stress-strain curves for concrete cylinder with high-intensity repeated compressive  

loading (Sinha et al., 1964) 

 

 

In the same year, in recognition of the problems in the Kent and Park (1971) model, Park et al. 

(1982) modified the model by taking into account the enhancement of the concrete strength due to 

confinement. Fig. 3 shows the modified Kent and Park (1971) model in which the maximum stress 
'

cf  and the corresponding strain of 0.002 in Kent and Park (1971) model are multiplied by the 

factor K as shown in Eq. (5) to Eq. (10). 
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Region BC: εc ≥ εo  
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Where 
s  is the ratio of the volume of rectangular steel hoops to the volume of concrete core 

measured to the outside of the peripheral hoop; '

cf  is in MPa; b’’ is the width of the concrete core 

measured to outside of the peripheral hoop; sh is the center-to-center spacing of hoop sets. 

This modified Kent and Park (1971) model shows a good agreement with the test results of 

compressed concrete confined by hoop reinforcement presented by Scott et al. (1982). The issue 

were later studied by many researchers (Cusson and Paultre, 1994a, 1994b, Mander et al. 1988, 

Sheikh and Uzumeri 1982). Among those, Mander et al. (1988) model takes into account various 

types of transverse reinforcement. In addition, their model can be applied not only to monotonic 

loads but also to cyclic loads. However, the model has its own limitations. It is valid only within a 

certain range of confinement steel and the model does not include the descending portion of the 

confined concrete stress-strain curve (Esmaeily-Gh. and Xiao 2002). 

When concrete is subjected to repeated loads, the stress–strain relation is affected by hysteresis 

behaviour (Park and Paulay 1975) and becomes much more complicated. Many studies of this 

 

 

 
Fig. 5 Park et al. (1972) model 
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Fig. 6 Stress-strain curves for unloading and reloading branch in Mander et al. (1988) model 

 

 

Fig. 7 Parameters for Eq. (14) (Amziane and Dubé 2008) 

 

 

issue have been performed in the past. Fig. 4 shows the behaviour of concrete cylinder with 

high- intensity repeated axial compressive load given by Sinha et al. (1964) obtained from their 

test data. 

Karsan and Jirsa (1969) also performed some tests on this behaviour. It should be noted that the 

results of the two above mentioned groups showed that the envelope curve was the same as the 

curve obtained from monotonic loading. Up to now, many models for the behaviour of concrete 

subjected to repeated loads have been developed based on the back bone curve obtained from 

monotonic loading. Park et al. (1972) model is shown in Fig. 5 in which the envelope curve 

follows the Kent and Park (1971) model for concrete confined by hoops under monotonic 

compression. The stress–strain curve for unloading of this model is described as bi-linear curve. 

Mander et al. (1988) adopted Takiguchi et al. (1976) approach and had it modified to be 

suitable for both unconfined and confined concrete. The pattern of unloading curves are defined 

the same as the monotonic curve before the maximum stress but the unloading modulus has 

changed by two coefficients which relate to the stress (fun) and strain (εun) of the unloading point on 

the back bone curve as shown in Fig. 6. 
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3. Damage models 
 

3.1 Available damage models 
 

The extent of damage occurring in concrete when subjected to loading primarily depends on 

two factors - the concrete itself and the applied external loading. It is now widely accepted that the 

magnitude of DI should, ideally, vary between 0 and 1. A concrete should not suffer any damage 

when it operates within its elastic limit and hence DI should be equal to 0 at this stage. On the 

other hand, the maximum possible magnitude for DI should be set equal to 1 referring to the event 

of total collapse.  

There are available damage indices in literature. The parameters used for damage model 

commonly, are stress, deformation, stiffness and modulus. The damage of concrete subjected to 

uni-axial compression can be described by Eq. (11) in terms of the ratio of decaying stress to peak 

stress Yu et al. (2010), in which, 
c  is the stress of concrete on the descending branch and '

cf

 

is 

the peak stress. 

 

'

' '
1 c c c

c c

f
DI

f f

 
        (11) 

With the same pattern, Soh and Bhalla (2005) defined the damage of concrete in term of 

stiffness instead of stress as shown in Eq. (12), where 
ok is the initial stiffness of concrete and 

dk

is the stiffness of concrete after damage. 

1 d o d

o o

k k k
DI

k k


                             (12) 

Chen et al. (2011) defined the damage of concrete as the ratio of losing modulus to the initial 

modulus as shown in Eq. (13), where, E0 is the initial modulus of concrete and Ed is the damaged 

modulus of concrete. Although Eqs. (12) and (13) look different, they are similar because the 

stiffness is the product of modulus and the cross sectional area. 

1 d o d

o o

E E E
DI

E E


                             (13) 

In a different way, Amziane and Dubé (2008) defined the damage of concrete using the 

modulus of concrete as shown in Eq. (14), in which, Eir is the initial reloading modulus of concrete 

and E0,4 is the Young modulus define at stress of '0.4 cf  as shown in Fig. 7. 

0,4

1 irE
DI

E
                                 (14) 

 

3.2 The proposed damage model 
 

Fig. 8 shows the concept for the proposed damage model based on residual deformation or non-
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recoverable energy. Concrete experiences a total deformation um when it is subjected to a load, a 

portion of which may be recovered (recoverable deformation - urec), whilst the rest may remain 

within the structure (residual deformation - ures) when the applied forces are released. The overall 

behaviour of concrete may be sub-divided into two ranges: (1) Elastic range - there is no residual 

deformation when the load is released and hence DI = 0 and (2) Plastic range - there will be some 

residual deformation left within the structure when the applied load is withdrawn and in this case, 

DI should produce a positive magnitude between 0 and 1.  

More generally, the overall behaviour of concrete is described in Fig. 8d in terms of energy. 

The concrete (at point A) receives a total energy (Etotal = Enon-rec + Erec) when it is subjected to the 

load. When the load is released (the concrete at point B), a portion of the total energy may be 

recovered (Erec) and the rest is absorbed by the concrete (Enon-rec). 

In simple terms, initially, DI may be defined as the ratio of the recoverable energy (Erec) to the 

total energy (Etotal) as shown in Eq. (15). 

non rec non rec

total non rec rec

E E
DI

E E E

 



 


    (15) 

Where, Erec is the recoverable energy.  

It seems reasonable to assume that concrete suffers no damage when it is loaded up to ' / 2cf . 

 

 

 

 

Fig. 8 Concept of the proposed DI 
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Fig. 9 Parameters for Eq. (14) (Amziane and Dubé 2008) 
 

 

The reasons for this is that concrete’s stress–strain curve (up to ' / 2cf ) is almost linear (Park 

and Paulay 1975). As a result, the residual strain is 0 when unloading. Hence, it suffers no damage.  

From ' / 2cf  up to '

cf , however, the curve loses its linearity and therefore some residual strains 

are left after unloading. These strains are synonymous with micro cracks and therefore represent 

some damage. The higher is the residual strain, the higher would be the damage. The deviation 

from linearity becomes worse as the stress moves higher from ' / 2cf  up to '

cf . It may speed up 

at around '0.75 cf  which is mid-point of the two above. 

For the above reasons, the “threshold value” is proposed for the calculation of the non-

recoverable energy called Enon-rec,0.875f’c which is non-recoverable at ¾  of the second half (from 
' / 2cf  up to '

cf ), as shown in Fig. 9(b). Fig. 9(a) shows the parameter non-recoverable energy at 

collapse (Enon-rec,collapse), while Fig. 9c represents the non-recoverable energy (Enon-rec) and 
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recoverable energy (Erec) at a certain loading. 

It is widely known that the damage of concrete at peak stress is minimal. The damage index 

should increase significantly when the strain goes beyond the strain at maximum stress. Hence, the 

damage index for this ultimate state should be close to 1. It will reach 1 when the stress drops from 
'0.85 cf  to 0. 

Eq. (15) is modified as Eq. (16) to sastify the above conditions. 

( )N i

non rec

non rec rec

E
DI

E E
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  
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,
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E
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
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(a) '

cf = 20 MPa b)                       (b) '

cf = 25 MPa 

 
(c) '

cf = 30 MPa                          (d) '

cf = 35 MPa 

Fig. 10 Damage analysis of concrete 
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(a) at ' / 2cf  

 

   

(b) at f '

cf  

       
(c) at '(1 0.15) cf  

    

(d) at total collapse 

Fig. 11 Damage of concrete at specific stresses 
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',0.875 c

non rec

non rec f

E
i

E





                             (18) 

where, Enon-rec,0.875f’c and Enon-rec,collapse are the non-recoverable energy at '0.875 cf  and at the total 

collapse, respectively. Enon-rec is the non-recoverable energy. Those parameters are shown in Fig. 9. 

 
 
4. Validation of the proposed model 

 

As shown in Fig. 4, the hysteretic stress–strain curve of concrete is complicated. The effect of 

unloading and reloading on the damage of concrete should be considered in case of concrete 

subjected to repeated loading because the energy absorbed during cyclic loading affects the 

damage of concrete. In this paper, only monotonic loading is considered. The total energy at any 

point on the stress-strain curve can be divided into 2 parts: non-recoverable energy and 

recoverable energy.  

As mentioned above, the parabolic equations of the Hognestad (1951) and modified Kent and 

Park (1971) models are the same. The strain at maximum stress in Hognestad (1951) shown in Eq. 

(2) varies in a similar manner to that of Eq. (7). In addition, if the maximum stress '

cf  is taken as 

the strength of confined concrete, those two models seem to have little difference. Furthermore, 

the target of this paper is to evaluate the damage of concrete, hence, the Hognestad (1951) with its 

simplicity will be used in this paper. The stress after the strain of 0.0038 in Hognestad (1951) is 

assumed to drop to 0 with a small slope to avoid difficulty in calculation without affecting the 

results. 

The proposed damage model, together with the models proposed by Yu et al. (2010), Chen et al. 

(2011) and Amziane and Dubé (2008), is applied to assess the damage of different concrete with 

strengths varying from 20 MPa to 35 MPa. The modulus of elasticity of concrete is taken as 
'5000c cE f
 

MPa, which is also used as E0.4 in Amziane and Dubé (2008) model because the 

concrete stress-strain curve is almost linear as stated by Park and Paulay (1975). The ultimate 

concrete strain of 0.0038 given in Hognestad (1951) is used in this paper. The line connecting the 

unloading point (εun, fun) to the plastic strain at zero stress (εpl,0) in Mander et al. (1988) model is 

employed to calculate parameters for Yu et al. (2010), Chen et al. (2011) and Amziane and Dubé 

(2008) models. Figs. 10(a)-10(d) show the damage analyses of concrete with the strength of 20, 25, 

30, 35 MPa, respectively. Overall, the damage indices produced by Chen et al. (2011) and 

Amziane and Dubé (2008) seem to be large and Yu et al. (2010) model seems too conservative. 

Fig. 11(a) shows the damage of concrete at ' / 2cf , at which the concrete suffers no damage. 

The proposed and Yu et al. (2010) models show a good demonstration with damage indices of zero 

while Chen et al. (2011) and Amziane and Dubé (2008) models demonstrate the damage indices of 

0.06 and 0.08, respectively. Fig. 11(b) represents the damage of concrete at its maximum stress. Yu 

et al (2010) model generates damage index of zero and the proposed model gives a damage index 

varying from 0.01 to 0.06 while the other two models produce very large damage indices (0.33 for 

Chen et al. (2011) model and around 0.45 for the Amziane and Dubé (2008) model). Fig. 11(c) 

represents the damage indices at the stress dropped by 15% which is also the damage index that Yu 

et al. (2010) model gives. This may be conservative. Chen et al. (2011) and Amziane and Dubé 

(2008) model produce the damage varying from 0.55 to 0.75 while the proposed model gives the 

198



 

 

 

 

 

 

A model for damage analysis of concrete 

 

index from 0.81 to 0.86. Fig. 11(d) shows the damage index at total collapse. The proposed and Yu 

et al (2010) damage models generate the damage indices of 1 while the two others produce indices 

of around 0.8. 

 

 

5. Conclusions 
 

Available damage models for concrete, in which the parameters stress, stiffness and modulus 

are used, have been reviewed. A new single parameter model is then proposed based on energy. 

The new model alongside other available models are then used to evaluate the level of damage in 

tested concrete specimens. The proposed model show little to no damage up to ' / 2cf  as expected 

simply because the behaviour to that point is almost linear and elastic. The damage index within 

the range ' / 2cf  up to '

cf  increases to 6% as gradually the concrete stress-strain curve deviates 

from linearity. This is unlike some other models that present either no damage or a very large 

damage for the same range. The correct capturing of the behaviour acknowledges the proposed 

model as a potentially useful tool in the damage assessment of concrete. 
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