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Abstract.  Prior concrete strength distributions can be updated by using direct information from test results 
as well as by taking into account indirect information due to conformity control. Due to the filtering effect of 
conformity control, the distribution of the material property in the accepted inspected lots will have lower 
fraction defectives in comparison to the distribution of the entire production (before or without inspection). 
A methodology is presented to quantify this influence in a Bayesian framework based on prior knowledge 
with respect to the hyperparameters of concrete strength distributions. An algorithm is presented in order to 
update prior distributions through numerical integration, taking into account the operating characteristic of 
the applied conformity criteria, calculated based on Monte Carlo simulations. Different examples are given 
to derive suitable hyperparameters for incoming strength distributions of concrete offered for conformity 
assessment, using updated available prior information, maximum-likelihood estimators or a bootstrap 
procedure. Furthermore, the updating procedure based on direct as well as indirect information obtained by 
conformity assessment is illustrated and used to quantify the filtering effect of conformity criteria on 
concrete strength distributions in case of a specific set of conformity criteria. 
 

Keywords:  Bayesian updating; concrete strength; conformity control; EN 206-1; operating characteristic; 
prior information 
 
 
1. Introduction 
 

Bayesian statistics can be used in order to update prior distributions of material properties 
taking into account additional information. Consequently, these updated distributions can be taken 
into account when performing structural analysis, especially in case of structural reliability 
calculations (see e.g. Strauss et al. 2008, Moser et al. 2011, Orton et al. 2012). As indicated in 
(Der Kiureghian 2008), the effect of parameter uncertainty on structural reliability calculations can 
be considerable. In case of conformity control, a first analysis with respect to the influence on 
structural reliability calculations was performed by the authors in (Caspeele et al. 2010). From 
these investigations it was found that conformity control may positively influence particularly 
reliability of lightly reinforced concrete members exposed to compression or shear. It appears that 
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it has a minor effect on members with a greater reinforcement ratio or members exposed to 
bending. Furthermore it enables to ensure a more homogeneous safety level, which is less 
dependent on parameter uncertainties. Hence, prior distributions should be properly updated in 
case additional information is available. Not only direct test results can be used to update these 
distributions, but also indirect information from e.g. conformity control can be considered when 
updating the prior knowledge into a posterior belief. Suitable prior information with respect to 
mechanical properties of currently applied concrete, reinforcing steel and prestressing steel can be 
found in e.g (Caspeele and Taerwe 2011b, Jacinto et al. 2012, Wisniewsky et al. 2012). 

The most commonly specified property of concrete is compressive strength and most control 
plans have been derived for this property. Most often, conformity control is used in order to 
investigate whether a certain inspected lot complies with a predefined (or specified) characteristic 
Xk of a material property (i.e., fck in case of concrete compressive strength), most often using a 
decision rule d(z) of the following type (Rackwitz 1979) 
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with z a test statistic, e.g. the sample mean nx  of n test results, and ‘a’ an acceptance boundary 
limit, e.g. in case of concrete strength nck sfa   with fck the specific characteristic concrete 
compressive strength (corresponding to a certain concrete strength class), a parameter (in general 
depending on the chosen fractile and confidence level or other equivalent design parameter) and sn 
the sample standard deviation based on n test results. 

Due to the use of such conformity control to verify the specified properties, certain inspected 
lots are accepted and certain lots are rejected. Because of this so-called filtering effect, the original 
(incoming) distributions of the entire population of the material property can be updated into an 
outgoing distribution of the accepted inspected lots. In case of concrete strength for example, the 
filtering effect from conformity control leads to an increase of the mean and a decrease of the 
standard deviation of the outgoing predictive strength distribution in comparison to the incoming 
one, presented for conformity assessment (Rackwitz 1979, 1983, Taerwe 1985, Caspeele 2010). 
Although these favourable consequences do not form the main objective when designing 
conformity criteria, they reveal a significant influence on the posterior predictive distribution of 
material properties and thus should be taken into consideration when updating these distributions 
and using them in further structural calculations e.g. in structural reliability analyses. 

Rackwitz (1979, 1983) describes an analytical method in order to evaluate the filter effect of 
some common (basic) conformity criteria, based on Bayesian statistics. However, in practice also 
more complex criteria are used, for example in the European Standard EN 206-1 (CEN 2000) with 
respect to concrete properties. In order to evaluate and compare the filtering effect of such more 
complex conformity criteria, a numerical algorithm is developed, based on Bayesian statistics and 
numerical integration, taking into account prior information. This algorithm uses the operating 
characteristic of the considered conformity criteria, calculated using numerical Monte Carlo 
simulations, which also enables to take autocorrelation between consecutive test results into 
account. The methodology is illustrated in case of a specific set of conformity criteria (i.e., those 
described in (CEN 2000)). 
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2. Conformity control of material properties and its filtering effect 
 
2.1 Conformity criteria and their operating characteristics 
 
For structural design and material production purposes a material property is characterized by a 

specified value Xk, which is commonly the 5%-fractile of the theoretical distribution of the 
material property under consideration. In case of concrete for example, the concrete strength is 
commonly represented by the 5% fractile of the theoretical concrete strength distribution, i.e., the 
specified characteristic concrete compressive strength fck (Fig. 1). In practice, the fraction below 
the specified value will be smaller or higher than 5%. Designating by the fraction of the population 
below fck in the offered strength distribution – also called the fraction defectives – it follows that 

   ckfXP                                   (2) 

which is illustrated in Fig. 1. 
For an assumed distribution function of the material property under consideration and for a 

given conformity criterion, one can calculate the probability that an inspected lot, characterized by 
a fraction defectives, is accepted. This probability is called the probability of acceptance, denoted 
as Pa. The function Pa(θ) is called the operating characteristic of the criterion (commonly 
abbreviated as OC-curve) and describes the discriminating capacity of the conformity criteria. 
Analytical formulas are available in order to calculate these OC-curves in case of some simple 
conformity criteria (Rackwitz 1979, 1983, Taerwe 1985, 1988, Taerwe and Caspeele 2006, 2011a, 
Caspeele 2010). However, for more complex conformity criteria or in case autocorrelation 
between consecutive test results is deemed important to take into account, numerical Monte Carlo 
simulations can be used to calculate the OC-curves, which inherently also takes into account any 
dependency that exists between a set of conformity criteria. More information about the numerical 
calculation of OC-lines, with or without taking into account autocorrelation, is available in 
(Taerwe 1985, 1987a, 1988, Taerwe and Caspeele 2006, 2011a, Caspeele 2010). A detailed 
algorithm for generating operating characteristics using Monte Carlo simulations is available in 
(Caspeele 2010). 

As mentioned, concrete strength records from concrete plants most often reveal the presence of 
a significant autocorrelation between consecutive results (Soroka 1972, Rackwitz 1977, Degerman 
1981, Taerwe 1985, 1987a, 1987b, 2006). A possible explanation for the existence of the 
correlation structure may be found in the nature of the concrete production process. A given 
strength value is to a certain extent dependent on the previous values due to the fact that the basic 
factors which contribute to the variation of concrete strength, namely cement strength, moisture 

 
 

Fig. 1 Theoretical and offered strength distributions in case of concrete compressive strength 
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content and grading of the sand, etc. maintain a certain value during a more or less long time 
interval (Taerwe 1985, 1987b, 2006). In case of correlated observations the variance of the sample 
mean is larger than in the case of independent observations. As a result, the slope of the OC-curve 
– and the corresponding discriminating capacity of the conformity criteria – decreases (Taerwe 
1987a). Hence, there is a significant influence of the correlation structure on an OC-curve. 
Autocorrelation in concrete strength records can be modelled using an autoregressive process of 
order 2 – an AR(2) model or Yule series – with parameters as derived in (Taerwe 1985, 1987b, 
2006) based on the analysis of extensive concrete strength records of individual concrete mixes. 
This autoregressive process can easily be implemented into the computational method, namely in 
the Monte Carlo simulations for the generation of random observations from the strength 
distributions. More specifically, this is done by implementing Eq. (2) for the calculation of 
consecutive random realizations of a standard normal distribution. 

iiii uuu   21  2.0 4.0                              (3) 

with iu  the ith autocorrelated standard normally distributed number 

i  a normally distributed random number with mean 0 and variance 2
 . 

 
2.2 Filtering effect of conformity control 
 
The filter effect of conformity criteria results from the fact that – due to the conformity/non- 

conformity declaration – inspected lots are accepted or rejected. Because certain inspected lots 
with deficient quality are rejected from the accepted batches, conformity criteria inherently have a 
filtering effect on the distribution of the material property under consideration. The average quality 
of outgoing lots (after acceptance by conformity control) will be higher than the average quality of 
incoming lots (presented for conformity assessment), i.e., the fraction defectives decreases. 

Considering the Bayesian updating principle, the posterior (filtered) joint density function of 
the parameters of the strength distribution after conformity has been executed is given by 
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with  ,aP  the acceptance probability of a population with mean and standard deviation 
associated to the conformity criterion under consideration,  ,,Mf  the prior joint density 
function of the mean and standard deviation of the population and  ,,Mf  the posterior joint 
density function of the mean and standard deviation of the population. Eq. (3) can be evaluated 
using numerical integration. 

For many practical situations a suitable conjugate prior for the parameters of the distribution of 
the material property is given by a normal-gamma distribution or a lognormal-gamma distribution 
(Rackwitz 1983, Vrouwenvelder 1997). Parameters that describe these latter joint density functions, 
are called hyperparameters (i.e., related to parameters describing the distribution of the parameters 
associated to a density function). 

In order to reduce the computation time, it is suggested to calculate the operating characteristic 
(based on Monte Carlo simulations) separately for some discrete (well-chosen) fraction defectives 
θi and use linear interpolation according to 
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A suitable choice of discrete values for the fraction defectives θi are given by the following set 
of 18 values: 0.1%, 0.2%, 0.3%, 0.5%, 0.7%, 1%, 2%, 3%, 5%, 7%, 10%, 15%, 20%, 25%, 30%, 
35%, 40% and 50%, which adequately describe the OC-curve in a θ-Pa diagram with transformed 
axes according to a normal distribution. 

The posterior predictive distribution of the material property (corresponding to the outgoing 
inspected lots) can be calculated as 

        ddfxfxf MXo  , , ,                   (7) 

and the mean and variance of this posterior predictive distribution are calculated in the traditional 
way 

  dxxfx oo                               (8) 

     dxxfx ooo  22                          (9) 

A brief summary of the numerical integration algorithm for quantifying the filter effect of 
conformity control based on prior hyperparameters for the distribution of the material property, is 
given in Fig. 2, considering that the material property X follows a normal or lognormal 
distribution. 

The boundaries for μX (i.e., μlower and μupper) and σX (i.e., σlower and σupper) should be taken 
sufficiently wide so that the significant range of the joint density function for the mean and 
standard deviation is covered (and the associated error is negligible). Similarly, the boundaries for 
x (i.e., a and b) should be sufficiently wide to cover the significant range of the predictive density 
function. For practical applications (and because the numerical calculation is not at all time 
consuming) the boundaries can be taken rather wide (e.g. between 0 and 100 MPa in case of x) in 
order to avoid adjustments between different calculation sets. 
 
 
3. Investigated conformity criteria for concrete strength 
 

In order to illustrate the numerical Bayesian updating methodology with respect to the 
distribution of material properties, the compound conformity criteria given in Eq. (9) for the 
conformity evaluation of concrete strength are analyzed for the application examples in the next 
sections. 
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with 15x  the sample mean of 15 consecutive test results, fck the specified characteristic concrete 
compressive strength (most often specified considering a certain concrete strength class) and xmin 
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Fig. 2 Flowchart and numerical integration algorithm for Bayesian updating of the predictive 
concrete strength distribution 
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the minimum value of the same group of 15 test results. 
Further, the standard deviation σ is estimated based on an initial assessment period consisting 

of 35 consecutive strength values, prior to the assessment period on which conformity has to be 
declared by Eq. (9). This σ value may be introduced in Eq. (9) on condition that the standard 
deviation of the latest 15 results (s15) does not deviate significantly from σ. This is considered to be 
the case if Eq. (10) holds, which is the 95% acceptance interval of the test hypothesis that the real 
standard deviation is given by σ, based on a sample standard deviation from 15 test results, i.e., 







37.163.0
1414 15

2
975.0;14

15

2
025.0;14  ss            (11) 

with σ the estimated standard deviation from the initial assessment period, s15 the sample standard 
deviation of the latest 15 test results and 2

;  the α fractile of the chi-square distribution with ν 
degrees of freedom. 

If Eq. (10) is not satisfied, a new estimate of σ has to be calculated from the last available 35 
test results. 

The set of conformity criteria given by Eqs. (9) and (10) forms the basis of the conformity 
assessment for concrete compressive strength in the European Standard EN 206-1 (CEN 2000) in 
case continuous production is achieved. 

In case a numerical Monte Carlo simulation approach (including the autocorrelation model as 
given in Eq. (2)) is applied to calculate the OC-curve corresponding to the compound conformity 
criterion considered in Eqs. (9) and (10), the results are depicted in Fig. 3 for different values of σ. 
The influence of the assumed value of the standard deviation σ of the strength population is found 
to be rather limited. A common choice of σ = 5MPa is suggested to be used for the analysis which 
is performed in the following sections. A more profound analysis of the conformity criteria under 
consideration is available in (Taerwe and Caspeele 2006, Caspeele 2010). 
 
 

 
Fig. 3 Operating characteristics of the conformity criteria under investigation 
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Fig. 4 Contour plot of the prior (left) and posterior (right) joint density function of the parameters for 
the concrete strength distribution corresponding to a concrete class C25 after conformity 
control based on the conformity criteria under consideration 

 
 
4. Influence of conformity control on available prior distributions in literature 
 

Suitable prior information with respect to concrete strength distributions is available in 
(Rackwitz 1983) in the format of hyperparameters for lognormal-gamma distributions, describing 
the mean M and standard deviation Σ of lognormal concrete strength distributions (considered as 
random variables) for different concrete grades and types. Prior estimates according to the 
database of more recent test results from concrete plants discussed in (Caspeele and Taerwe 2011b) 
showed to be comparable to the priors suggested in (Rackwitz 1983). As such, this prior 
information is found suitable for Bayesian updating of concrete strength distribution (Caspeele and 
Taerwe 2012). The filtering influence of the conformity criteria on this prior information is 
investigated by considering the updating algorithm as described in Section 2.2. The calculated 
operating characteristic corresponding to the conformity criteria described in Section 3 and 
illustrated in Fig. 2 is used to update the prior lognormal-gamma distributions for the parameters 
of concrete strength distributions in case of ready-mixed concrete. 

As an example of the updating procedure with respect to the parameters of the concrete 
strength distribution, the prior and posterior joint density function  ,,Mf  and   ,,Mf  
are illustrated in Fig. 4 in case of a concrete class C25 (ready-mixed concrete) with suggested prior 
hyperparameters 65.3'ln Xx , 2n , 12.0ln  Xs  and 4  according to (Rackwitz 1983). 

In comparison to the associated prior distribution, the posterior distribution is shifted slightly 
towards a higher mean and a smaller standard deviation, as could be expected based on the 
filtering effect of conformity criteria, i.e. both effects positively contribute towards a lower 
fraction defectives. 

In order to quantify the filter effect of the conformity criteria on the different suggested prior 
distributions numerically, the mean and standard deviations of the prior and posterior predictive 
distributions are calculated from the joint density functions by using numerical integration. 
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Although the prior information in (Rackwitz 1983) is given in terms of lognormal-gamma 
distributions, the strength distribution of concrete can still be considered as normal or lognormal. 
For both assumptions, Table 1 provides the mean and standard deviation of the prior and posterior 
predictive distributions associated to the prior hyperparameters for different concrete grades. The 
application of this methodology is however not restricted to these concrete grades. It is possible to 
apply the procedure to a wide range of concrete classes (e.g. as those mentioned in EN 206-1), 
conditional on the availability of suitable prior information, e.g. based on maximum-likelihood 
estimations (Rackwitz 1983). Further also the fraction defectives associated to the predictive 
distributions are provided, based on the calculated cumulative predictive strength distributions 
before and after conformity control. 

According to these results, the ratio of the posterior (filtered) mean to the prior mean is 
approximately 1.03 and the ratio of the posterior (filtered) standard deviation to the prior standard 

 
 

Table 1 Mean, standard deviation and fraction defectives of prior and posterior predictive concrete strength 
distributions 

 Normal distribution Lognormal distribution 

 C15 C25 C35 C45 C15 C25 C35 C45 

μi [MPa] 28.9 37.5 46.3 52.8 28.9 37.5 46.3 52.8 

σi [MPa] 6.75 7.40 6.71 5.74 6.80 7.44 6.73 5.74 

θi [%] 3.2 5.3 5.0 8.3 2.9 5.0 4.7 8.1 

μo [MPa] 30.0 39.0 47.6 54.3 30.0 39.2 47.8 54.3 

σo [MPa] 5.90 6.19 5.66 4.64 5.90 6.13 5.61 4.64 

θo [%] 0.8 1.3 1.3 2.3 0.4 0.8 1.0 1.9 

μo/μi [-] 1.035 1.040 1.027 1.027 1.035 1.046 1.031 1.027 

σo/σi [-] 0.874 0.837 0.844 0.808 0.867 0.825 0.834 0.808 

X0.05,o/X0.05,i [-] 1.141 1.138 1.086 1.077 1.146 1.153 1.095 1.077 
 

(a) (b) 

Fig. 5 Prior and posterior predictive concrete strength distributions for a C25 concrete class in 
case of a normal distribution (a) and lognormal distribution (b) 
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Fig. 6 Cumulative prior and posterior predictive distributions in case of a lognormal concrete 
strength distribution 

 
 
deviation is approximately 0.84, again illustrating the increase of mean strength and the decrease 
in standard deviation of the strength distribution of the accepted concrete lots. In these particular 
cases, the influence of conformity control on the standard deviation of the predictive distribution is 
significantly higher compared to the effect on the mean. As a result of the filter effect on the mean 
and standard deviation, the fraction defectives in the predictive distribution significantly decreases 
when taking into account conformity control. In general, the fraction defectives in the predictive 
concrete strength distributions is found to decrease from about 5% to about 1%. The difference 
between the characteristics associated to the normal and lognormal strength distributions are rather 
small, which can be explained by the nature of the predictive distribution. 

In case of the aforementioned C25 concrete class, Figs. 5(a) and (b) illustrate the different prior 
and posterior predictive distributions and their associated fraction defectives, both for a normal 
and lognormal assumed concrete strength distribution, again illustrating the rather small difference 
of the distributional assumption on the posterior predictive distributions. Therefore, in the next 
sections only a lognormal distribution for concrete strength will be considered. 

The influence of the investigated conformity criteria on the predictive cumulative strength 
distributions corresponding to the different concrete classes for ready-mixed concrete as 
mentioned in (Rackwitz 1983) is illustrated in Fig. 6 in case of lognormal distributions, with 
ordinates according to 
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with  xFc  the cumulative predictive concrete strength distribution. 
 
 
5. The influence of conformity control on updated prior distributions in case a data- 
base of test results is available 
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5.1 Investigated concrete strength record 
 
Data from a ready mixed concrete plant (described in (Caspeele and Taerwe 2011b)) is used to 

illustrate the numerical updating methodology based on more specific prior information. Concrete 
compressive strength results (measured on standard cubes with side 150 mm) of all concrete mixes 
with a specified C25/30 concrete class are obtained from a concrete plant between January till 
August 2006, resulting in a dataset of 240 test results. This strength record is shown in Fig. 7. 

The first 225 test results of this strength record will be considered as prior information for the 
concrete strength distribution, while the last 15 test result will be used to update prior information 
(in order to simulate the influence of new available information), considering also the filtering 
effect of the conformity criteria described by Eqs. (9) and (10). 

In order to derive suitable prior hyperparameters, 3 different approaches will be used, namely: 
(1) by deriving new prior hyperparameters based on maximum-likelihood estimators (MLE), 
(2) by updating available prior hyperparameters in (Rackwitz 1983) or 
(3) by deriving new prior hyperparameters using a bootstrap procedure 

 
5.2 Derivation of prior information based on maximum-likelihood estimators 
 
The use of maximum-likelihood estimators (MLE) as explained in (Rackwitz 1981, 1983) 

enables to derive a prior for a C25/30 concrete class, which is more closely related to the 
concrete plant under consideration. The first 225 test results of the dataset given in Section 5.1 
are used to derive more appropriate prior hyperparameters. Assuming that concrete strength is 
modelled as a lognormally distributed variable, hyperparameters for a prior lognormal-gamma 
distribution are derived based on 15 samples means iXx ,ln  and sample standard deviations 

iXs ,ln , each based on 15 lognormally transformed test results and calculated according to 
(Rackwitz 1979). Using the provided dataset, this leads to the following hyperparameters: 
 
 

 
Fig. 7 Concrete strength record of a C25/30 concrete class in a ready-mixed concrete plant 

(January-August 2006) 
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773.3'ln Xx , 429.1n , 059.0ln  Xs  and 430.6 . Compared to the suggested hyperpara- 
meters by Rackwitz (1983) (see Section 4), the parameters Xx ln' , n  and    are very similar, 
however in case of the analyzed dataset from this specific concrete plant the standard deviation is 
found to be considerably smaller. 

Also the filter effect of the considered conformity criteria on this prior information is quantified 
(Step 0) using the numerical algorithm as described in Section 2.2 in case of a lognormal concrete 
strength distribution. Further, as an example the last 15 test results of the given dataset are used to 
subsequently update the prior information using 3 times 5 successive test results (Step 1, 2 and 3) 
(where updating based on 5 successive results yields an acceptable updating frequency for 
common concrete plants) and by applying the well-known updating rules for hyperparameters as 
given in Eqs. (12) to (15) (Raiffa and Schlaifer 1969, Box and Tiao 1973, Rackwitz 1983, 
Diamantidis et al. 2001, Ang and Tang 2007). 
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where x  is the mean of an equivalent sample of size n and s is the standard deviation of an 
equivalent sample of size 1 . Prior hyperparameters are indicated with ʹ and posterior 
hyperparameters with ʺ. 

The filter effect on each updated distribution is also quantified. The results of these calculations 
are provided in Table 2. 

From these results it can be seen that the filter effect of conformity control is rather limited. 
This is due to the rather low fraction defectives associated to the prior information (i.e., 0.5%), 
which reduces the filter effect considerably because the probability of rejection is low. Of course, 
this is due to the fact that concrete plants try to limit the probability of rejection and thus produce 
concrete considering a rather high safety margin with respect to the specified characteristic 
strength in order to avoid non-conformity declarations. 

 
5.3 Updating available prior hyperparameters 
 
The same prior information which was used in section 4, i.e., based on the hyperparameters 

suggested in (Rackwitz 1983) for a C25 concrete class in case of ready-mixed concrete, is used 
again in this section and updated by the additional 15 last test results of the investigated strength 
record, using the updating rules described by Eqs. (12)-(15). 

First, the filter effect of the considered conformity criteria on this prior information is 
quantified (Step 0) equivalent to the method explained in section 4 in case of a lognormal concrete 
strength distribution. Further, the last 15 test results of the given dataset are used to subsequently 
update the prior information using 3 times 5 successive test results (Steps 1, 2 and 3). Again, the 
filter effect on each updated prior distribution is quantified. The results of these calculations are 
presented in Table 4. 
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Table 2 Results from the case study in case of specific prior information based on maximum-likelihood 
estimators 

 
Case study – MLE prior 

Step 0 Step 1 Step 2 Step 3 

Test results 

Xxln  - 3.695 3.644 3.624 

n - 5 5 5 

Xsln  - 0.044 0.023 0.029 

v - 4 4 4 

(Updated) 
Prior parameters 

Xxln  3.773* 3.712 3.682 3.665 

n 1.429* 6.429 11.429 16.429 

Xsln  0.059* 0.049 0.041 0.037 

v 6.430* 11.43 16.43 21.43 

Prior predictive  
characteristics 

μi [MPa] 43.256 40.908 39.716 39.051 
σi [MPa] 4.113 2.379 1.815 1.565 
θi [%] 4.9 × 10-1 1.0 × 10-2 6.3 × 10-4 7.9 × 10-4 

Posterior predictive  
characteristics 

μo [MPa] 43.380 40.908 39.716 39.051 
σo [MPa] 3.912 2.377 1.815 1.565 
θo [%] 1.3 × 10-1 8.7 × 10-3 6.2 × 10-4 7.9 × 10-4 

Filter effect 
μo/μi [-] 1.003 1.000 1.000 1.000 
σo/σi [-] 0.951 0.999 1.000 1.000 

X0.05,o/X0.05,i [-] 1.012 1.000 1.000 1.000 
 
Table 4 Results from the case study in case of prior information based on literature data 

 
Case study – Rackwitz prior 

Step 0 Step 1 Step 2 Step 3 

Test results 

Xxln  - 3.695 3.644 3.624 

n - 5 5 5 

Xsln  - 0.044 0.023 0.029 

v - 4 4 4 

(Updated) 
Prior parameters 

Xxln  3.65* 3.682 3.666 3.654 

n 2* 7 12 17 

Xsln  0.12* 0.073 0.054 0.046 

v 4* 9 14 19 

Prior predictive 
characteristics 

μi [MPa] 37.719 39.667 39.079 38.621 
σi [MPa] 7.078 3.529 2.379 1.936 
θi [%] 12.0 0.50 3.1 × 10-2 3.7 × 10-3 

Posterior predictive  
characteristics 

μo [MPa] 39.707 39.708 39.079 38.621 
σo [MPa] 5.690 3.461 2.377 1.936 
θo [%] 3.0 0.35 2.9 × 10-2 3.7 × 10-3 

Filter effect 
μo/μi [-] 1.053 1.001 1.000 1.000 
σo/σi [-] 0.804 0.981 0.999 1.000 

X0.05,o/X0.05,i [-] 1.164 1.005 1.000 1.000 
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As can be seen from Table 4, the filter effect on the prior information is found to be more 
significant than for the comparable results in the previous section, which is due to the higher 
fraction defectives of the prior predictive concrete strength distribution. The filter effect reduces 
however strongly when the additional test results are taken into account. 

 
5.4 Derivation of prior information based on a bootstrap technique 
 
The bootstrap method was first introduced in 1979 by Efron (1979) and is currently commonly 

applied in non-parametric statistics, as it avoids distributional assumptions. Further, the method is 
of particular interest for the analysis of limited data. In the bootstrap procedure, the characteristics 
of a certain estimator are obtained by sampling from an approximate distribution which is 
generally the empirical distribution of the observed data (Most 2009). The method assumes 
independent and identically distributed observations and constructs a number of re-samples by 
random sampling with replacement from the observed dataset. Based on this re-sampling sets, the 
properties of the estimated parameters (including their distribution function, confidence interval, 
etc.) can be obtained. More information regarding this non-parametric bootstrap method is 
available in (Higgins 2004, Moore and McCabe 2006, Most 2009). 

In order to derive the parameters x , n , s  and v  of the prior distribution ),(, Mf  in 
case of a lognormal-gamma distribution, the following approach can be used: 

1. Generate N re-samples of the available set of n test results xi with replacement. N should be 
taken sufficiently large so that the estimated parameters are independent of N. 
2. For each re-sampled set of n test results, calculate the sample mean iXx . ln  and standard 
deviation iXs . ln . 
3. Based on these N estimated values of the mean and standard deviation, apply the MLE 
method as described in (Rackwitz 1981, Rackwitz 1981) in order to obtain the parameters 

Xx  ln , n , Xs  ln  and v . 
The test results used in Step 1 of the previous examples for updating the priors in literature or 

the derived more specific prior information of a C25/30 concrete class, can now be used directly to 
derive prior parameters for the concrete strength distribution of the concrete mixture under 
consideration. 

Based on the sample of 5 test results (in Step 1), 1000 bootstrap re-samples are generated, each 
consisting of 5 test results taken with replacement from the 5 original test results. Based on these 
bootstrap samples, 1000 bootstrap values for the mean Xx  ln  and standard deviation Xs  ln  are 
calculated. Based on these bootstrap samples iXx . ln  and iXs . ln , the parameters of a prior 
lognormal-gamma distribution are derived by using maximum-likelihood estimators. For the 
example, the following results are obtained: 692.3 ln  Xx , 136.12n , 038.0 ln  Xs  and 

774.17v . Due to the use of the bootstrap procedure, this prior information is more informative 
(i.e., larger n  and v ) than the previously mentioned priors (corresponding to a higher n  and 
v  value). The ability of this prior information to represent the strength population properly is 
depending strongly on the number of test results used for the bootstrapping procedure. In case only 
a few test results are used for this purpose (as was the case for this example), the prior information 
can be biased. This could be partly overcome by reducing the regeneration sample size N, however 
no specific guidance can be given for such a procedure and as such this is not advised. By taking N 
sufficiently large, the estimation results become independent of N and the hyperparameters n and 
 

98



 
 
 
 
 
 

Numerical Bayesian updating of prior distributions for concrete strength properties 

Table 6 Results from the case study in case of specific prior information based on a bootstrap procedure 

 
Case study – Bootstrap prior 

Step 1 Step 2 Step 2 

Test results 

Xxln  3.695 3.644 3.624 

n 5 5 5 

Xsln  0.044 0.023 0.029 

v 4 4 4 

(Updated)  
prior  

parameters 

Xxln  3.692* 3.678 3.666 

n 12.136* 17.136 22.136 

Xsln  0.038* 0.034 0.032 

v 17.774* 22.774 27.774 

Prior  
predictive  

characteristics 

μi [MPa] 40.117 39.563 39.092 

σi [MPa] 1.686 1.450 1.329 

θi [%] 1.0 × 10-4 6.8x10-6 1.1 × 10-6 

Posterior  
predictive  

characteristics 

μo [MPa] 40.117 39.563 39.092 

σo [MPa] 1.686 1.450 1.329 

θo [%] 1.0 × 10-4 6.8x10-6 1.1 × 10-6 

Filter effect 

μo/μi [-] 1.000 1.000 1.000 

σo/σi [-] 1.000 1.000 1.000 

X0.05,o/X0.05,i [-] 1.000 1.000 1.000 

 
 
 correspond to the best fitting of a joint density function rather than a sample number based belief 
in the mean and standard deviation. As such, the bootstrap procedure also enables to make 
inferences, even with little information. 

Again the filter effect of the considered conformity criteria on this prior bootstrap-based 
information (Step 1) is quantified using the same updating algorithm in case of a lognormal 
concrete strength distribution. The prior information is then consecutively updated using 2 sets of 
5 successive test results (Steps 2 and 3) and the filter effect on each updated prior distribution is 
quantified. The numerical results of these calculations are given in Table 6. 

As can be seen from Table 6, also in case of a bootstrap-based prior the filter effect remains 
negligibly small, which is again due to the low fraction defectives of the original strength 
population. Due to the fact that the prior information already contains much more specific 
information regarding the strength population of which the additional test results are taken, the 
influence of the filter effect decreases faster when additional test results become available than for 
the similar results of Table 2 in case of priors based on maximum-lihelihood estimators. 
 
 
6. Conclusions 

 
•  In general, quality control has a favourable effect on material properties due to the fact that 
the existence of quality requirements (such as conformity criteria) compels producers to deliver 
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high quality products in order to avoid rejection by quality assessment. This effect has an 
influence on the probabilistic modelling of material properties of accepted inspected lots and 
also influences structural reliability analyses. 
•  As conformity criteria are used to reject or accept concrete lots, they pose a filtering effect 
with respect to the predictive distribution of the material property under consideration, which 
can be related to the probability of acceptance associated to the applied conformity control 
scheme. As a result, the quality (in terms of fraction defectives) of accepted inspected lots will 
be higher than the quality of the incoming population which is submitted for conformity control 
or compared to the situation where no conformity assessment takes place. In case of a 
one-sided conformity criterion for concrete strength for example, the mean of the posterior 
predictive strength distribution of the material property will increase, while the standard 
deviation will decrease compared to the prior predictive strength distribution 
•  In order to enable Bayesian updating of the predictive distributions of material properties, 
prior hyperparameters for the distribution of the material property have to be derived. Available 
prior information in literature can be easily updated due to the fact that natural conjugate prior 
distributions are suggested. Further, more specific prior distributions can be derived using 
maximum-likelihood estimators or a bootstrap technique. 
•  A Bayesian updating methodology was proposed in order to update prior distributions based 
on indirect information by conformity and/or production control, using numerical integration 
and taking into account OC-curves calculated by numerical Monte Carlo simulations, enabling 
to consider complex conformity criteria as well as to take into account autocorrelation between 
consecutive test results. 
•  The numerical Bayesian updating methodology was used to investigate the filter effect of a 
specific compound conformity criterion on available prior concrete strength distributions in 
(Rackwitz 1983) for different concrete grades. This investigation yields the following 
conclusions: 

- The ratio of the posterior predictive mean to the prior predictive mean of the strength 
distribution is approximately 1.03 for all concrete grades, the ratio of the posterior 
predictive standard deviation to the prior predictive standard deviation is approximately 0.84 
and the ratio of the posterior predictive 5% fractile to the prior predictive 5% fractile is 
approximately 1.10. 
- Conformity control significantly decreases the fraction defectives in the predictive strength 
distributions, which in general decreases from about 5% to about 1%. 
- The differences between the characteristics of the predictive strength distribution 
associated to a normal or lognormal concrete strength distribution are rather small, yielding 
a negligible influence of the distributional assumption. 

•  A case study based on data from a concrete plant was provided in order to illustrate the 
derivation of more specific prior hyperparameters. The data was used to update available prior 
information and to derive more specific prior information based on maximum-likelihood 
estimators and a bootstrap procedure. Further, these prior distributions were updated based on 
additional strength results and the influence of the investigated conformity criteria on the 
predictive strength distributions was quantified. Based on these results, it is found that the 
maximum-likelihood estimations (MLE) are preferable compared to the use of literature-based 
prior information, as these MLE provide more case-specific information and as such the 
updated distribution converges faster. The use of a bootstrapping procedure allows even faster 
convergence due to the use of the latest information (and not an average over a longer period), 
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although one should be careful in applying this procedure as the prior is more informative 
compared to MLE. The results of this analysis as well as these conclusions would be even more 
pronounced in case the concrete strength record which is subjected to compliance control has 
lower fraction defectives. 
•  Although the methodology is described for concrete compressive strength, the same 
methodology can be used for updating the distributions of other material properties, not 
necessarily related to concrete. 
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