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Abstract.  The microarchitecture of trabecular bone plays a significant role in mechanical strength 
due to its load-bearing capability. However, the complexity of trabecular microarchitecture hinders the 
evaluation of its morphological characteristics. We therefore propose a new classification method based 
on static multiscale theory and dynamic finite element method (FEM) analysis to visualize a three-
dimensional (3D) trabecular network for investigating the influence of trabecular microarchitecture on 
load-bearing capability. This method is applied to human vertebral trabecular bone images obtained by 
micro-computed tomography (micro-CT) through which primary trabecular bone is successfully 
visualized and extracted from a highly complicated microarchitecture. The morphological features were 
then analyzed by viewing the percolation of load pathways in the primary trabecular bone by using the 
stress wave propagation method analyzed under impact loading. We demonstrate that the present 
method is effective for describing the morphology of trabecular bone and has the potential for 
morphometric measurement applications. 
 

Keywords:  vertebra; trabecular network; morphology; image-based modeling; homogenization 

method; dynamic FEM 

 
 
1. Introduction 
 

It is widely accepted that the mechanical properties of trabecular bone should be characterized 

by both bone density and bone quality. Although are many descriptions of bone quality have been 

reported (Nakano et al. 2002, Basaruddin et al. 2013), the present study focuses on the 

morphology of the trabecular network architecture of human lumbar vertebra. It has been reported 

that the connectivity (Kinney and Ladd 1998) and morphology characteristics (Shi et al. 2009) 

contribute to the effectiveness of load-bearing distribution. The primary trabecular bone in the 

fourth lumbar vertebra (L4) is aligned to support mainly self-weight in the vertical direction. Due 

to its complexity, however, the architecture of this bone has not been clarified thus far.  

Recent advancement of three-dimensional (3D) imaging techniques allow for realistic 

reconstruction of trabecular microarchitecture based on an actual bone specimen. However, 
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challenges remain in obtaining the morphological and topological characterizations from 

trabecular microstructures because a local view of the trabecular network is needed to provide 

information on the microarchitecture. Several computational techniques are available for this task 

(Lee et al. 2006, Andrade Silva et al. 2010), including the use of 3D skeleton graph analysis 

(Stauber and Müller 2006, Liu et al. 2008). This method, initially introduced to characterize 

granular porous media in sedimentary rock (Lin and Cohen 1982), has been recently applied to 

study trabecular bone microarchitecture and enables its full decomposition into individual 

trabecular rods and plates. Moreover, the 3D skeletonization technique provides a local 

characterization on the morphology and orientation of trabecular bone. A correlation between 

trabecular morphology and apparent mechanical properties has been commonly described by 

morphometric parameters (Stauber and Müller 2006, Liu et al. 2009) benefited from this 

technique. For example, the line skeleton graph analysis (LSGA) method was introduced to 

compute topological parameters, including the length and volume of a single trabecula (Pothuaud 

et al. 2000). This method shows the effect of individual trabecular scales to mechanical properties. 

Moreover, Saha et al. (2000) developed digital topological analysis (DTA) for the characterization 

of trabecular architecture by subdividing trabeculae plates and rods on the basis of the 

skeletonization technique. They showed that locally determined orientations can describe the 

anisotropy of a trabecular network better than the mean intercept length (MIL) parameter. More 

recently, the trabecular microstructure has successfully been decomposed volumetrically into its 

basic elements of plates and rods (Stauber and Müller 2006, Liu et al. 2008) to investigate the 

influence of morphology via morphometric parameters on the mechanical stiffness of trabecular 

bone. However, discussions on the influence of the trabecular network architecture on the load 

distribution in the entire vertebral column are relatively scarce. 

One of the authors of this paper has previously reported that the principal stress vector display 

is useful for visualizing the mechanical load pathways in peri-implant trabecular bone (Ohashi et 

al. 2010). Although the principal stress contour display can also highlight the primary bone in 

human vertebral trabecular bone (Tawara et al. 2008), the following two issues remain unresolved. 

The principal stress contour display determined by static analysis is useful for only very small 

regions, such as a 2.1 mm cubic area, and is obviously insufficient for explaining the trabecular 

network system in human vertebrae. The second problem is that the color scale must be adjusted, 

and there is no known systematic method for determining the stress threshold for display. The 

stress wave, however, propagates into all branches in the network system. To eliminate such 

branches without percolation, static FEM is used prior to that of dynamic FEM. To define the 

stress threshold used to classify the primary trabecular bone in vertebrae, the averaging principle 

used in the asymptotic homogenization method (Guedes and Kikuchi 1990) is employed in the 

present study. The outline of the static homogenization theory is described in section 3.1, and its 

reliability has been demonstrated by comparison with experimental measurements conducted for 

engineering materials (Takano et al. 2003, Takano et al. 2010). 

Dynamic FEM analysis and impact analysis are frequently used for engineering applications 

such as automobile crashes. However, dynamic analysis used for infinite solid models may cause 

problems in transient wave propagation (Kuhlemeyer and Lysmer 1973). The same is true for a 

small model extracted from large-sized objects. Lysmer and Kuhlemeyer (1969) introduced a 

special viscous boundary condition for solving this problem, which is employed in the present 

study as described in section 3.3. Micro-computed tomography (micro-CT) image-based FEM 

analysis has been recently applied to trabecular bone; however, such research is limited to 

staticanalysis. In the dynamic analysis of trabecular bone with image-based modeling, significant 
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challenges remain in postprocess visualization. Because these large-scale problems require huge 

amounts of output data, the user must limits the physical quantities for output prior to the analysis. 

Although this limitation does not affect engineering problems because the location of interest is 

roughly estimated theoretically prior to the analysis, effective biomechanical analysis of trabecular 

bone requires numerous output quantities. 3D display is determined to be more useful than cross-

sectional display for explaining the network architecture. 

Therefore, the purpose of the present study is to visualize the characteristics of primary 

trabecular bones to provide an understanding the mechanical role of the highly complicated 

trabecular network architecture. A new classification and visualization method is used and applied 

to osteoporotic and healthy human vertebral trabecular bones to display stress wave propagation 

obtained by dynamic finite element method. Although the microstructure reconstructed from high-

resolution micro-CT is highly complicated, the proposed method can be used to enhance the 

visibility of the trabecular network for large-sized regions, particularly when the role of trabecular 

morphology on mechanical load transfer is of interest. In contrast to the existing studies (Pothuaud 

et al. 2000, Stauber and Müller 2006, Liu et al. 2008), our method proposes the extraction of the 

trabecular region into percolated portions rather than that into individual rods and plates to enable 

analysis of the morphology from the perspective of load distribution. 

 

 

2. Materials 
 

Two trabecular bone samples were extracted from the central part of a human fourth lumbar 

vertebra (L4). One sample was obtained from an 86-year-old female osteoporotic patient, and the 

other was taken from healthy bone of a 68-year-old male. The samples were imaged by a micro-

CT device (SMX-100CT, Shimadzu, Japan) with 40 kV of voltage and 30 µA of current. The 

image resolution was 29.92 µm for the osteoporotic bone and 31.91 µm for the healthy bone. The 

analysis of these bone samples has been approved by an ethics committee. 

A binarization technique was applied to convert the 256 gray levels of the micro-CT image into 

a 3D binary image. The 3D binarized image was obtained by matching the architecture of the 

micro-CT image with specific portions of the actual bone slices. 3D voxel finite element (FE) 

models were automatically generated from a sequence of binary images with the same slice 

distance through image resolution by using eight-node voxel element conversion (Hollister et al. 

1994). A specific region of interest (ROI) was extracted from each voxel FE model; the 

specifications are listed in Table 1. Both ROIs are shown in Fig. 1. In this paper, the left–right axis 

is defined as axis-1, the anterior–posterior axis is axis-2, and the vertical axis is axis-3. ROIs were 

carefully selected by ensuring the fluctuation of bone volume fraction along the cross-section and 

at the boundary is almost constant in order to maintain the periodicity of the homogenization 

 

 
Table 1 Specifications of regions of interest (ROIs) 

 Osteoporotic trabecular bone Healthy trabecular bone 

ROI size (mm
3
) 5×6.6×12 6×6×12 

Element size (m
3
) 30×30×30 32×32×32 

No. of elements 877,277 2,781,416 

Bone volume fraction, BV/TV 0.060 0.172 
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(a) Osteoporotic bone (b) Healthy bone 

Fig. 1 ROI for osteoporotic and healthy vertebral trabecular bones. 
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Fig. 2 Hierarchical approach for classification and visualization of trabecular bone. 

 

 

analysis (Tawara et al. 2010). Since the homogenization procedure is to solve a scale-free problem 

theoretically, and also because as large ROI (or microstructure model) as possible should be used 

to investigate the load path at microscale, the models in Fig. 1 are used with periodic boundary 

conditions. The mechanical properties of the trabecular bone tissue were assumed to be linear 

isotropic with Young’s modulus of 10 GPa (Rho et al. 1993). Poisson’s ratio was set to 0.4 by 

reference to Keyak et al. (1990), Reilly and Burstein (1975) and Van Buskirk and Ashman (1981). 

  

 

3. Methods 
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Fig. 2 shows a schematic flowchart of the proposed approach for the classification and 

visualization of complex trabecular morphology. Once the 3D voxel models are created and ROIs 

are selected, static homogenization and dynamic analyses are performed separately for the same 

ROIs. In the static homogenization analysis, the characteristic displacements were obtained. 

Periodic boundary conditions with respect to the characteristic displacements in three directions 

were applied to all boundary surfaces (i.e., top, bottom and side surfaces). The FE models used for 

the present homogenization analysis at the microscale are shown in Fig. 1. Homogenization 

analysis is applied to classify the trabecular bone into strut elements having significant 

contribution to the mechanical load transfer. Mechanical stress percolation is visualized through 

dynamic FEM analysis with focus on the primary trabecular bone in human vertebra. Although 

stress waves produced by the impact load propagate into the strut elements without percolation, 

the stress in the static analysis of those particular strut elements is low. Therefore, such strut 

elements can be eliminated in the classification process to improve the visibility of stress wave 

propagation in the percolated elements. In the following sections, the outline of static 

homogenization theory, classification method, and visualization of stress wave propagation by 

using dynamic FEM analysis are described. 

 

3.1 Outline of static homogenization theory 
 

In the present study, a linearly elastic problem is considered. Because the selected large-sized 

ROI could represent a trabecular bone region in one lumbar vertebra, the asymptotic 

homogenization method was applied, which has been the most successful method used for such 

multiscale computation. For the homogenization to obtain the macroscopic properties, there are 

some other techniques including the continuum micromechanics. However, more focus is put on 

the localization process that is to calculate the microscopic stress with rigorously satisfying the 

averaging principle in this paper. Hence, the asymptotic homogenization method was chosen 

instead of other micromechanics methods. This technique has been widely used in the analysis of 

cortical (Parnell et al. 2006, Grimal et al. 2011) and trabecular bones (Hollister et al. 1991, 

Basaruddin 2013, Matsunaga et al. 2013); hence, only the outline of this theory is described here. 

At the macroscopic scale x, a macroscopic structure  of trabecular bone is expected to have 

microscopic heterogeneity. Considering the traction force t is applied on the smooth boundary , 

the macroscopic equation, neglecting the body force, is derived as 

  
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(1) 

where u
0
 is a macroscopic displacement and D

H
 is the homogenized elasticity tensor. When a ROI 

Y representing the global heterogeneity is defined, D
H
 can be obtained as the volumetric average of 

the microscopic properties in the ROI, as calculated in Eq. (2).  

  


















Y
s

pq
r

ijrsijpq
H
ijpq

y
DD

Y
D

1

 

(2) 

where D is the elasticity tensor of bone, Y is the volume of ROI, and  is a characteristic 

displacement that is a periodic function with respect to the microscopic scale y.  is obtained by 

solving the microscopic equation for ROI Y under the periodic boundary condition as  
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where u
1
 represents a perturbed displacement term in the asymptotic expansion method due to the 

microscopic heterogeneity. Next, the microscopic stress   subject to either the macroscopic strain 

E or macroscopic stress <σ> can be calculated as derived in Eq. (4). 
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(4) 

Finally, generalization of this multiscale theory can be written in Eq. (5), which assures 

consistency between the microscopic and macroscopic behaviors of the trabecular bone model. 

 E HDD 
 

(5) 

where <> indicates the volumetric averaging operator and  is microscopic strain. 

 

3.2 Classification of trabecular bone 
 

The procedures used in static homogenization analysis and for the classification of trabecular 

bone given in Fig. 2 are summarized in Fig. 3. This method consists of the following 10 steps: 

1) Select a large ROI |Y | with XROI ×  YROI ×  ZROI dimensions, as shown in Fig. 4. Let the 

coordinate of each element in the ROI be written as in the following Eq. (6). 
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(6) 

The ROI has N number of elements with volume |Y |. 

2) Apply uniform and uniaxial compressive macroscopic stresses sequentially to the selected 

ROI in orthogonal directions, as shown in Fig. 4, which are indicated as <σ>11=−1, <σ>22=−1, and 

<σ>33=−1. Axes-1 and 2 correspond to the lateral axes of left–right and posterior–anterior, 

respectively, whereas axis-3 relates to the vertical axis. 

3) Calculate the minimum principal stress response for each voxel element i under three load 

cases and define them as i)( )11(
3 , i)( )22(

3 and i)( )33(
3 . The superscript denotes the loading 

direction. 

4) Define the inner part of the ROI and apply the following classification procedure because 

numerical error may occur in the boundary region of the ROI. The coordinate for the selected inner 

ROI Yin is written as Eq. (7), following the authors’ previous paper (Takano et al. 2003), with Nin 

number of elements. 

       ROIROIROIROIROIROIin Z.,Z.,Y.,Y.,X.,X.Y 404040404040 
 

(7) 

The volume of the inner ROI can then be calculated as 
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   Y.Y.Yin 512080
3


 

(8) 

5) Select the elements located in the inner region, as expressed in Eq. (9); those outside of the 

inner region are categorized as boundary trabeculae. 

    N,,jYz,y,x in 1
 

(9) 

6) Under the vertical load condition, <σ>33=−1, select elements j (in Yin) with minimum 

principal stress (in compression) less than zero, as expressed in Eq. (10). The total number of 

elements under this condition is denoted as N
(33)

. 
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(10) 

7) Obtain the average for the minimum principal stress in compression for a vertical load case, 

calculated as  
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(11) 

where k is kth element number with the minimum principal stress in compression for a vertical 

load case. 

8) Select the elements with lower compressive minimum principal stress than average, as 

written in Eq. (12), and classify them as primary trabeculae (NVER). Note the above stresses have 

negative values. This classification process is illustrated in Fig. 3 in the box outlined by the dotted 

line. The above concept is based on the multiscale theory formulated in Eq. (5), which implies that 

under certain constant macroscopic strain, higher than average microscopic stress contributes to an 

increase in macroscopic stiffness. Note that this method is applicable only to human vertebral 

trabecular bone, which mainly supports its vertical self-weight. 

 
      inavej

N,,j 13333

3 
 

(12) 

9) Repeat steps 6 to 7 for the remaining elements in Yin for the other two load cases, <σ>22=−1 

and <σ>11=−1. In the same manner as that calculated in Eqs. (11) and (12), the compressive 

average stresses are defined. Select the elements that meet the requirements as written in either 

Eqs. (13) or (14), and classify them as secondary trabeculae (NLAT). Note here that all load cases 

represent hypothetical load for the classification of vertebral trabecular bone. 

 
      inavej

N,,j 12222

3 
 

(13) 

 
      inavej

N,,j 11111

3 
 

(14) 

10) Finally, the remaining elements in Yin which are not segmented in steps 8 and 9, are then 

classified as no contributing trabeculae (NNO). Hence, the following equation is retained with 

respect to the number of elements in the inner ROI. 

  NOLATVERin NNNN 
 

(15) 
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Note that the classification conditions (Eqs. (12)-(14)) were applied to each voxel element. The 

assembly of elements is the trabeculae by visualizing them. So, if some voxel finite elements in 

one trabecula do not satisfy any equations (12)-(14), those elements are missing in the visualized 

results. 

 

3.3 Visualization of primary bone by using dynamic FEM 
 

Dynamic explicit FEM analysis is applied in the proposed method to enhance the visibility of 

the trabecular morphology. By visualizing the classified trabecular bone elements after the 

application of dynamic FEM under impact loading in the vertical direction, this study proposes to 

improve the visibility and to explain the load percolation in a complex trabecular network 

architecture. VOXELCON image-based FEM software (Quint Corp., Japan) was used for dynamic 

FEM analysis and was customized to define the element groups corresponding to the classified 

groups. 

In the dynamic explicit FEM that uses lumped mass matrix, the numerical stability was 

obtained by setting the time integration that satisfies the Courants, Friedrichs, and Lewy (CFL) 

condition (Lewy et al. 1967), as shown in Eq. (16) 

 
vc

l
t 

 
(16) 

where t denotes the interval time step, l is the voxel element size, and cv represents the velocity of 

the stress wave. cv is estimated by using the following formula 
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(17) 

where E, , and  are Young’s modulus, Poisson’s ratio, and the density of trabecular bone tissue, 

respectively. 

Concerning the boundary conditions for highlighting the primary bone in human vertebral 

trabecular bone, the hypothetical impulse load in Eq. (18) is applied to the top surface of the ROI: 

   s10010forN1 5 .ttF  
(18) 

It should be noted that this very short total time is sufficient for visualizing the primary bone 

because the stress wave reaches the bottom surface in a very short time. The bottom surface of the 

ROI is fully constrained. The viscous boundary condition is applied to the side surfaces of the ROI 

for what is known as infinite boundary treatment (Lysmer and Kuhlemeyer 1969) because the 

stress wave reflection should be eliminated. Table 2 lists the values of parameters used in the 

present dynamic FEM analysis.  

 

 

4. Results 
 

Although the proposed classification method, shown in Fig. 3, allows for classification of the 

vertebral trabecular bone into primary and secondary bones, the focus of this study is primary 

bone. 

118



 

 

 

 

 

 

Classification and visualization of primary trabecular bone in lumbar vertebrae 

Table 2 Values of parameters used in dynamic finite element method (FEM) analysis 

Parameter Value 

Bone density,  (kg/mm
3
) 1.94×10

-6 

Wave velocity, cv (mm/s) 3.3×10
6 

Total time, T (s) 1.0×10
-5 

Time step interval, t (s) 6.0×10
-9 

Number of steps 1.67×10
3 
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Fig. 3 Algorithm of classification procedure applied to trabecular bone. 
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By applying this method to the ROIs shown in Fig. 1, the classified primary trabecular bone for 

both osteoporotic and healthy models was extracted, as shown in Fig. 5. The primary trabecular 

bone appeared mainly in the vertical direction (axis-3). For osteoporotic bone, the primary 

trabecular bone was approximately one-third of the total volume, whereas approximately half of 

primary trabecular bone was extracted from the total volume of the healthy bone. Here, in 

comparison with the original models shown in Fig. 1, the complicated trabecular morphology was 

simplified and classified solely into functional bone structures against their vertical self-weight. At 

this point, small fragments were included in the classified primary bone group due to numerical 

error near the boundary region. In the following visualization step after dynamic FEM, however, 

only important trabeculae are highlighted. 
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Fig. 4 Graphical definition of axes, region of interest and macroscopic stress 
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Fig. 5 Visualization of primary trabecular bone 
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(b) Healthy bone 

Fig. 6 Visualization of minimum principal stress distribution under impact load in selected 

primary trabecular bone. The contour represents the minimum principal stress distribution 

 

 

The minimum principal stress distribution obtained during dynamic FEM postprocessing under 

compressive impact loading for the osteoporotic bone is displayed in Fig. 6(a). The blue-colored 

portion in the figure represents the compressive part of the minimum principal stress. Fig. 6(a) 

shows the stress wave propagation from top to bottom of the model in addition to the mechanically 

percolated trabecular bone architecture. Nearly all regions showed compression against the impact 

load applied to the top surface. The trabeculae were counted easily by observing the magnified 

view in Fig. 6(a), which also clearly shows branching at the microscale. The low bone volume 

fraction at 6% and the lower fraction for the primary bone at approximately 2% also contributed to 

the enhanced visibility.  

Similarly, Fig. 6(b) shows the results for healthy bone. The volume fraction of the healthy bone 

was 17.2%, half of which was classified as primary bone. Figs. 5(b) and 6(b) show slight such as 

that shown Fig. 6(b), the trabeculae were again easily counted. Nearly all regions were in 
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compression, which implies successful extraction of the primary trabecular bone supporting the 

load and serving as a load pathway. 

Note here that the stress levels (min=−0.2, max=0.2) in Fig. 6 have been adjusted consistently 

for both healthy and osteoporotic cases in order to put more emphasis on displaying the 

compressive portion of primary trabecular bone, which is in blue color. However, since the same 

unit macroscopic stress, <σ>kl is applied in both cases, the osteoporotic bone with much lower 

stiffness, H
pqklD , might be suffered from higher strain, kl

H
pqklD  1)( , than the healthy bone. 

 

 

5. Discussion 
 

Trabecular morphology is influenced by the bone remodeling process, which involves the 

balancing activities of osteoblasts and osteoclasts. As a result of such remodeling, the bone density, 

or the bone volume fraction, is an important parameter used to characterize the mechanical 

properties of trabecular bone. In human vertebrae, two categories are also important: primary and 

secondary bones and plate-like and rod-like bones. The plate-like bones work as a hub in the 

network architecture to distribute the load to connected rod-like bones. Hence, the number of 

plate-like bones and connected rod-like bones can be a parameter used to explain bone quality. 

However, the focus of the present study is primary trabecular bone aligned in the vertical direction 

because the vertebral trabecular bone mainly supports its vertical self-weight. 

An unexpected result of this study was such that the percentage of the primary bone for 

osteoporotic and healthy vertebrae in each ROI volume was lower than that in the osteoporotic 

bone. Although the total bone volume fraction was lower in the osteoporotic case, the decrease in 

primary trabecular bone was outstanding. Hence, the decrease of primary trabecular bone in 

osteoporotic bone reduced the bone strength in vertical direction. On the other hand, such a low 

number of primary trabeculae in the osteoporotic bone could be subject to stress concentration by 

the thinning of each trabecular strut (Blain et al. 2008). However, since the main purpose of this 

paper is to visualize the primary trabecular bone, hence the stress concentration is not displayed. 

Similarly, Homminga et al. (2004) reported that the number of overloaded trabeculae in 

osteoporotic vertebra is higher than that in healthy bone under normal daily loading. Visualization 

of primary trabecular bones, as shown in Figs. 5 and 6, could describe such phenomena. Primary 

trabecular bone appeared to play a key role in load-bearing capability. Therefore, an increase in 

primary trabecular bone would contribute to greater stiffness in the vertical direction. The 

secondary trabecular bone for the osteoporotic model is shown in Fig. 7. The minimum principal 

stress distribution is also displayed in the figure, in which the red and blue coloring indicate the 

trabeculae under tension and compression, respectively. All trabeculae are included in Fig. 7(a), 

and only the secondary trabeculae are shown in Fig. 7(b). In Fig. 7(a), compression was observed 

at the front part of the stress wave, and the region under tension followed. In the secondary 

trabecular bone, the dominant tensile part differed from that in the primary bone likely because a 

sufficient amount of secondary trabecular bone worked in conjunction with the primary bone in 

this osteoporotic case in order to ensure the effectiveness of load transfer in trabecular network. 

Note that the main orientation of secondary trabecular bone is in lateral direction. Hence, most of 

the secondary trabecular bones subject to tension under vertical compression load in order to hold 

the primary trabecular bone. 

Moreover, the propagation of the stress wave in individual trabecula was not constant, as 
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shown in the magnified view in Fig. 6. In the osteoporotic case, the stress wave at t=6×10
−6

 s 

reached the bottom of the magnified portion for some of the trabecular struts and fully penetrated 

all trabecular struts at t=8×10
−6

 s. This difference in wave propagation occurred because the 

trabecular network paths were not always straight. In addition, it was supposed that the load 

transfer from one trabecula to another via plate-like bone influenced the wave propagation. Such 

difference in wave propagation for healthy case is shown in Fig. 6(b). More detailed investigation 

of the morphology parameters such as the number of trabeculae, the cross-section size, and force 

will be conducted in the future.  

It is widely accepted that the load-bearing capability of each trabecular strut determines 

trabecular stiffness (Gefen 2009). By viewing only the percolation of the vertical load in the 

original trabecular structure, as shown in Fig. 7(a), it is difficult to determine the effects of 

trabecular struts on the mechanical load transfer. Not all of the trabecular struts in the trabecular 

network contribute to the load-bearing capability because orientation, connectivity, and geometry 

are also integral to the trabecular structure. Such less-functional trabecular struts were eliminated 

by the proposed classification method. By observing and measuring only the percolated network 

architecture, as shown in Fig. 6, the robustness and brittleness can be discussed more accurately 

and quantitatively, as will be presented in future research. In addition, percolation of load transfer 

in secondary trabecular bone for healthy bone which is not discussed in this paper due to highly 

complicated microarchitecture, will be also investigated further in future.  
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Fig. 7 Visualization of minimum principal stress distribution under impact load in selected 

secondary trabecular bone for osteoporotic case 
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6. Conclusions 
 

In this study, a new classification method was proposed to visualize a 3D primary trabecular 

bone in a human L4 vertebra by using the homogenization theory. A static homogenization method 

was used for this classification and was combined with a dynamic explicit FEM for visualization. 

The proposed method allows the primary trabecular bone in a large-scale model to be extracted 

from a highly complicated trabecular microstructure and visualized in 3D for the first time. This 

research provides additional insight for investigating the role of trabecular microarchitecture in 

load-bearing applications, such as determination of the volumetric percentages of primary and 

secondary bones and stress wave propagation relative to the straightness of the primary bone. 

Finally, we expect that the method developed here will be extended in the future to be used for 

advanced morphological characterization in the quantitative estimation of brittleness. 
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