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Abstract.  This research studies thermo-elastic behavior of rotating micro discs that are employed in various micro 
devices such as micro gas turbines. It is assumed that material is functionally graded with a variable profile thickness, 
density, shear modulus and thermal expansion in terms of radius of micro disc and as a power law function. 
Boundary condition is considered fixed-free with uniform thermal loading and elastic field is symmetric. Using 
incompressible material’s constitutive equation, we extract governing differential equation of four orders; to solution 
this equation, we utilize general differential quadrature (GDQ) method and the results are schematically pictured. The 
obtained result in a particular case is compared with another work and coincidence of results is shown. We will find 
out that surface effect tends to split micro disc’s area to compressive and tensile while nonlocal parameter tries to 
converge different behaviors with each other; this convergence feature make FGIMs capable to resist in high 
temperature and so in terms of thermo-elastic behavior we can suggest, using FGIMs in micro devices such as micro 
turbines (under glass transition temperature). 
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1. Introduction 
 

Functionally graded materials are originally a category of composite materials in which the 

distribution of components gradually change in one or multiple directions to obtain tailored 

material property; for example, Chakraborty et al. (2009), explained how a graded composite of 

silver and alumina can simultaneously combine hardness (emanated from alumina) and toughness 

(emanated from silver), which can be efficient to use for cutting tools. Reports of this sort that are 

based on combination of metals and ceramics are numerous (Agari 2002). The other types of 

functionally graded materials are rubber like FGMs, which are made from different types of 

polymers. Polyvinyl chloride (PVC)/polymethacrylate, polymethyl methacrylate (PMMA), 

polyhexyl methacrylate (PHMA), bisphenol A type polycarbonate (PC)/polystyrene (PS), 

PEO/polybutyl methacrylate (PBMA) are some of examples of rubber like FGMs (Agari et al. 

1996). Presenting novel properties, FGMs have also attracted intensive research interests, which 

were mainly focused on their static, dynamic and vibration characteristics of  FG structures ( 

Ebrahimi and Rastgoo 2008a, b, c, Ebrahimi 2013, Ebrahimi et al. 2008, 2009a, b, 2016a,  
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Ebrahimi and Zia 2015, Ebrahimi and Mokhtari 2015, Ebrahimi et al. 2015, Ebrahimi and Salari 

2015, Ebrahimi and Jafari 2016, Ebrahimi and Barati 2017a, b, Ebrahimi and Barati et al. 2017, 

Ebrahimi and Ehyaei et al. 2017). Among different ways to produce such materials, Agari et al. 

(1996), have devised a new method that is called dissolution-diffusion method that is performed in 

a very fewer time with optimized conditions such as low temperature; In this method since there is 

minimum of interface during compositional gradient we will obtained higher strength and more 

thermal shock resistance (Agari et al. 2007). Anyway, if there are a lot of manufacturing errors, it 

will result in a sharp decline in the quality; Carmine and Quadrini (2009), have tried to diminish 

such errors by using indented instruments. The other factor that is able to decline the quality and 

mechanical property of rubber like materials is inhomogeneity. Rajagopal (1994), in his research, 

makes evident that temperature gradient can develop boundary layer-like structures in strain field 

of rubber like material and finally, inhomogeneity will be obtained. However, Bilgili (2004) 

explained that functional grading of this material makes inhomogeneity to be decreased even in the 

presence of temperature gradient. He also said that functional grading of rubber like materials 

helps them to control their mechanical response in thermally antagonistic environments; But there 

is one exception, when rubber like materials are vulcanized; in this situation even functional 

grading is not able to prevent from developing localized and complex stress-deformation fields 

and inhomogeneity is inevitable specially in shear modulus. It is for that, when to curing, the core 

is subjected to heat less than the surface of material (Bilgili 2003). 

Rubber like materials are considered as incompressible materials because their Poisson’s ratio 

is around 0.5; although the ratio of the bulk to shear modulus (B/G) is determinant factor of being 

compressible or incompressible, the bulk modulus (B) of rubber like materials is not too large; as 

more explanation, when Poisson’s ratio approaches 0.5 the ratio of bulk to shear approaches to 

infinite  which could be for two reason: First, having large bulk; second, as G is too smaller than 

bulk modulus which is common in rubber like materials. Although water is not a rubber like 

material but it could be a good example to understand what happens about rubber like materials; as 

more explanation, water cannot undergo shear force and therefore the shear modulus of water is 

zero, however it is known as an incompressible material (Mott et al. 2008).  

As an important component, discs have many engineering applications; turbo generators, 

turbojet engines and turbine rotors are some of examples of the applications of discs; this is the 

reasons for attracting many researchers to investigate about rotating discs; for example, Zenkour 

(2006) studied various functionally graded annular discs with variable thickness under steady heat 

flow condition. Horgan and Chan (1999), with the purpose of studying of inhomogeneity effect, 

investigated the stress response of functionally graded rotating discs with power law variation in 

module of elasticity, and found out different behavior than homogeny cases such as different 

position of maximum stresses and so forth. Jahed et al. (2005), used varied thickness and material 

properties to achieve optimum mass for the rotating disc in high temperature situation like what 

takes place in gas turbines. Eraslan and Akis (2006), performed an analytical plane strain and 

plane stress solutions on the functionally graded rotating solid shaft and solid disc with assumption 

of exponential and parabolic variation for modulus of elasticity, and found out independency 

between stresses and the variation of the modulus of elasticity; they also discovered that hoop and 

radial stresses are equal. Kordkheili and Nghdabadi (2007), performed a comparative study 

between semi-analytical and finite element solution on functionally graded rotating disc and then 

studied the role of property gradation on thermomechanical responses. Using Airy stress function 

Nie and Batra (2010), analyzed stresses in isotropic functionally graded incompressible rotating 

discs with variable thickness, shear modulus, thermal expansion coefficient and density; they 
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finally tailored variation of shear modulus and thermal coefficient expansion to reach constant 

combination of hoop and radial stresses. Dryden and Batra (2013) performed finite plane strain 

analyzing for hollow cylinders made of Mooney-Rivlin material with the purpose of material 

tailoring under tangential traction and displacement constrain on the inner and outer surface; they 

supposed varying material moduli in radial direction and concluded that radial variation of moduli 

minimizes the tangential displacement when tangential traction is specified. Hosseini and Dini 

(2015) provided an analytical solution of elasticity’s special parameters (displacement, strain and 

stress) for a rotating thick-walled cylinder made of functionally graded material under thermal and 

magnetic effects. Tutuncu and Temel (2013), used complementary functions method (CFM) to 

analyze the thermo-elastic problem of functionally graded rotating discs of variable thickness and 

uniform change in temperature. Ding et al. (2014), with analytical solution, evaluated thermal 

loading in order to material tailoring in rotating disc. Zamani et al. (2014), simulated numerically 

an annular rotating disc in high speed state and did a comparison with analytical result. Ç etin et al. 

(2014), made elastic stress analysis for annular bi-material rotating disc under mechanical and 

thermomechanical loads; by applying thickness variation they found out that thickness of profiles 

play an important role in determining stress responses. Ersalan and Ahmet (2015) accomplished an 

analytical and numerical solution to a rotating FGM Disc by assigning a new exponential model 

for the modulus of elasticity. Leu and Chien (2015) performed a thermoelastic analysis for a 

functionally graded disc with non-uniform heat source and on the assumption that thickness 

changes as a power function of radius. Zafarmand and Kadkhodayan (2015) accomplished their 

research on functionally graded nanocomposite rotating disc assuming that relations are nonlinear 

and the thickness is variable; they discovered that in high angular velocities the difference between 

linear and nonlinear results are noticeable. Anani et al. (2016), carried out their stress analysis over 

rotating thick wall shell that was made from functionally graded incompressible hyperelastic 

material; they concluded that inhomogeneity has significant influence on mechanical behavior of 

the cylinder.  

In the small scale, rotating micro disc is one of prominent elements can be used in micro gas 

turbines (MGTs). Compared with the conventional gas turbine, the micro gas turbine has the 

advantages of small size, light weight, and high power density energy. The application prospect is 

very broad in the future (Zhen et al. 2015); meanwhile reports have been put out based on 

decreasing electricity costs between 10% and 40% and decreasing of greenhouse gases by 20%-

35% (Aichmayer et al. 2013), so they can be very efficient and appropriate for environment; the 

internal temperature in such devices can reach up to 950°C (Zhou et al. 2014). However, in the 

small scale the classical elasticity theories are not applicable; the nonlocal elasticity theory is one 

of the common approaches which are used to study the behavior of structures in the small scale; 

Lots of studies have been performed to investigate the scale-dependent response of structural 

systems based on Eringen’s nonlocal elasticity theory (Ebrahimi and Salari 2015a, b, 2016,  

Ebrahimi et al. 2015a, 2016c, Ebrahimi and Nasirzadeh 2015, Ebrahimi and Barati 2016 a-f, 

Ebrahimi and Hosseini 2016 a-c). Again, based on Eringen’s nonlocal elasticity theory Zhu and Li 

(2017) studied the twisting static behaviors of functionally graded nanotubes. The other theory 

which can be useful in studying small scale structures is surface elasticity theory. Using surface 

and nonlocal elasticity theory Ebrahimi et al. (2016) investigated vibration and buckling behavior 

of nanotubes in thermal environment considering different boundary conditions. Most recently 

Ebrahimi and Barati (2016g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, 2017a, b) and Ebrahimi et al. 

(2017) explored thermal and hygro-thermal effects on nonlocal behavior of FG nanobeams and 

nanoplates. 
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One of the main elements of MGTs is impeller which can be modeled as a rotating micro-disc. 

Since functionally graded incompressible materials (FGIMs), can potentially control their 

mechanical response in thermally destructive environment, this scrip tries to study different effects 

on FGIMs micro rotating discs aiming to use them in micro devices such as MGTs; to do this, we 

use Eringen’s nonlocal elasticity theory in conjunction with surface elasticity theory to derive 

governing equations for rotating circular micro-disc made of incompressible functionally graded 

material under fixed-free boundary condition (the boundary condition at inner radius is fixed while 

at outer radius we have free boundary condition) in thermal environment; it is assumed that the 

angular velocity is constant and shear modulus, the mass density, the thermal expansion 

coefficient and the disc thickness alternate as power-law function; assuming linear strain-

displacement relations, uniform temperature rise and existence of constant pressure on the free 

radius, we use GDQ method to study the effect of different parameters on stress, strain and 

displacement developed in the micro-disc. 
 

 

2. Formulation of problem 
 

Assume a symmetric rotating circular micro-disc of incompressible functionally graded 

material (FGIM) with a variable thickness h(r)>0 in the radial direction, and with a constant 

angular velocity, ω, about the perpendicular axis passing through the center of disc, as shown in 

Fig. 1 Neglecting gravitational forces, the equation of equilibrium in the radial direction is 

(Timoshenko and Goodier 1970). 

𝑑

𝑑𝑟
(ℎ(𝑟)𝑟𝜎𝑟

𝑛𝑙) − ℎ(𝑟)𝜎𝜃
𝑛𝑙 + ℎ(𝑟)𝜌(𝑟)𝜔2𝑟2 = 0 (1) 

Where σr
nl, and σθ

nl are nonlocal radial and hoop stresses respectively; 𝜌(𝑟) is the variable 

mass density that changes in terms of r. According to nonlocal theory the stress at a reference point 

r in the body depends not only on the strains at x but also on strains at all other points of the body; 

in the small scales like micro and nano this dependency becomes more evident as deduced from 

the following equation (Eringen 2002). 

𝜎𝑖𝑗
𝑛𝑙 = ∫ 𝛼(|𝑟′ − 𝑟|, 𝜏)𝜎𝑖𝑗

𝑐𝑙(𝑟′)𝑑𝑣(𝑟′)
 

𝑣

 (2) 

 

Fig.1 Schematic sketch of the case study 
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where v is whole volume of a body, τ is a material constant, 𝜎 
𝑐𝑙is a Cauchy’s stress with respect 

to classical elasticity theory and 𝛼(|r′ − r|, τ) is the nonlocal modulus with a dependency of scale 

factor |r′ − r|. 𝛼(|r′ − r|, τ) is a Green’s function and its operator is (Eringen 2002). 

L:1 − 𝜇𝑠𝑠∇2= 1 − 𝜇𝑠𝑠 (
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝑟2𝜕𝜃2
) (3) 

Using this operator, Eq. (4) is used instead of complicated Eq. (2). 

(1 − 𝜇𝑠𝑠∇2)𝜎𝑛𝑙 = 𝜎𝑐𝑙 (4) 

From cinematic relations we have 

𝜀𝑟 =
𝑑𝑢𝑟

𝑑𝑟
 , 𝜀𝜃 =

𝑢𝑟

𝑟
 (5a, 5b) 

And the compatibility equation in terms of strains is 

𝑑

𝑑𝑟
(𝑟𝜀𝜃) − 𝜀𝑟 = 0 (6) 

The strains can be divided in two parts, elastic and thermal 

𝜀𝑟 = 𝜀𝑟
𝑒 + 𝜀𝑟

𝛵 (7a) 

𝜀𝜃 = 𝜀𝜃
𝑒 + 𝜀𝜃

𝑇 (7b) 

𝜀𝑧 = 𝜀𝑧
𝑒 + 𝜀𝑧

𝑇 (7c) 

where 

𝜀𝑟
𝑇 = 𝜀𝜃

𝑇 = 𝜀𝑧
𝑇 = 𝛼(𝑟)∆𝑇 (8) 

According to definition of incompressible materials 

𝜀𝑟
𝑒 + 𝜀𝜃

𝑒 + 𝜀𝑧
𝑒 = 0 (9) 

For the incompressible material Poisson’s ratio is equal to 0.5 (υ=0.5) and special constitutive 

equation shall be used for them 

𝜎𝑖𝑗
𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝑖𝑗 (10) 

where p(r) is an arbitrary function which shall be determined from boundary conditions and G(r) is 

the variable shear modulus. 

For this constitutive equation we should introduce appropriate surface effect; According Gurtin 

and Murdoch theory for the second Piola Kirchhoff surface stress tensor we can write (Gurtin and 

Murdoch 1975). 

�̂� = 𝐼𝜎 + 𝐼𝐶𝐸 + ∇𝑢 𝜎 (11) 

where C is elasticity tensor, E is the infinitesimal strain, σ is the residual stress, u is displacement 

and �̂� is second Piola Kirchhoff surface stress tensor. According constitutive equation Eq. (10) 

we have 

𝐶𝐸 = 𝑞𝐼 + 2𝜇𝑠𝐸 (12) 

From Eq. (11) and Eq. (12) 
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�̂� = 𝐼𝜎 + 𝑞𝐼 + 2𝜇𝑠𝐼𝐸 + ∇𝑢 𝜎 (13) 

And for Cauchy’s stress 

𝑆 = 𝜎𝐼 + 2(𝜇𝑠 − 𝜎) + 𝑞𝐼 + 𝜎 ∇𝑠𝑢 (14) 

Knowing that 𝑞 = −𝑝(𝑟) the Eq. (14) gives 

𝑆𝛼𝛽 = 𝜎𝛿𝛼𝛽 + 2(𝜇𝑠 − 𝜎)𝜀𝛼𝛽 − 𝑝(𝑟)𝛿𝛼𝛽 + 𝜎
𝜕𝑢𝛼

𝑠

𝜕𝑥𝛽

, 𝛼, 𝛽 = 𝑟, 𝜃 (15a) 

𝑆𝛼𝑧 = 𝜎
𝜕𝑢𝑧

𝑠

𝜕𝑥𝛼

 (15b) 

Since the body forces are in the radial direction, we can conclude the affection of the surface 

will be in this direction. According to Gurtin and Murdoch theory the surface equilibrium equation 

is (Gurtin and Murdoch 1975). 

𝑑𝑖𝑣 𝑆 − 𝑇𝑛 = 𝜌0�̈� on the boundary surface (16) 

In the radial direction, on the lateral surface of disc this equation turns into 

𝜕𝑆𝜃𝑟

𝜕𝑟
+

𝜕𝑆𝜃𝑧

𝜕𝑧
− 𝜎𝑟 = 𝜌�̈�𝑟 (17) 

where 𝜎𝑟  is Cauchy’s stress. Now we are able to introduce surface effect into constitutive 

equations by following function (Lu et al. 2006) 

𝜎′𝑟 =
𝑟

𝑅
[
𝜕𝑆𝜃𝑟

𝜕𝑟
+

𝜕𝑆𝜃𝑧

𝜕𝑧
− 𝜌�̈�𝑟]

𝑟=𝑅
 (18) 

By above consideration the constitutive equations turn into 

𝜎𝑟
𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝑟

𝑒 +
𝑟

𝑅
[
𝜕𝑆𝜃𝑟

𝜕𝑟
+

𝜕𝑆𝜃𝑧

𝜕𝑧
− 𝜌�̈�𝑟]

𝑟=𝑅
 (19a) 

𝜎𝜃
𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝜃

𝑒 (19b) 

𝜎𝑧
𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝑧

𝑒 (19c) 

where according to Eq. (15) 

𝑆𝜃𝑟 = 2(𝜇𝑠 − 𝜎)𝜀𝑟𝜃 (20a) 

𝑆𝜃𝑧 = 2(𝜇𝑠 − 𝜎)𝜀𝜃𝑧 + 𝜎
𝜕𝑢𝜃

𝑠

𝜕𝑧
 (20b) 

𝜌�̈�𝑟 = 𝜌𝑟𝜔2 (20c) 

From (19) and (20) we have 

𝜎𝑟
𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝑟

𝑒 +
𝑟

𝑅
[2(𝜇𝑠 − 𝜎)𝜀𝑟𝜃,𝑟 + 2(𝜇𝑠 − 𝜎)𝜀𝜃𝑧,𝑧 + 𝜎𝑢𝜃,𝑧𝑧

𝑠 − 𝜌𝑠𝑟𝜔2]
𝑟=𝑅

 (21a) 

𝜎𝜃
𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝜃

𝑒 (21b) 
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𝜎𝑧
𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝑧

𝑒 (21c) 

The symmetry assumption gives 

𝑢𝜃 = 0,
𝜕

𝜕𝜃
= 0 (22) 

From Eq. (22) we can conclude that 

𝜀𝑟𝜃 = 0, 𝜀𝜃𝑧 = 0 (23) 

So, Eq. (21) becomes 

𝜎𝑟
𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝑟

𝑒 − 𝜌𝑠𝑟𝜔2 (24a) 

𝜎𝜃
𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝜃

𝑒 (24b) 

𝜎𝑧
𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝑧

𝑒 (24c) 

For nonlocal stresses we use Eq. (4) 

(1 − 𝜇𝑠𝑠∇2)𝜎𝑟
𝑛𝑙 = 𝜎𝑟

𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝑟
𝑒 − 𝜌𝑠𝑟𝜔2 (25a) 

(1 − 𝜇𝑠𝑠∇2)𝜎𝜃
𝑛𝑙 = 𝜎𝜃

𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝜃
𝑒 (25b) 

(1 − 𝜇𝑠𝑠∇2)𝜎𝑧
𝑛𝑙 = 𝜎𝑧

𝑐𝑙 = −𝑝(𝑟) + 2𝐺(𝑟)𝜀𝑧
𝑒 (25c) 

Since 𝜎𝑧
𝑛𝑙 = 0 from Eq. (25c) we can conclude 

𝜀𝑧
𝑒 =

−𝑝(𝑟)

2𝐺(𝑟)
 (26) 

From Eqs. (26) and (9) we have 

𝑝(𝑟) = −2𝐺(𝑟)(𝜀𝑟
𝑒 + 𝜀𝜃

𝑒) (27) 

Using Eqs. (25a), (25b) and (27) we have 

𝜀𝑟
𝑒 =

2�̅� − �̅�

6𝐺(𝑟)
, 𝜀𝜃

𝑒 =
2�̅� − �̅�

6𝐺(𝑟)
 (28a, 28b) 

�̅� = (1 − 𝜇𝑠𝑠∇2)𝜎𝑟
𝑛𝑙 + 𝜌𝑠𝑟𝜔2, �̅� = (1 − 𝜇𝑠𝑠∇2)𝜎𝜃

𝑛𝑙 (28c) 

From Eqs. (7), (8) and (28) we can write 

𝜀𝑟 = 𝜀𝑟
𝑒 + 𝜀𝑟

𝛵 =
2�̅� − �̅�

6𝐺(𝑟)
+ 𝛼(𝑟)∆𝑇 (29a) 

𝜀𝜃 = 𝜀𝜃
𝑒 + 𝜀𝜃

𝑇 =
2�̅� − �̅�

6𝐺(𝑟)
+ 𝛼(𝑟)∆𝑇 (29b) 

 
 
3. Solution procedure 
 

In terms of the Airy stress function φ(r), stresses 𝜎𝑟
𝑛𝑙  and 𝜎𝜃

𝑛𝑙  are given by 
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𝜎𝑟
𝑛𝑙 =

𝜑(𝑟)

ℎ(𝑟)𝑟
 , 𝜎𝜃

𝑛𝑙 =
1

ℎ(𝑟)

𝑑𝜑(𝑟)

𝑑𝑟
+ 𝜌(𝑟)𝜔2𝑟2 (30a, 30b) 

Using Eqs. (29), (30) into compatibility Eq. (6) we get 

𝑓4

𝜕4𝜑

𝜕𝑟4
+ 𝑓3

𝜕3𝜑

𝜕𝑟3
+ 𝑓2

𝜕2𝜑

𝜕𝑟2
+ 𝑓1

𝜕  𝜑

𝜕𝑟  
+ 𝑓0𝜑 + 𝑓 = 0 (31) 

where, 

𝑓4 = −
1

3

𝑟𝜇𝑠𝑠

𝐺(𝑟)ℎ(𝑟)
 (32a) 

𝑓3 =
6𝐺ℎ2ℎ′𝜇𝑠𝑠𝑟3 + 2𝐺′ℎ3𝜇𝑠𝑠𝑟3 − 4𝐺ℎ3𝜇𝑠𝑠𝑟2

6𝑟2ℎ(𝑟)4𝐺(𝑟)2
 (32b) 

𝑓2 =
−4ℎℎ′𝐺′𝑟𝜇𝑠𝑠 + 6ℎℎ”𝐺𝑟𝜇𝑠𝑠 − 12ℎ′2𝐺𝑟𝜇𝑠𝑠 + 2ℎ2𝐺𝑟 + ℎ2𝐺′𝜇𝑠𝑠 + 7ℎℎ′𝐺𝜇𝑠𝑠

6ℎ3𝐺2
 

(32c) 

𝑓1 =
1

6𝑟ℎ4𝐺2
(−2ℎ2ℎ”G'r2μ

ss
+2h

2
Gh

(3)
r2μ

ss
-12hh'h”Gr2μ

ss
+4hh'

2
G'r2μ

ss
+12h'

3
Gr2μ

ss
-2h

3
G'r2 

+ 2h
2
h”𝐺𝑟μ

ss
− 2ℎ2ℎ′𝑟2𝐺 − 4ℎℎ′2

𝐺𝑟μ
ss

+ 𝐺′ℎ3μ
ss

+ 2ℎ3𝐺𝑟 − 𝐺ℎ2ℎ′μ
ss

) (32d) 

𝑓0 =
1

6𝑟2ℎ4𝐺2
(−ℎ2ℎ”G'r2μ

ss
+ h

2
Gh

(3)
r2μ

ss
− 6hh'h”Gr2μ

ss
+ 2hh'

2
G'r2μ

ss
+ 6h'

3
Gr2μ

ss
− h

3
G'r2 (32e) 

+h
2
h”𝐺𝑟μ

ss
+ 𝐺′ℎ′ℎ2𝑟μ

ss
− ℎ2ℎ′𝑟2𝐺 − 2ℎℎ′2

𝐺𝑟μ
ss

+ 𝐺′ℎ3μ
ss

+ 2ℎ3𝐺𝑟) (32f) 

𝑓 =
1

6𝐺2
(2𝐺′𝜌”μ

ss
𝜔2𝑟3 − 2𝐺𝜌(3)μ

ss
𝜔2𝑟3 + 10𝐺′𝜌′μ

ss
𝜔2𝑟2 + 2𝐺𝜌′𝜔2𝑟3 − 2𝐺′𝜌𝜔2𝑟3 (32g) 

−17𝐺𝜌”μ
ss

𝜔2𝑟3 − 33𝐺𝜌′μ
ss

𝜔2𝑟 + 8𝐺′𝜌μ
ss

𝜔2𝑟 + 7𝐺𝜌𝜔2𝑟2 + 𝐺′𝜌𝑠𝜔2𝑟2 + 6𝛼′∆𝑇𝑟𝐺2 − 12𝐺𝜌μ
ss

𝜔2

− 4𝐺𝑟𝜌𝑠𝜔2) (32h) 

In Eq. (32) the super index (3) means, the third order differential. Assuming power-law 

 

Fig. 2 Schematic for Riemann summation 
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variation for FGIM material we will have 

𝐺(𝑟) = 𝐺𝑜 (
𝑟

𝑅
)

𝜆

, 𝜌(𝑟) = 𝜌𝑜 (
𝑟

𝑅
)

𝑚

, 𝛼(𝑟) = 𝛼𝑜 (
𝑟

𝑅
)

𝑡

, ℎ(𝑟) = ℎ𝑜 (
𝑟

𝑅
)

−𝑛

  (33) 

where 𝐺0  ,  𝜌0  ,  𝛼0  ,  ℎ0  are the shear modulus, the mass density, the thermal expansion 

coefficient and the disc thickness at a point on the outer surface of the disc. By substituting Eq. 

(33) into Eqs. (32) and (31), the following equations can be obtained 

𝑓4 = −2𝜇𝑠𝑠𝑟4 (34a) 

𝑓3 = 2𝜇𝑠𝑠(𝜆 − 3𝑛 − 2)𝑟3 (34b) 

𝑓2 = (4𝜆𝑛 − 6𝑛2 + 𝜆 − 𝑛)𝜇𝑠𝑠𝑟2 + 2𝑟4 (34c) 

𝑓1 = 𝜇𝑠𝑠(2𝜆𝑛2 − 2𝑛3 − 2𝜆𝑛 + 4𝑛2 + 𝜆 − 𝑛)𝑟  + (−2𝜆 + 2𝑛 + 2)𝑟3 (34d) 

𝑓0 = −𝜇𝑠𝑠(𝑛 − 1)2(𝜆 − 𝑛) + (𝜆 − 𝑛 − 2)𝑟2 (34e) 

𝑓 = 𝜇𝑠𝑠ℎ𝑜𝑅𝑛−𝑚𝜔2𝜌𝑜(𝑚 + 2)2(2𝜆 − 2𝑚 − 3)𝑟3−𝑛+𝑚 + 6𝑡ℎ𝑜𝑅𝑛−𝜆−𝑡𝐺𝑜𝛼𝑜∆𝑇𝑟3−𝑛+𝜆+𝑡 (34f) 

+ℎ𝑜𝑅𝑛𝜔2𝜌𝑠(𝜆 − 4)𝑟4−𝑛 − ℎ𝑜𝑅𝑛−𝑚𝜔2𝜌𝑜(2𝜆 − 2𝑚 − 7)𝑟5−𝑛+𝑚 (34g) 

We use following dimensionless parameters to make Eq. (31) non-dimensional 

�̅� = ℎ𝑜
−1𝑅−3𝜌𝑜

−1𝜔−2𝜑, �̅� = 𝑅−1𝑟,    �̅�𝑠𝑠 = 𝜇𝑠𝑠𝑅−2, �̅�𝑜 = 𝑅−2𝜌𝑜
−1𝜔−2𝐺𝑜,   �̅�𝑠 = 𝑅−1𝜌𝑜

−1𝜌𝑠 (35) 

then Eq. (31) turns into 

𝑓4̅

𝜕4�̅�

𝜕�̅�4
+ 𝑓3̅

𝜕3�̅�

𝜕�̅�3
+ 𝑓2̅

𝜕2�̅�

𝜕�̅�2
+ 𝑓1̅

𝜕  �̅�

𝜕�̅�  
+ 𝑓0̅�̅� + 𝑓̅ = 0 (36) 

where 

𝑓4̅ = −2�̅�𝑠𝑠�̅�4 (37a) 

𝑓3̅ = 2�̅�𝑠𝑠(𝜆 − 3𝑛 − 2)�̅�3 (37b) 

𝑓2̅ = (4𝜆𝑛 − 6𝑛2 + 𝜆 − 𝑛)�̅�𝑠𝑠�̅�2 + 2�̅�4 (37c) 

𝑓1̅ = �̅�𝑠𝑠(2𝜆𝑛2 − 2𝑛3 − 2𝜆𝑛 + 4𝑛2 + 𝜆 − 𝑛)�̅�  + (−2𝜆 + 2𝑛 + 2)�̅�3 (37d) 

𝑓0̅ = −�̅�𝑠𝑠(𝑛 − 1)2(𝜆 − 𝑛) + (𝜆 − 𝑛 − 2)�̅�2 (37e) 

𝑓̅ = �̅�𝑠𝑠(𝑚 + 2)2(2𝜆 − 2𝑚 − 3)�̅�3−𝑛+𝑚 + 6𝑡�̅�𝑜𝛼𝑜∆𝑇�̅�3−𝑛+𝜆+𝑡 + �̅�𝑠(𝜆 − 4)�̅�4−𝑛

− (2𝜆 − 2𝑚 − 7)�̅�5−𝑛+𝑚 (37f) 

For fixed-free condition we can write 

𝑟 = 𝑟0: {

𝑢𝑟 = 0                                                   

𝜎𝑟
𝑛𝑙  (2𝜋𝑟0)ℎ𝑖𝑛 = ∬ 𝜌𝑟2𝜔2ℎ 𝑑𝑟𝑑𝜃

 (38a, 38b) 
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𝑟 = 𝑅: {
𝜎𝑟

𝑛𝑙 = 0

𝜎𝜃
𝑛𝑙 = 𝜎

 (39a, 39b) 

Assuming we have constant distribution of pressure at the outer radius, σ is an arbitrary 

constant value. 
 

3.1 DQM solution 
 

To solve Eq. (36) we use differential quadrature method (DQM), which is an efficient 
numerical method (means with minimum numbers of sample values of a function you will able 
gain more accurate solution) for the solution of complicated partial and ordinary differential 
equations and is applicable for all boundary conditions. This method has been inspired from 
Riemmann summation which is used for calculation definite integral. 

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

= 𝑤1𝑓1 + 𝑤2𝑓2 + ⋯ + 𝑤𝑛𝑓𝑛 = ∑ 𝑤𝑘𝑓𝑘

𝑛

𝑘=1

 (40) 

where 𝑤1, 𝑤2, … , 𝑤𝑛 are weighting coefficients and 𝑓1, 𝑓2, … , 𝑓𝑛 are the functional values at the 

discrete points a = x1,x2, … , xn = b. According to this procedure for “m” order derivative, we can 

write (Chang 2012) 

𝜕𝑚𝑓(𝑥𝑖)

𝜕𝑥𝑚
= ∑ 𝑤𝑖𝑗

(𝑚)
. 𝑓(𝑥𝑗)

𝑁

𝑗=1

, where  𝑖 = 1,2, … , 𝑁 , 𝑚 = 2,3, … , 𝑁 − 1 (37) 

In this equation weighting coefficients are calculated from following recurrence relation 

𝑤𝑖𝑗
(𝑚)

= 𝑚 [𝑤𝑖𝑗
(1)

𝑤𝑖𝑖
(𝑚−1)

−
𝑤𝑖𝑗

(𝑚−1)

𝑥𝑖 − 𝑥𝑗
] , 𝑤𝑖𝑖

(𝑚)
= − ∑ 𝑤𝑖𝑗

(𝑚)

𝑁

𝑗=1,𝑗≠𝑖

 (38) 

Knowing that 

𝑤𝑖𝑗
(1)

=
𝑀(1)(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗). 𝑀(1)(𝑥𝑗)
  𝑓𝑜𝑟 𝑖 ≠ 𝑗, 𝑤𝑖𝑖

(1)
= − ∑ 𝑤𝑖𝑗

(1)

𝑁

𝑗=1,𝑗≠𝑖

  ,

𝑀(1)(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑘)

𝑁

𝑘=1,𝑘≠𝑖

 

(39) 

We can use following equation instead of Eq. (38) 

𝑤𝑖𝑗
(2)

= ∑ 𝑤𝑖𝑘
(1)

𝑤𝑘𝑗
(1)

𝑛

𝑘=1

, 𝑤𝑖𝑗
(3)

= ∑ 𝑤𝑖𝑘
(1)

𝑤𝑘𝑗
(2)

𝑛

𝑘=1

, 𝑤𝑖𝑗
(4)

= ∑ 𝑤𝑖𝑘
(1)

𝑤𝑘𝑗
(3)

𝑛

𝑘=1

, … , 𝑤𝑖𝑗
(𝑚)

= ∑ 𝑤𝑖𝑘
(1)

𝑤𝑘𝑗
(𝑚−1)

𝑛

𝑘=1

 

(40) 

Remember that distribution of sample points has prominent role in definite convergence. It is 

better that such distribution be non-uniform and if possible, clustered near boundaries. In the 
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meanwhile the Chebyshev nodes would be the best choice (Chang 2012) 

�̅�𝑖 =
1 − �̅�0

2
(1 − cos (

𝑖 − 1

𝑁 − 1
𝜋) + �̅�0 (41) 

where N is the total number of sample points and �̅�0 = �̅�𝑖𝑛 . 

 

 

4. Numerical results and discussion 
 

Using Poly methyl methacrylate (PMMA) properties as an incompressible material (Schwartz 

2008) 

𝜌𝑜 = 1170 
𝑘𝑔

𝑚3⁄  , 𝐸𝑜 = 3 × 109  𝑁
𝑚2⁄  , 𝛼𝑜 = 9 × 10−10 𝐾−1 (42) 

And (Zhen et al. 2015) 

𝑅 = 𝑟𝑜𝑢 = 5 𝜇𝑚, ℎ𝑜 = 0.16 𝜇𝑚, 𝜔 = 20000 𝑟𝑝𝑚, 𝛥𝑇 =
𝜌0𝜔2𝑅2

𝐺0𝛼0
 (43) 

we study the effect of different parameters on stress, strain and displacement of the micro-disc. 

 

4.1 Effect of radius ratio (𝒄𝒓 =
𝒓𝒊𝒏

𝒓𝒐𝒖
)  

 

 

Fig. 3 Effect of inner radius to outer radius while m = n = λ = t = ρ̅s = μ̅ss = 1 

305



 

 

 

 

 

 

Farzad Ebrahimi and Ebrahim Heidari 
 

 

 

Fig. 3 presents, effect of mentioned variation in a situation that thickness, density, shear 

modulus and thermal expansion follow linear variation pattern.  

The first result that is common between all four diagrams is the tendency of linearity when 𝑐𝑟 

increases. The radial and hoop stresses have completely reverse behavior as 𝑐𝑟 increases, so that 

initial radial stress decreases while corresponding hoop stress with miserly changes starts to rise. 

They also have inverse behavior when they are coming in to the outer boundary; 𝑐𝑟 increasing 

ends up with steeper reach for radial stress than hoop stress. 𝑐𝑟 causes both radial strain and 

displacement (and thus hoop strain) in a weaker situation when it started to rise. It seems lower 

strains that take place as a result of  𝑐𝑟 increasing, strengthens radial stresses and weakens hoop 

stresses. 
 

4.2 Effect of thickness(n) 
 

Fig. 4 depicts, influenced behavior by thickness (we have fixed 𝑐𝑟 ratio at 0.2). It’s assumed 

that density, shear modulus and thermal expansion are constant.  

First, let’s see what happens to thickness when “n” increases or decreases; when n is minus, 

thickness function is increasing, and for positive values of “n” we have decreasing variation for 

thickness function; this means that for minus values of “n”, outer radiuses are thicker and for 

positive values of “n” inner radius are thicker. On the other hand by increasing “n” at each radius,  

 

Fig. 4 Effect of thickness while 𝐦 = 𝛌 = 𝐭 = 𝟎 , �̅�𝐬 = �̅�𝐬𝐬 = 𝟏 
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corresponding thickness decreases but the slope of thickness function will be steeper. According to 

Fig. 4 “n” increasing, has the regular effect on all outputs except on hoop stress. Not to mention 

hoop stress, by decreasing “n” (meaning increasing thickness at every radius) the absolute value of 

radial stress, radial strain and displacement boundlessly grows but on the contrary when “n” 

increases all of the curves converge with each other; it means the thicker micro disc delivers 

higher tensile radial stress, and higher contractive radial strain and displacement, and thinner disc 

acts like the thickness linear function (n=1). But in the case of hoop stress, we have two different 

behaviors, first, when “n” is minus and zero and second, when “n” is positive. In each situation we 

have an intersect point close to the middle of disc. On the right side of intersect point we have 

compressive hoop stress and higher thickness delivered higher compressive stress, but anyway we 

see bounded behavior of hoop stress. The situation is different on the left side of intersect point. 

With the first case, the hoop stress turns into tensile near the inner radius and again, the thicker 

disc, the higher tensile hoop stress. But with the second case we have downward concavity, and on 

the contrary, a thinner disc will have a little more compressive hoop stress. Anyway when the 

positive “n” increases, hoop stress curves diverge from uniform curve (n=0) and we can say when 

a micro disc becomes thinner, hoop stress acts like that the thickness is constant. In an overview, 

radial stresses tend to be tensile and hoop stresses tend to be tensile at inner radius while they are 

willing to be compressive at outer boundary. The attitudinal behavior of radial strain and 

displacement is contractive. 

 

Fig. 5 Effect of density while 𝐧 = 𝛌 = 𝐭 = 𝟎 , �̅�𝐬 = �̅�𝐬𝐬 = 𝟏 
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4.3 Effect of density(m) 
 

Fig. 5 shows effect of density on outputs while thickness, shear modulus and thermal expansion 

are constant.  

Density of material in each radius is diminished when the power “m” started to rise, instead, 

falling of “m” dents the material at any radius of disc. As Fig. 5 is showing, a denser micro disc 

(decreasing “m”) diverges radial strain curves and radial displacement curves (and thus hoop strain 

curves) from each other separately, the more and more, and leads them toward contractive state for 

displacement, and in result we achieve the stronger tensile radial stress. Again, you can see, when 

“m” started to increasing, in the other words, when density in each radius becomes thin, the 

mentioned curves converges with each other and they tend to acts as if density function is linear 

(m=1). 

As thickness effect, there is a conjunction point in hoop stress diagram. When we are in the 

right side of this point, where we are close to the outer boundary, the stresses tend to be 

compressive, in return, in the left side of intersecting point they will try to rise in tensile area of 

diagram. 

There is still convergence tendency between the hoop stress curves when density of micro disc 

in each radius becomes thinner in addition, the thicker density, the higher compressive and tensile 

hoop stress. In summary, radial stresses tend to be tensile, hoop stresses in the outer tends to be  

 

Fig. 6 Effect of shear modulus 𝐦 = 𝐧 = 𝐭 = 𝟎 , �̅�𝐬 = �̅�𝐬𝐬 = 𝟏 
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compressive while in the inner boundary it becomes vice versa. Radial strain and displacement 

tends to be compressive. 

 
4.4 Effect of shear modulus (λ) 
 

Fig. 6 is related to effect of shear modulus on outputs, while thickness, density and thermal 

expansion are constant. This effect on hoop stress, radial strain and radial displacement is the same 

as effect of density. But in the case of radial stresses, it is visible that related curves tend to 

convergence with each other. Here, we must not neglect, that the values for radial displacement 

under influence of changing shear modulus is correspondingly lower than values are influenced by 

density effect. So we can conclude that radial stresses tend to be tensile which do as a linear 

variation of shear modulus. Hoop stresses in the outer boundary tend to be compressive while their 

actions in the inner boundary go toward tensile stresses. The both of radial strain and displacement 

have contractive tendency. 

 

4.5 Effect of thermal expansion (t) 
 

Assuming shear modulus, density and thermal expansion are constant, Fig. 7 pictures effect of 

power law variation of thermal expansion on strains, stresses and displacements of micro disc. The  

 

Fig. 7 Effect of thermal expansion while 𝐦 = 𝛌 = 𝐧 = 𝟎 , �̅�𝐬 = �̅�𝐬𝐬 = 𝟏 
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rise of “t” rises hoop (near the inner radius) and radial stresses but for radial strain and 

displacement this effect is vice versa. Also, rising of “t” converges all of curves with each other, 

however, in this case the radial stress curves are innately convergent. Intersecting point that 

discussed in above clauses exists here, too. Hoop stress in the outer boundary tends to be 

compressive but in the inner boundary their tendency is tensile state. Like before, radial stresses 

have tensile attitudinal behavior. Unlike previous cases, here, radial strains and displacements tend 

to be expansionary. 

 

4.6 Effect of temperature rise (ΔT) 
 

Supposing all radial variations are linear, Fig. 8 depicts effect of uniform temperature rise on 

the discussed outputs. When the temperature rise becomes very little (in the tenth and hundredth or 

lower) the curves completely converge with each other, for this reason we has used higher values 

for ΔT to make visible behavior of all out puts. 

As you can see in Fig. 8 except for radial stress all manners are like thermal expansion 

variation. With a glance at Fig. 8 we are able to find that ΔT is trying to put micro disc in the 

compressive hoop stresses state while thermal expansion (previous discussion) resists to this 

action. Increasing of ΔT diverges radial stresses from each other. There is no limited behavior in 

this case, unless ΔT is very little. For the case of micro devices such as gas turbines (MGTs) we  

 

Fig. 8 Effect of uniform temperature rise while 𝐦 = 𝛌 = 𝐭 = 𝐧 = �̅�𝐬 = �̅�𝐬𝐬 = 𝟏 
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Fig. 9 Effect of uniform temperature rise for micro gas turbine situation while 𝐦 = 𝛌 = 𝐭 = 𝐧 =
�̅�𝐬 = �̅�𝐬𝐬 = 𝟏 

 

Fig. 10 Effect of outer boundary condition while 𝐦 = 𝛌 = 𝐭 = 𝐧 = �̅�𝐬 = �̅�𝐬𝐬 = 𝟏 
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Fig. 11 Effect of surface condition while m = λ = t = n = μ̅ss = 1 
 

 

have drawn another exaggerated diagram (Fig. 9). For the MGTs the inside temperature for MGTs 

reaches up to 950°C; we have consider temperature rise of 2000°C (K) too much larger than glass 

transition temperature only to show what happened if the glass transition temperature (the 

temperature between solid and liquid state transition) would be large up to 2000°C. As you can see 

for a FGIM that the outer surface made of PMMA, like PVC/PMMA the maximum non 

dimensional tensile stress would be about 400; in worse situation the tensile stress of PVC/PMMA 

combination is 4.5 kgf/mm2 (Schwartz 2008) , or 3.5e+8 non dimension value that is too big than 

400. 

As you know one of the features of incompressible material is their good resistance in front of 

compression. Also you can see that radial displacement in crises situation would be 1.2e-4 that is 

noticeable for fit-up goals. However, considering that glass transition temperature is too much less 

2000°C, we can conclude for temperature that is under glass transition temperature, FGIMs can be 

one of appropriate choices. 

 

4.7 Effect of outer boundary condition 
 

Fig. 10 is related to different outer boundary conditions. Increasing the value of outer boundary 

condition alters the slope of radial stresses and weakens them miserly. Outer hoop stress falling  
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Fig. 12 Effect of nonlocal parameter while m = λ = t = n = ρ̅s = 1 
 

 

cannot rises inner hoop stress continuously and after some steps rising speed of hoop stress at the 

inner radius is lowered. Radial strain reaches in limited state by decreasing the value of outer hoop 

stress boundary condition; Radial displacement curves, have similar states in each value of 

boundary condition which results in parallel curves as you can see in Fig. 10. 

 

4.8 Effect of surface (�̅�𝒔) 
 

Fig. 11 depicts effect of surface on introduced outputs. The first thing that is visible in all 

diagrams is convergence feature of them. We have seen the effect of this feature on previous 

studied cases. Radial stresses tend to be tensile. Existence of intersect point in hoop stress, radial 

strain and radial displacement causes contradictory behaviors on both sides of disc; the hoop 

stresses on the right side of intersect point tend to be tensile while they tends to be compressive at 

the left side of mentioned point. The behavior of radial strain and displacement is the same as hoop 

stress, except that tensile state covers most part of the disc for hoop stress and radial strain. 

 

4.9 Effect of nonlocal parameter (�̅�𝒔𝒔) 
 

Fig. 12 pictures, the effect of nonlocal parameter on intended outputs. There is strictly 

convergence in plotted diagrams so we forced to use large interval between our steps. It seems the  
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Fig. 13 Verification diagram m = t = n = ρ̅s = μ̅ss = 0 , λ = 1, the (*) related to Reference (Nie and 

Batra 2010) and continuous line related to present research 

 

 

convergent effect of nonlocal parameter on previous studied cases be more than the same effect of 

surface stress. Under effect of nonlocal parameter radial stresses tend to be in tensile state. 

Propagation of hoop stresses in the area of tensile and compressive stresses is similar and we don’t 

see any excellence in these fields. However, about radial strain and displacement it’s visible that in 

the outer radiuses, expansionary state is dominant while in the large part of disc around the inner 

radius, contractive state has prominent role in behavior of radial displacement.  

 
 
5. Conclusions 

 

We studied effect of different input specially nonlocal and surface on stresses and strains in a 

rotating micro disc on the uniform thermal loading. We saw that the surface tends to split situation 

over the micro disc to compressive and tensile, while nonlocal parameters tries by converging, 

assimilate deferent behaviors. The nonlocal parameter tendency to converge the studied curves, is 

decreased by increasing temperature rise; needless to say that we don’t see sudden changes in hoop 

and radial stresses (Fig. 8 and Fig. 9). We also concluded under glass transition temperature 

FGIMs are able to act very well. To verify our result it is enough to set the value of nonlocal and 
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surface parameters to zero and compare gained values with similar articles; as you can see in 

figure Fig. 13, the nonlocal and surface solution (continuous line) is coincides with previous 

analytical study (Nie and Batra 2010). 
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