
 

 

 

 

 

 

 

Advances in Aircraft and Spacecraft Science, Vol. 4, No. 3 (2017) 269-280 

DOI: http://dx.doi.org/10.12989/aas.2017.4.3.269                                            269 

Copyright ©  2017 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=aas&subpage=7        ISSN: 2287-528X (Print), 2287-5271 (Online) 
 
 
 

 

 
 
 

Vibration analysis of generalized thermoelastic microbeams 
resting on visco-Pasternak’s foundations 

 

Ashraf M. Zenkour
1,2 

 
1
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia 

2
Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt 

 
(Received March 10, 2016, Revised June 28, 2016, Accepted July 22, 2016) 

 
Abstract.  The natural vibration analysis of microbeams resting on visco-Pasternak’s foundation is 
presented. The thermoelasticity theory of Green and Naghdi without energy dissipation as well as the 
classical Euler-Bernoulli’s beam theory is used for description of natural frequencies of the microbeam. The 
generalized thermoelasticity model is used to obtain the free vibration frequencies due to the coupling 
equations of a simply-supported microbeam resting on the three-parameter viscoelastic foundation. The 
fundamental frequencies are evaluated in terms of length-to-thickness ratio, width-to-thickness ratio and 
three foundation parameters. Sample natural frequencies are tabulated and plotted for sensing the effect of 
all used parameters and to investigate the visco-Pasternak’s parameters for future comparisons. 
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1. Introduction 

 

The analysis of beams is one of important topics in civil engineering, and it was a subject of 

investigation for many decades. Vibrations of the beam-structured resting on elastic foundations 

are of a wide practical interest involving applications such as analyses of roads, rail tracks and 

foundations of diverse structures. There have been a large number of publications related to this 

problem considering different types of foundation such as Winkler, Pasternak, elastic or visco-

elastic, linear or non-linear. The Winkler’s foundation parameter is capable of just normal load 

while Pasternak’s foundation parameter is both capable of transverse shear and normal loads. The 

influence of the viscosity or damping as a third parameter of the foundation is still very rare in the 

literature. In last decades, the dynamic response analysis of such beams on thermo-visco-elastic 

foundation has been one of the research interests of many engineering applications. So far and 

during these years many researchers have conducted and investigated different studies in this field. 

The simple viscoelastic foundation model is consisting of a spring of constant stiffness and a 

dashpot of viscosity coefficient that placed parallel (visco-Winkler’s foundation model). Sun 

(2001) has used Fourier’s transform to solve the problem of steady state response of a beam on a 

viscoelastic foundation subjected to a harmonic line load. Chen et al. (2001) have established the 

dynamic stiffness matrix of beams on viscoelastic foundations subjected to a harmonic moving 

                                           

Corresponding author, Professor, E-mail: zenkour@kau.edu.sa 



 

 

 

 

 

 

Ashraf M. Zenkour 

load as a function of the velocity and frequency of the harmonic moving load. Ding et al. (2012) 

have introduced an investigation of the convergence of the Galerkin’s method for the dynamic 

response of a uniform beam resting on a nonlinear foundation with viscous damping subjected to a 

moving concentrated load. The foundation is taken as a nonlinear Winkler’s foundation with 

linear-plus-cubic stiffness and viscous damping with three parameters. Jumel et al. (2013) have 

presented the Winkler’s viscoelastic foundation analysis of single cantilevered beam under 

stationary loading. 

The dynamic response of beams on the generalized Pasternak’s viscoelastic foundations 

subjected to an arbitrary distributed harmonic moving load has been analyzed in Kargarnovin and 

Younesian (2004). Kargarnovin et al. (2005) have studied the response of infinite beams supported 

by nonlinear viscoelastic foundation subjected to harmonic moving loads. They have solved the 

governing equations using perturbation method in conjunction with complex Fourier’s 

transformation. Younesian et al. (2006) have studied the vibration response of a Timoshenko beam 

supported by a viscoelastic foundation with randomly distributed parameters along the beam 

length. They have assumed that the beam is subjected to a harmonic moving load by employing 

appropriate Green’s functions. Muscolino and Palmeri (2007) have presented the response of 

beams resting on viscoelastic damped foundation under moving oscillators. Sapountzakis and 

Kampitsis (2011) have developed a boundary element method for the geometrically nonlinear 

response of shear deformable beams of simply or multiply connected constant cross-section. These 

beams may be traversed by moving loads and resting on tensionless nonlinear three-parameter 

viscoelastic foundation. Zhang and Wang (2012) have presented the interface stress redistribution 

in FRP-strengthened reinforced concrete beams using a three-parameter viscoelastic foundation 

model. Goodarzi et al. (2014) have studied the free vibration behavior of rectangular graphene 

sheet under visco-Pasternak’s foundation using the nonlocal elasticity. Mohammadimehr et al. 

(2015) have investigated the free vibration analysis of tapered viscoelastic micro-rod resting on 

visco-Pasternak’s foundation based on strain gradient theory. Hashemi et al. (2015) have presented 

the exact solution for free vibration of coupled double viscoelastic graphene sheets by visco-

Pasternak’s medium based on the nonlocal theory. Peng and Wang (2015) have investigated the 

transverse vibration frequencies of finite Euler-Bernoulli’s beams resting on three-parameter 

viscoelastic foundations using differential quadrature method. 

The vibration problem of elastic structures resting on viscoelastic foundation displays viscous 

characters, and the solution becomes difficult. The author has presented some publications on the 

topic of finite structures resting on elastic foundation (Zenkour 2009, 2010, 2015, Zenkour and 

Sobhy 2011, Al Khateeb and Zenkour 2014), the foundation is assumed as linear elastic one, or 

two, and the problems are mainly studied. Recently, Zenkour (2016a, b) has presented nonlocal 

transient thermal analysis of a single-layered graphene sheet embedded in visco-Pasternak’s 

medium using nonlocal elasticity theory. 

Wide applications of micro-mechanical system in different industrial fields such as biomedical 

engineering, aviation and aerospace industries have convinced many researchers to focus on the 

analysis of vibration of microstructures such as microbeams and microplates. Since, when 

thickness of plate decreases and reaches to the order of microns, the size-effect plays an important 

role in the mechanical behaviors of microplates. In most literature, the vibration problems of 

thermal microbeam embedded with elastic or viscoelastic medium are solved by using a simple 

classical or shear deformation theories with appropriate boundary conditions. The inclusion of the 

thermal effect has been considered without solving the heat conduction equation. With respect to 

developmental works on analysis of coupled thermoelasticity, it should be noted that none of the  

270

http://www.sciencedirect.com/science/article/pii/S135983681500236X
http://www.sciencedirect.com/science/article/pii/S135983681500236X


 

 

 

 

 

 

Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak’s foundations 

 

Fig. 1 Schematic diagram for the microbeam resting on visco-Pasternak’s foundations 

 

 

research mentioned above or in the literature, has considered such coupled thermoelasticity 

problem. 

The present paper deals with the dynamic response of generalized thermoelastic microbeam 

resting on three-parameter elastic foundation. The microbeam is embedded with three-parameter 

viscoelastic medium where simulated by visco-Pasternak’s type as spring, shear and damping 

foundations. The heat conduction in the context of Green and Naghdi’s generalized 

thermoelasticity theory without energy dissipation is considered. The coupled differential 

equations are used to get the natural vibration frequencies. The effects of many parameters on the 

vibration frequencies are investigated. Various results are graphically illustrated and sample results 

are tabulated for future comparisons. 

 

 

2. The GN thermoelastic and Euler-Bernoulli model 
 

Let us consider a rectangular microbeam (Fig. 1) of length 𝐿 (0 ≤ 𝑥 ≤ 𝐿), width 𝑏 (−𝑏/2 ≤
𝑦 ≤ 𝑏/2) and thickness ℎ (−ℎ/2 ≤ 𝑧 ≤ ℎ/2) with cross-section of area 𝐴 = ℎ𝑏. We define the 

𝑥-coordinate along the axis of the beam, with the 𝑦- and 𝑧- coordinates corresponding to the 

width and thickness, respectively. The beam is made of a homogeneous isotropic and linearly 

elastic material with modulus of elasticity 𝐸 and Poisson’s ratio 𝜈. The beam is supported on a 

homogeneous three-parameter viscoelastic soil. The foundation model is characterized by the 

linear Winkler’s modulus 𝐾1, the Pasternak’s (shear) foundation modulus 𝐾2 and the damping 

coefficient 𝜏0. Taking into account the un-bonded contact between beam and soil, the interaction 

between the beam and the supporting foundation can be only compressive and follows the three-

parameter Pasternak’s model as 

𝑅𝑓 = 𝐾1𝑤(𝑥, 𝑡) − 𝐾2
𝜕2𝑤

𝜕𝑥2 − 𝜏0
𝜕𝑤

𝜕𝑡
,                       (1) 

where 𝑅𝑓 is the foundation reaction per unit area, 𝑤 is the lateral deflection and 𝜏0 may said to 

be the mechanical relaxation time due to the viscosity. This model is simply reducing to the visco-

Winkler’s type when 𝐾2 = 0. The viscosity term may be omitted by setting 𝜏0 = 0 to get the 

thermoelastic analysis of the microbeam on simple elastic foundation. 

ℎ 

  

𝑥 𝐿 

  

𝑦 

  

𝑧 

𝐾2 

𝐾1 

𝜏0 
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In equilibrium, the beam is unstrained, at zero stress and constant temperature 𝑇0 everywhere. 

The beam undergoes bending vibrations of small amplitude about the 𝑥-axis such that the 

deflection is consistent with the linear Euler-Bernoulli’s (E-B) theory. That is, any plane cross-

section initially perpendicular to the axis of the beam remains plane and perpendicular to the 

neutral surface during bending. Thus, the displacements are given by 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
,    𝑣 = 0,     𝑤 = 𝑤(𝑥, 𝑡),                      (2) 

The time-dependency is considered in entire displacement components 𝑢 and 𝑤. The relevant 

constitutive equation for the axial stress 𝜍𝑥 reads 

𝜍𝑥 = −𝐸 (𝑧
𝜕2𝑤

𝜕𝑥2 + 𝛼𝑇𝜃),                  (3) 

where 𝜃 = 𝑇 − 𝑇0  is the excess temperature with 𝑇0  denoting the constant environmental 

temperature, 𝛼𝑇 = 𝛼𝑡/(1 − 2𝜈) in which 𝛼𝑡 is the thermal expansion coefficient. 

For transverse deflections, the corresponding equation of motion reads 

𝜕2𝑀

𝜕𝑥2 − 𝑅𝑓 = 𝜌𝐴𝑤̈,             (4) 

where 𝜌 is the material density and the superimposed dot indicates partial derivative with respect 

to time 𝑡. Accordingly, the E-B flexural moment of the cross-section is given, with aid of Eq. (3), 

by the expression 

𝑀 = −𝐸𝐼 (
𝜕2𝑤

𝜕𝑥2 + 𝛼𝑇𝑀𝑇),                    (5) 

where 𝐼 = 𝑏ℎ3/12 is the moment of inertia, 𝐸𝐼 is the flexural rigidity of the beam, and 𝑀𝑇 is 

the thermal moment defined by 

𝑀𝑇 =
12

ℎ3 ∫  𝜃(𝑥, 𝑧, 𝑡)𝑧d𝑧
ℎ/2

−ℎ/2
.                        (6) 

Substituting Eqs. (1) and (5) into Eq. (4), one obtains the motion equation of the beam in the 

form 

(
𝜕4

𝜕𝑥4 −
𝐾2

𝐸𝐼

𝜕2

𝜕𝑥2 +
𝜌𝐴

𝐸𝐼

𝜕2

𝜕𝑡2 −
𝜏0

𝐸𝐼

𝜕

𝜕𝑡
+

𝐾1

𝐸𝐼
) 𝑤 + 𝛼𝑇

𝜕2𝑀𝑇

𝜕𝑥2 = 0.                (7) 

The heat conduction in the context of Green and Naghdi’s generalized thermoelasticity theory 

without energy dissipation is given by (Green and Naghdi 1993) 

𝜅∗𝛻2𝜃 + (1 +
𝜕

𝜕𝑡
) (𝜌𝑄∗) =

𝜕

𝜕𝑡
(𝜌𝐶𝜐 𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕𝑒

𝜕𝑡
),                  (8) 

where 𝜅∗ is the thermal conductivity (the material constant characteristic), 𝐶𝜐 is the specific 

heat per unit mass at constant strain, 𝑒 = 𝜀𝑘𝑘 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
 is the volumetric strain, 𝑄∗ is the 

heat source, and 𝛾 = 𝛼𝑇𝐸 = 𝛼𝑡𝐸/(1 − 2𝜈)  is the thermoelastic coupling parameter. The 

corresponding thermal conduction equation for the microbeam under consideration without heat 

source is obtained by specializing Eq. (8) to present the E-B beam configuration as 

𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑧2 =
1

𝜅∗

𝜕2

𝜕𝑡2 (𝜌𝐶𝜐𝜃 − 𝛾𝑇0𝑧
𝜕2𝑤

𝜕𝑥2 ).                       (9) 

Multiplying Eq. (9) by 
12𝑧

ℎ3 , and integrating it with respect to 𝑧 through the beam thickness 

272



 

 

 

 

 

 

Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak’s foundations 

from −
ℎ

2
 to 

ℎ

2
, yields 

 
𝜕2𝑀𝑇

𝜕𝑥2 + 𝑧
𝜕𝜃

𝜕𝑧
|

−ℎ/2

+ℎ/2
−

12

ℎ3 𝜃|
−

ℎ

2

+
ℎ

2 =
1

𝜅∗

𝜕2

𝜕𝑡2 (𝜌𝐶𝜐𝑀𝑇 − 𝛾𝑇0
𝜕2𝑤

𝜕𝑥2 ). (10) 

Since no heat flow occurs across the upper and lower surfaces of the beam (thermally 

insulated), it follows that 
𝜕𝜃

𝜕𝑧
|

−ℎ/2

+ℎ/2
= 0. For the present microbeam, it is assumed that there is a 

cubic polynomial variation of temperature increment along the thickness direction. This 

assumption leads to (Guo and Rogerson 2003) 

 𝑀𝑇 =
6

5ℎ
𝜃|−ℎ/2

+ℎ/2
. (11) 

So, at this point Eq. (10) becomes 

 
𝜕2𝑀𝑇

𝜕𝑥2 −
10

ℎ2 𝑀𝑇 = 𝜂
𝜕2

𝜕𝑡2 (𝑀𝑇 −
𝜀

𝛼𝑇

𝜕2𝑤

𝜕𝑥2 ), (12) 

where 𝜀 =
𝛼𝑇𝛾𝑇0

𝜂𝜅∗  and 𝜂 =
𝜌𝐶𝜐

𝜅∗ . 

 

 

3. Analytical solution 
 

We now search for analytical solutions of the coupled system of Eqs. (7) and (12), along with 

Eq. (5) for the bending moment. Concerning the heat conditions of the present microbeam, we 

assume that no heat flow occurs across its upper and lower surfaces (thermally insulated), that is 

 
𝜕𝜃

𝜕𝑧
|

𝑧=±ℎ/2
= 0. (13) 

However, the microbeam is subjected to simply-supported mechanical conditions at its edges 

𝑥 = 0 and 𝑥 = 𝐿 as 

 𝑤 = 𝑀 = 0. (14) 

Following the Navier-type solution, the deflection and moment that satisfy the boundary 

conditions may be expressed as 

 *𝑤(𝑥, 𝑡), 𝑀(𝑥, 𝑡)+ = ∑ *𝑤𝑛
∗, 𝑀𝑛

∗+ sin(𝜆𝑛𝑥) e𝜔𝑡𝑁
𝑛=1 , (15) 

where 𝑤𝑛
∗ and 𝑀𝑛

∗  are arbitrary parameters, 𝜆𝑛 =
𝑛𝜋

𝐿
, 𝑛 is a mode number and 𝜔 denotes the 

complex angular frequency. According to Eqs. (5) and (13), the thermal bending moment has the 

same behavior form as the bending moment. Substituting Eq. (15) into Eqs. (7) and (12) gives 

 (𝜆𝑛
4 +

𝐾1

𝐸𝐼
+

𝐾2

𝐸𝐼
𝜆𝑛

2 −
𝜏0

𝐸𝐼
𝜔 +

𝜌𝐴

𝐸𝐼
𝜔2) 𝑤𝑛

∗ − 𝛼𝑇𝜆𝑛
2 𝑀𝑛𝑇

∗ = 0, (16) 

 𝜂𝜀𝜆𝑛
2 𝜔2𝑤𝑛

∗ + 𝛼𝑇 (𝜂𝜔2 + 𝜆𝑛
2 +

10

ℎ2) 𝑀𝑛𝑇
∗ = 0. (17) 

where 𝑀𝑛𝑇
∗  is an arbitrary thermal parameter. 

The angular frequency is given in the form 𝜔 = 𝜔0 + 𝑖𝜁 where 𝑖 is an imaginary unit. Then 

e𝜔𝑡 = e𝜔0𝑡(cos 𝜁𝑡 + 𝑖 sin 𝜁𝑡) and for small values of time, most investigators may take the real 
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value of 𝜔 (i.e., 𝜔 = 𝜔0). Here, we will get the fundamental frequencies for the present beam 

with and without the inclusion of 𝜁. In what follows we will use the following dimensionless 

variables 

 {𝜔́, 𝜔́0, 𝜁́} =
𝐿2

ℎ
√

𝜌

𝐸
*𝜔, 𝜔0, 𝜁+,      𝜏́0 =

ℎ

𝐿2 √
𝐸

𝜌
𝜏0. (18) 

Then, the governing equations, Eqs. (16) and (17) become (dropping the acute sign for 

convenience) 

 *ℎ4𝜆𝑛
4 + 𝑘1 + ℎ2𝜆𝑛

2 𝑘2 −
12ℎ𝜏0

𝐸𝑏
(𝜔0 + 𝑖𝜁) +

12ℎ4

𝐿4
(𝜔0 + 𝑖𝜁)2+ 𝑤𝑛

∗ − 𝛼𝑇ℎ4𝜆𝑛
2 𝑀𝑛𝑇

∗ = 0, (19) 

 𝜂𝜀𝐸ℎ2𝜆𝑛
2 (𝜔0 + 𝑖𝜁)2𝑤𝑛

∗ + 𝛼𝑇 *𝜂𝐸ℎ2(𝜔0 + 𝑖𝜁)2 + 𝜌𝐿4 (𝜆𝑛
2 +

10

ℎ2)+ 𝑀𝑛𝑇
∗ = 0, (20) 

where 𝑘1 =
ℎ4𝐾1

𝐸𝐼
 and 𝑘2 =

ℎ2𝐾2

𝐸𝐼
 are the dimensionless foundation parameters. To get the 

nontrivial solution of the above equations, the parameter 𝑤𝑛
∗ and 𝑀𝑛𝑇

∗  must be nonzero. Then, 

the determinate of the coefficients should be vanished. This tends to the frequency equation 

 𝜔4 − 𝐴3𝜔3 + 𝐴2𝜔2 − 𝐴1𝜔 + 𝐴0 = 0, (21) 

where 

 

𝐴0 =
𝜌

12𝜂𝐸
[ℎ𝐿

6𝜆̅𝑛
6 + (𝑘2 + 10)ℎ𝐿

4𝜆̅𝑛
4 + (𝑘1 + 10𝑘2)ℎ𝐿

2𝜆̅𝑛
2 + 10𝑘1],      𝐴3 =

ℎ𝑏𝜏0

ℎ𝐿
4𝐸

,

𝐴1 =
𝜌ℎ𝑏𝜏0

𝜂𝐸2ℎ𝐿
8 (ℎ𝐿

2𝜆̅𝑛
2 + 10),     𝐴2 = 1

12
(1 +

𝜀

𝜂
) 𝜆̅𝑛

4 +
𝑘1

12ℎ𝐿
4 +

𝜆̅𝑛
2 𝑘2

12ℎ𝐿
2 +

𝜌

𝜂𝐸ℎ𝐿
2 (𝜆̅𝑛

2 +
10

ℎ𝐿
2) ,

 (22) 

in which ℎ𝐿 =
ℎ

𝐿
, ℎ𝑏 =

ℎ

𝑏
 and 𝜆̅𝑛 = 𝑛𝜋. If we neglect 𝜁, the frequency equation is given as in 

Eq. (21) with 𝜔 tends 𝜔0. However, the frequency equation with the inclusion of 𝜁 is given by 

 𝜔0
4 − 𝐵3𝜔0

3 + 𝐵2𝜔0
2 − 𝐵1𝜔0 + 𝐵0 = 0, (23) 

where 

 
𝐵0 = 𝐴0 + 𝜁4 + 𝑖𝐴3𝜁3 − 𝐴2𝜁2 − 𝑖𝐴1𝜁,

𝐵1 = 𝐴1 + 4𝑖𝜁3 − 3𝐴3𝜁2 − 2𝑖𝐴2𝜁,     𝐵2 = 𝐴2 − 6𝜁2 − 3𝑖𝐴3𝜁,     𝐵3 = 𝐴3 − 4𝑖𝜁.
 (24) 

The four roots of Eq. (23) are given by 

 1

4
 𝐵3 +

𝜉2±√−𝜉4−2𝜉2𝑐2−2𝜉𝑐1

2𝜉
,     1

4
 𝐵3 −

𝜉2±√−𝜉4−2𝜉2𝑐2+2𝜉𝑐1

2𝜉
, (25) 

where 𝜉2 = 2𝜉̅ − 𝑐2 and 𝜉̅ is the real root of the equation 

 𝜉̅3 − 1

2
 𝑐2𝜉̅2 − 𝑐0𝜉̅ + 1

2
 𝑐0𝑐2 − 1

8
 𝑐1

2 = 0, (26) 

in which 

 
𝑐0 = 𝐵0 − 1

4
 𝐵1𝐵3 + 1

16
 𝐵2𝐵3

2 − 3

256
 𝐵3

4,

𝑐1 = −𝐵1 + 1

2
 𝐵2𝐵3 − 1

8
 𝐵3

3,      𝑐2 = 𝐵2 − 3

8
 𝐵3

2.
 (27) 

 

 

4. Numerical results and discussions 
 

Let us consider several numerical applications to put into evidence the influence of the length-

274



 

 

 

 

 

 

Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak’s foundations 

to-thickness ratio, the width-to-thickness ratio, the foundation parameters, and the viscous 

damping coefficient. The material used for the present microbeam is the silicon at reference 

temperature 𝑇0 = 293 K with the following properties (Sun and Saka 2010) 

 
𝐸 = 165.9 GPa,     𝜈 = 0.22,     𝜌 = 2330 kg/m3,

𝐶𝜐 = 1.661 J/kg K,     𝛼𝑇 = 2.59 (10−6/K),      𝜅∗ = 156 W/mK.
 (28) 

All plots are prepared by using the smallest real value of the dimensionless parameter 𝜔0. The 

imaginary part 𝜁 has a very trivial effect and so it may be neglected. Reliable fundamental 

frequency (𝑛 = 1) and natural frequencies (𝑛 > 1) are graphically illustrated. The computations 

are carried out (except otherwise stated) for 𝐿/ℎ = 10, 𝑏/ℎ = 1, 𝑘1 = 0.05, and 𝑘2 = 0.1. 

Other different values are given to the visco-Pasternak’s parameters 𝜏0, 𝑘1, and 𝑘2 and the 

length-to-thickness ratio 𝐿/ℎ. 

Benchmark results are presented in Table 1 for future comparisons with other investigators. The 

effect of visco-Pasternak’s parameters on the free natural frequencies is discussed. It is to be noted 

that the natural vibration frequency 𝜔0  increases as 𝑛 , 𝑘1 , and 𝑘2  increase. However 𝜔0 

decreases as 𝜏0 increases. 

Figs. 2 and 3 show the fundamental frequency 𝜔0 vs the viscous damping coefficient 𝜏0 for 

various foundation parameters with 𝐿/ℎ = 10 and 𝐿/ℎ = 20, respectively. The fundamental 

frequency is increasing to a maximum vertex point then it is rapidly decreasing again. The path in 

which 𝜔0 increases is the same for different foundation parameters. The position of the maximum 

vertex point is rising with the increase of the foundation parameter. The two plots show the 

sensitivity of 𝜔0 to the variation of viscous damping coefficient 𝜏0. 

 

 
Table 1 Effect of the viscous damping coefficient 𝜏0 and the foundation parameters 𝑘1 and 𝑘2 on the 

natural frequency 𝜔0 

𝜏0 𝑘1 𝑘2 
𝑛 

1 2 3 4 5 

0.5 

0 0 0.05322 0.85604 4.43850 15.11765 48.96565 

0.05 0.1 1.57321 2.76914 7.11527 19.41279 67.74684 

0.1 0.2 3.12477 4.73337 9.89988 24.05997 76.28843 

0.2 0.3 6.19891 8.28674 14.49026 31.45709 76.28995 

0.7 

0 0 0.03801 0.60977 3.12381 10.21710 27.21950 

0.05 0.1 1.11799 1.96004 4.96052 12.87848 31.57026 

0.1 0.2 2.20911 3.32794 6.83097 15.61751 36.18857 

0.2 0.3 4.33591 5.75254 9.81854 19.64316 42.75696 

1.0 

0 0 0.02660 0.42621 2.17012 6.96904 17.64611 

0.05 0.1 0.78049 1.36555 3.43029 8.72064 20.16563 

0.1 0.2 1.53814 2.31076 4.70119 10.49383 22.73404 

0.2 0.3 3.00308 3.96999 6.70435 13.04327 26.18602 

1.5 

0 0 0.01773 0.28392 1.44100 4.58587 11.36602 

0.05 0.1 0.51959 0.90810 2.27243 5.71907 12.92003 

0.1 0.2 1.02254 1.53398 3.10693 6.85806 14.48530 

0.2 0.3 1.99101 2.62730 4.41393 8.48098 16.55828 
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Fig. 2 The fundamental frequency 𝜔0  vs the 

viscous damping coefficient 𝜏0  for various 

foundation (𝐿/ℎ = 10) 

Fig. 3 The fundamental frequency 𝜔0  vs the 

viscous damping coefficient 𝜏0  for various 

foundation (𝐿/ℎ = 20) 

 

  

Fig. 4 The natural frequency 𝜔0 vs the viscous 

damping coefficient 𝜏0 

Fig. 5 The natural frequency 𝜔0 vs the length-to-

thickness ratio 𝐿/ℎ 

 

 

The natural frequency 𝜔0 vs the viscous damping coefficient 𝜏0 is plotted in Fig. 4. Once 

again, 𝜔0 increases to a maximum vertex point then it is rapidly decreasing again. The path in 

which 𝜔0 increases is the same for different modes 𝑛. The position of the maximum vertex point 

is rising with the increase of the mode 𝑛. Fig. 5 shows the natural frequency 𝜔0 vs the length-to- 
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Fig. 6 The fundamental frequency 𝜔0  vs the 

length-to-thickness ratio 𝐿/ℎ for smaller values of 

the viscous damping coefficient 𝜏0 

Fig. 7 The fundamental frequency 𝜔0  vs the 

length-to-thickness ratio 𝐿/ℎ for greater values of 

the viscous damping coefficient 𝜏0 

 

  
Fig. 8 The fundamental frequency ω0  vs the 

width-to-thickness ratio 𝑏/ℎ for smaller values of 

the viscous damping coefficient 𝜏0 

Fig. 9 The fundamental frequency ω0  vs the 

width-to-thickness ratio 𝑏/ℎ for greater values of 

the viscous damping coefficient 𝜏0 

 

 

thickness ratio 𝐿/ℎ. Also, 𝜔0 increases to a maximum vertex point then it is rapidly decreasing 

again. The path in which 𝜔0 increases is the same for different modes 𝑛. The position of the 

maximum vertex point is rising with the increase of the mode 𝑛 and 𝜔0 is sensitive to the 

variation of 𝐿/ℎ ratio. 
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Fig. 10 The fundamental frequency 𝜔0  vs the 

Winkler’s parameter 𝑘1 for different values of the 

Pasternak’s parameter 𝑘2 

Fig. 11 The fundamental frequency ω0  vs the 

Pasternak’s parameter 𝑘2  for different values of 

the Winkler’s parameter 𝑘1 

 

 

In Figs. 6 and 7, the fundamental frequency 𝜔0 is plotted vs the length-to-thickness ratio 𝐿/ℎ 

for smaller and greater values of the viscous damping coefficient 𝜏0, respectively. For small 

values of the viscous damping coefficient 𝜏0, the fundamental frequency 𝜔0 increases as 𝐿/ℎ 

increases. The greatest value of 𝜏0 always gives the highest frequency 𝜔0. However, for high 

values of 𝜏0 the fundamental frequency increases to get its maximum vertex then it is rapidly 

decreasing. Different paths to the vertex points occur according to the value of the viscous 

damping coefficient 𝜏0 and the length-to-thickness ratio 𝐿/ℎ. Here, the smallest value of 𝜏0 

always gives the highest frequency 𝜔0. 
The fundamental frequency 𝜔0 vs the width-to-thickness ratio 𝑏/ℎ for smaller and greater 

values of the viscous damping coefficient 𝜏0 is plotted in Figs. 8 and 9, respectively. For small 

values of the viscous damping coefficient 𝜏0, the fundamental frequency 𝜔0 decreases as 𝑏/ℎ 

increases and as 𝜏0  decreases . However, for high values of 𝜏0  the fundamental frequency 

increases to get its maximum vertex then it is rapidly decreasing. Different paths to the vertex 

points occur according to the value of the viscous damping coefficient 𝜏0 and the width-to-

thickness ratio 𝑏/ℎ. It is interesting here to notice that the maximum vertex points are at the same 

level of height. 

In Figs. 10 and 11, the length-to-thickness ratio and the viscous damping coefficient are kept 

fixed as  𝐿/ℎ = 10  and 𝜏0 = 0.5 . Fig. 10 shows that the frequency increases as the first 

foundation Winkler’s parameter 𝑘1 increases. The same behavior occurs in Fig. 11 that 𝜔0 

increases as the second foundation Pasternak’s parameter 𝑘2  increases. In contrast, the 

dimensionless natural frequency depends upon the length- or width-to-thickness ratio and the two-

parameter elastic foundation as well as the viscous damping coefficient. 
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5. Conclusions 
 

In this article, a novel three-parameter viscoelastic foundation model is proposed to study the 

visco-Pasternak’s elastic behavior of the generalized thermoelastic microbeams. The vibration 

frequency analysis is performed and the effects of length-to-thickness ratio, width-to-thickness 

ratio, and the three-parameter viscoelastic foundation have been evaluated on the free vibration of 

the microbeam. The parameters of foundation, especially the viscous damping coefficient, have 

considerable effect on the dynamic responses of the microbeam. The obtained results indicate that 

with increasing the Winkler’s and shear parameters of foundation, the frequencies of the 

microbeam are increased. This increasing is due to increasing the stiffness of the beam. However, 

the increase of the viscous damping coefficient tends to decreasing of the frequencies. For the sake 

of completeness and comparisons, some natural frequencies are tabulated here for different viscous 

damping coefficient and two-parameter elastic foundation. The inclusion of the thermoelastic 

coupling effect is required to get reliable frequencies. 
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