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Abstract. The large container ships and fast patrol boats are complex marine structures. Therefore,
their global mechanical behaviour has long been modeled mostly by refined beam theories. Important
issues of cross section warping and bending-torsion coupling have been addressed by introducing special
functions in these theories with inherent assumptions and thus compromising their robustness. The 3D
solid Finite Element (FE)models, on the other hand, are accurate enough but pose high computational cost.
In this work, different marine vessel structures have been analysed using the well-known Carrera Unified
Formulation (CUF). According to CUF, the governing equations (and consequently the finite element
arrays) are written in terms of fundamental nuclei that do not depend on the problem characteristics and
the approximation order. Thus, refined models can be developed in an automatic manner. In the present
work, a particular class of 1D CUF models that was initially devised for the analysis of aircraft structures
has been employed for the analysis of marine structures. This class, which was called Component-Wise
(CW), allows one to model complex 3D features, such as inclined hull walls, floors and girders in the form
of components. Realistic ship geometries were used to demonstrate the efficacy of the CUF approach.
With the same level of accuracy achieved, 1D CUF beam elements require far less number of Degrees of
Freedom (DoFs) compared to a 3D solid FE solution.

Keywords: hull structures; refined beam theories; unified formulation; component-wise models

1. Introduction

Nowadays, marine structures such as container ships and fast patrol boats have considerably com-
plex structural geometries. Commonly, their structural analysis requires modeling of complete hull
in a commercial Finite Element (FE) Code which may be computationally heavy. Typical ship struc-
tures such as container ships have large deck-openings for cargo area spanning over a considerable
portion of their length. Considering them as a beam, their cross section resembles that of a thin-
walled C-Channel. For such structures, the shear center and the area centroid of the cross section do
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not coincide and a coupling between bending and torsion is observed. The structure twists when a
loading force vector does not pass through shear center. Such loading scenario appears when there
is an imbalance in transversely acting forces in a seaway. The twist of the beam is accompanied by
out-of-plane warping (axial deformation) of the cross section at free ends. Ships have closed sections
near the ends and they are relatively stiffer due to the presence of engine room at rear, the fore end or
other transverse deck beams. Thus the axial displacement of a point on cross section is constrained
and axial stresses (i.e., warping stresses) are generated.

The detailed and accurate deformed configuration warrants the use of commercial FE codes em-
ploying 3D solid elements. However, owing to the possible antisymmetries associated with marine
structures such as torsional loading, entire ship has to bemodelled and the analysis thus becomes com-
putationally expensive. Therefore, considerable effort has been made to develop refined 1D models
that are computationally lighter and can capture warping kinematics and associated stresses, see for
example (Pittaluga 1978, Pedersen 1983, 1985, 1991, Senjanovic and Grubusic 1991). These beam
models entail the assumption that, in addition to twisting, cross sections warp out of plane but in a
rigid manner implying the presence of axial deformation only. The net warping over the whole cross
section is zero meaning no net elongation of the beam.

This paper presents the structural (static and vibration) analyses of different marine vessels using
refined beam model which is based on a novel approach, namely the Carrera Unified Formulation
(CUF) (Carrera et al. 2010, 2011, 2014, Carrera and Giunta 2010). CUF provides a tool able to
capture detailed kinematics of cross-section displacement field utilizing simple, refined 1D beam
elements. Recently, Carrera et al. (2015, 2016) demonstrated CUF to effectively model various boat-
like structures thereby establishing its advantage over a 3D solid FEM solution from a commercial
software. The present work utilises Component-Wise (CW) models, that were initially devoted to the
analysis of aerospace structures (Carrera et al. 2013a, b). In the CW approach, the structural features
such as hull walls, transverse ribs and stiffeners are modelled as components. All components are
subsequently modelled as beams with their lengths aligned to a common global axis. Interestingly,
the CW approach allows to model walls as beams with the axis laying along the thickness direction.
Most of the early works to model global structural behaviour of ships utilised the famous Euler-
Bernoulli BeamModel (Euler 1744) (hereinafter referred to as EBBM) and Timoshenko BeamModel
(Timoshenko 1922a, b) (hereinafter referred to as TBM). The EBBM imposes the condition that the
plane cross sections of a beam remains plane during bending which is valid only for the cases of
simple, solid and homogenous sections or long beams. EBBM ignores the transverse shear stresses
that become pronounced in short beams. TBM has an additional degree of freedom that removes
the perpendicularity condition of cross section from beam axis but it keeps plane cross sections as
plane. However, in TBM we have constant shear stress distribution over beam cross section instead
of homogenous condition at free edges and, thus, it requires a correction factor. Both EBBM and
TBM do not address torsion which is modelled using Saint Venant’s or Vlasov theories. For thin-
walled open sections, Saint Venant’s model gives only shear stresses over the cross section and not the
normal warping stresses. Vlasov beam theory (Vlasov 1961) accounts for both the stresses. Leibowitz
(1961) and Jensen and Madsen (1977) idealised ships as beams for hull vibrations at lower natural
frequencies. The works by Bishop and Price (1974, 1975, 1979) are considered pioneering whereby
two-dimensional hydroelasticity theories were established to determine structural behaviour of ship
structure. The cross-section warping was addressed in works by Kawai (1973) and Senjanovic and
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Fig. 1 Beam aligned with Cartesian coordinates

Fann (1992). In (Senjanovic and Fann 1992) a higher-order theory is developed for thin walled
channel idealization for container ships. Senjanovic in his several works implemented advanced
beam model while idealising ships as beam for hydroelastic analyses.

2. Carrera Unified Formulation (CUF)

According to Carrera Unified Formulation (CUF), the 3D displacement field u is defined in terms
of generic cross-section functions Fτ

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (1)

where Fτ are the functions in terms of coordinates x and z over the cross-section as shown in Fig.1;
M is the number of expansion terms in Fτ ; and uτ is the vector of the generalized displacements.
The repeated subscript, τ , indicates summation. In general, axiomatic theories of structures are
defined by truncating Eq. (1) to a given order. By using CUF, the theory order is a free parameter
of the formulation. Thus, the accuracy of the model can be increased with ease in order to address
higher-order phenomena and surpass the limits of classic theories.

Generally, CUF allows the beam kinematics to be be approximated via different classes of expan-
sion functions Fτ . In the present work, Lagrange Expansion (LE) polynomials (Carrera and Petrolo
2012, Carrera and Pagani 2014) have been used as cross-sectional polynomials. LE allows one to use
only pure displacement variables as degrees of freedom (DoFs). An arbitrary shaped cross section
is considered divided into a lattice of iso − parametric Lagrange polynomials that can be 3 noded
(L3), 4 noded (L4) or 9 noded (L9). The interpolation functions for one single L9 polynomial, for
example, are given in Eq. (2)

Fτ =
1

4
(α2 + αατ )(β

2 + ββτ ), τ = 1, 3, 5, 7

Fτ =
1

2
βτ

2(β2 + ββτ )(1− α2) +
1

2
ατ

2(α2 + αατ )(1− β2), τ = 2, 4, 6, 8

Fτ = (1− α2)(1− β2), τ = 9

(2)

where α and β vary from -1 to +1, whereas ατ and βτ are the coordinates of the nine points whose
numbering and location in the natural coordinate frame are shown in Fig. 2. The beammodel resulting
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from the adoption of one single L9 polynomial expansion of the primary variables is given in the
following

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4 + F5ux5 + F6ux6 + F7ux7 + F8ux8 + F9ux9

uy = F1uy1 + F2uy2 + F3uy3 + F4uy4 + F5uy5 + F6uy6 + F7uy7 + F8uy8 + F9uy9
uz = F1uz1 + F2uz2 + F3uz3 + F4uz4 + F5uz5 + F6uz6 + F7uz7 + F8uz8 + F9uz9

(3)

3. Finite element formulation

3.1 Preliminaries

The coordinate system used in the present beam model is shown in Fig. 1. The beam length is l
and the cross section area is Ω. The stress σσσ and strain ϵϵϵ vectors may be written as follows

σσσ =
{

σyy σxx σzz σxz σyz σxy
}T

, ϵϵϵ =
{

ϵyy ϵxx ϵzz ϵxz ϵyz ϵxy
}T (4)

The linear strain-displacement relation for small displacements and deformations is given as

ϵϵϵ = Du (5)

whereD is the linear differential operator on u and it is given as follows

D =



0
∂

∂y
0

∂
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0 0

0 0
∂
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∂z
0

∂
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0
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∂

∂y

∂
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0



(6)

The constitutive law relates stress to strain through the following relation

σσσ = Cϵϵϵ (7)
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where C is the stiffness matrix. In the case of isotropic material, the terms of stiffness matrix are
given in the following

C =



C33 C23 C13 0 0 0
C23 C22 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (8)

where
C11 = C22 = C33 =

(1− ν)E

(1 + ν)(1− 2ν)
= λ+ 2µ

C12 = C13 = C23 =
νE

(1 + ν)(1− 2ν)
= λ

C44 = C55 = C66 =
E

2(1 + ν)
= G

(9)

In the above relations, λ andµ are the Lamé’s parameters and ν,E andG are respectively the poisson’s
ratio, young’s modulus and the shear modulus for the material.

3.2 Fundamental Nuclei

The beam is divided into finite elements with their length aligned to y-axis. By interpolating the
generalized displacements uτ via shape functions Ni, Eq. (1) becomes

u(x, y, z) = Fτ (x, z)Ni(y)qτi (10)

where qτi is the vector of the nodal generalized unknowns

qτi =
{

qxτi qyτi qzτi
}T (11)

The shape functions Ni and can be found in many standard text books about finite element method,
see for example (Bathe 1996). The expansion functions Fτ for the cross-sectional kinematics and the
shape function Ni are mutually completely independent. In the present work, three noded (B3) and
four noded (B4) beam elements were used with quadratic and cubic approximation functions along
y-axis, respectively.

In an undamped free vibration analysis, stiffness and mass matrices are required and they are
obtained by employing the principle of virtual work

δLint =

∫
V
δϵϵϵTσσσdV = −δLine (12)

where Lint stands for the internal strain energy and Line is the work done by the inertial loading. δ
stands for the virtual variation. The virtual variation of the strain energy is rewritten using Eqs. (5),
(7) and (10) as follows

δLint = δqTτiKij τ sqsj (13)
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whereKij τ s is the Fundamental Nucleus (FN) of the element stiffness matrix. The nine components
of the FN are mentioned below for the sake of completeness

Kijτs
11 = (λ+ 2G)

∫
Ω
Fτ,xFs,xdΩ

∫
l
NiNjdy +G

∫
Ω
Fτ,zFs,zdΩ

∫
l
NiNjdy+

G

∫
Ω
FτFsdΩ

∫
l
Ni,yNj,ydy

Kijτs
12 = λ

∫
Ω
Fτ,xFsdΩ

∫
l
NiNj,ydy +G

∫
Ω
FτFs,xdΩ

∫
l
Ni,yNjdy

Kijτs
13 = λ

∫
Ω
Fτ,xFs,zdΩ

∫
l
NiNjdy +G

∫
Ω
Fτ,zFs,xdΩ

∫
l
NiNjdy

Kijτs
21 = λ

∫
Ω
FτFs,xdΩ

∫
l
Ni,yNjdy +G

∫
Ω
Fτ,xFsdΩ

∫
l
NiNj,ydy

Kijτs
22 = G

∫
Ω
Fτ,zFs,zdΩ

∫
l
NiNjdy +G

∫
Ω
Fτ,xFs,xdΩ

∫
l
NiNjdy+

(λ+ 2G)

∫
Ω
FτFsdΩ

∫
l
Ni,yNj,ydy

Kijτs
23 = λ

∫
Ω
FτFs,zdΩ

∫
l
Ni,yNjdy +G

∫
Ω
Fτ,zFsdΩ

∫
l
NiNj,ydy

Kijτs
31 = λ

∫
Ω
Fτ,zFs,xdΩ

∫
l
NiNjdy +G

∫
Ω
Fτ,xFs,zdΩ

∫
l
NiNjdy

Kijτs
32 = λ

∫
Ω
Fτ,zFsdΩ

∫
l
NiNj,ydy +G

∫
Ω
FτFs,zdΩ

∫
l
Ni,yNjdy

Kijτs
33 = (λ+ 2G)

∫
Ω
Fτ,zFs,zdΩ

∫
l
NiNjdy +G

∫
Ω
Fτ,xFs,xdΩ

∫
l
NiNjdy+

G

∫
Ω
FτFsdΩ

∫
l
Ni,yNj,ydy

(14)

The virtual variation of the work of the inertial loadings is

δLine =

∫
V
ρδuT üdV (15)

where ρ is the material density and ü is the acceleration vector. Rewriting Eq. (15) using Eq. (10) we
have

δLine = δqτi

∫
l
NiNjdy

∫
Ω
ρFτFsdΩq̈sj = δqτiM

ij τ sq̈sj (16)

whereMij τ s is the fundamental nucleus of the element mass matrix and its components are written
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in the following

M τ sij
11 = M τ sij

22 = M τ sij
33 = ρ

∫
l
NiNjdy

∫
Ω
FτFsdΩ,

M τ sij
12 = M τ sij

13 = M τ sij
21 = M τ sij

23 = M τ sij
31 = M τ sij

32 = 0

(17)

In the case of static response analysis, the inertial contribution is neglected and the internal strain
energy Lint is balanced by the work of external forces Lext

δLint = δLext (18)

The external work of a generic point load P, for example, is given by

δLext = δuTP (19)

where

P =
{

Px Py Pz

}T (20)

By introducing the shape functions and the generalized displacement approximation by CUF (see
Eq. (10)), one has

δLext = FτNiδqτiP (21)

From Eq. (21), the variationally coherent fundamental nucleus of the loading vector which can be
straightforwardly obtained. By using CUF, for a given expansion order, the fundamental nuclei can
be expanded in an automatic manner to obtain the FE elemental arrays of the generic beam theory.
For more details, the reader is referred to (Carrera et al. 2014).

4. Numerical results

The efficacy of the present 1D CUF beam model for structural analysis of different marine vessels
is demonstrated. The beam cross section has beenmodelled using Lagrange Expansion (LE) functions
whereby a Component−Wise representation has been made for various structural features such as
hull walls, the longitudinal stiffeners and the other stiffening elements. Therefore hereinafter, ”CW”
will refer to 1D CUF LE Beam model. Structural analyses of simplified models of container ship and
boat structures have been presented in the following. The results from CUF beam formulation are
compared with those from analytical and ANSYS 3D Solid model(hereinafter referred to as ANS3D).
The strength of the CUF beam model in representing such complex geometries is well established
over refined beam theories, since latter cannot accommodate such complexities. The CW model is
more efficient over ANS3D models in terms of DoFs required to obtain the same level of accuracy.

4.1 Case-1: Container ship hull

A container ships may often find itself at an angle to the sea waves so that it is subjected to a
torsional moment whose axis may assumed to be aligned to the ships’s longitudinal axis. A typical
container ship may be idealised in the form of a beam with C-type prismatic cross-section (Jensen
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Fig. 3 Loading and constraints and deflection of a channel representation of a container ship (all dimensions
in meters)

2001, Shama 2010). Because of this particular geometry, the ship has its shear center below the keel.
Under a torsional loading, such structure exhibits not only the twist (pure rotation of cross section)
but also an out of plane warping of the cross section. Moreover, if warping is restrained, there arise
warping stresses, which are the stress components in the axial direction. Fig. 3(a) shows a channel
representation of a container ship idealised as a beam subjected to an end torque T = 2600000 Nm.
The other end of the beam is completely fixed. The beam has width h = 26 m, height b = 16.2 m,
all wall thickness t = 0.05 m and length l = 120 m. The material is an alloy steel (E = 210 GPa,
ν = 0.33). This problem has been analysed analytically and numerically in order to demonstrate
the capability of CW models to capture warping and associated stresses. Eq. (22) and Eq. (23) from
(Budynas 2002) give, respectively, the torsional displacement at the loaded tip and the max deflection
rate at the fixed end. The maximum warping stress, σw, emerges at the fixed end and it is obtained
from Eq. (24), see (Shama 2010). The warping stress depends on the warping function ω, which is a
parameter depending on the cross-section geometry. ω is obtained from the expressions provided in
(Jensen 2001). For the channel section shown in Fig. 3(a), the warping function varies linearly over
the wall height from the maximum value of ω =

5

8
b2 = 5.23 m2 at the top and the minimum value

of ω = −3

8
b2 = −3.14 m2 at the floor. The warping function varies anti-symmetrically over the

floor width between ω = +
3

8
b2 and ω = −3

8
b2. The torsional deflection and warping stress can be

analytically found using Eq. (22) through Eq. (24). Various terms in the equations are explained in
the following. These analytical relations employ assumption that the projection of the warped cross
section remains unchanged while being rotated. The only displacement captured is axial deformation
(or axial stresses for a constrained beam) while no in-plane kinematics for the cross section has been
assumed

θmax =
T

CwEβ3
(βl − tanhβl) (22)

θ
′′
max =

T

CwEβ
tanhβl (23)
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Fig. 4 CW and analytical warping stress plots

σw =
ωM

Cw
(24)

where

ω : Warping function
M : Bi-moment acting over the cross section = ECwθ

′′

Cw : Warping constant =
h2b3t

12

2h+ 3b

h+ 6b
= 9778.4 m6

Jt : Torsional constant =
t3

3
(h+ 2b) = 0.00243 m4

β =

[
GJt
ECw

]1/2
= 0.00031

E : Young’s modulus
G : Shear modulus

The maximum torsional deflections obtained through the CW model and Eq. (22) were respec-
tively 0.0429 and 0.0417 degrees. The warping stresses through CW and analytical solutions are
plotted over the wall height and floor width in Fig. 4. The deformed configuration of the structure
under consideration by CW model is also shown in Fig. 3(b). The CW model employed makes use
of 13 B3 beam elements along the axis and a set of 14 L9 polynomials on the cross-section. The
results clearly demonstrate the antisymmetric distribution of deflection and warping stress over the
cross-section and CW values are fairly close to the analytical ones. Thus, the efficacy of employing
CW models to analyse container ships is well established.

Having obtained sufficiently accurate results of a simplified container ship representation, a more
realistic and detailed cross-section was modelled for a container ship. Fig. 5 shows the loading and
geometry, which is a multi-cell double-walled construction. Owing to this open deck construction
form, the shear center lies under the keel resulting in significant warping stresses under a torsional
loading. The present model has the two ends fully constrained and the wave load is assumed to be
distributed in triangular form. The distributed torque has the maximum value acting at mid-length.
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Fig. 5 Assumed torque distribution and cross section for a container ship (dimensions in mm)

Fixed End

Fixed End

Fig. 6 CW model with loading and constraints

The configuration is analysed using the CW model and ANS3D model. In both the models, the
torque is applied in the form of couple of forces applied along the two long inner edges. A bulk
head at middle of the ship prevents severe in-plane displacements over the cross-section. The static
analysis is aimed at obtaining warping stresses at the fixed ends and torsional displacement in the
middle. The ship length is along y-axis while the cross section is symmetric about z-axis. The built-
up structures at rear and fore ends provide fixed constraints and, thus, the flexible portion has a length
equal to 2a, which is the beam length under torsion. Total torque applied is 8100 ton×m. The beam
has length 2a = L = 120m, horizontal width equal to 26m, height 16.2m. The material is the same
steel alloy as in the previous analysis case. Figure 6 shows the CW model with load vectors and the
constraints applied. For ANS3D model, 130266 solid 185 brick element has been employed while in
CWmodel, 11 Lagrange (B3) elements have used along the length. Regarding the CWmodel, 76 L9
polynomials have been employed to formulate the higher-order beam kinematics. As shown in Fig.
6, a reinforcement is assumed at the mid-span of the ship. This transverse reinforcement has the role
to alleviate the differential bending in the plane of the cross-section and it is ideally modelled as a
plane rigid structural element.

The results of the analysis are shown in Fig. 7 and Fig. 8. Figs. 7(a) and (b) show the torsional
deflection of converged CW and ANS3Dmodels, respectively. Fig. 8 shows the comparison of warp-
ing stress distribution over an inner edge near the constrained end for the CW model and ANS3D.
The required DoFs for CW are 31473while those for ANS3D are 762264. The results clearly demon-
strate the accuracy of CW model in capturing the displacements requiring significantly less number
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(a) CW, Max. displacement = 1.033 mm
(DoFs = 31473)

(b) ANS3D, Max. displacement = 0.99
mm (DoFs = 762264)

Fig. 7 Torsional deflections of CW and ANS3D models
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Fig. 8 Comparison of warping stress distribution over the inner vertical wall near constrained end

of DoFs. The warping stress distribution is fairly close to the results from ANS3D. The warping
stresses result due to constraining the cross-section from warping freely.

4.2 Case-2: Boat structures

In previous section, the configuration involved structural components that were mutually orthog-
onal. The whole structure had a single beam axis aligned with y axis. Proceeding further towards a
more realistic shape of a typical boat, the tapered or slanted flat faces are introduced in front and rear
of the structure and the configurations are analysed using CW models with Lagrange polynomials
above the cross-section. Each slanted wall is considered as a separate component modeled as a 1D
beam with its own cross-section being the wall’s thickness or its planar face. Thus, as a whole, the
structure comprises of a network of various beams orientated at different angles. CUF, in fact, makes
it possible to model very short beams (in the proposed example, the beam axis lays along the wall
thickness, which is 10mm) and large cross sections (e.g., the wall face is 2.12×0.56m). The different
components are connected at common nodes and their DoFs are shared. The idea of rotating refined
CUF beam elements has been introduced by Carrera and Zappino (2016). Thus, it was possible to
model a complex geometry as a network of various beams oriented at different angle.

Fig. 9 shows geometries being considered for structural analysis of boats with varying tapered
configurations. The boat in Fig. 9(a) has taper inclined only to vertical plane, whereas the boat in
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(a) Configuration-1: Boat with One-
sided tapered Wall

(b) Configuration-2:Boat with Two-
sided tapered Wall

(c) Configuration-3: Cabin added to
the boat with two-sided taper

Fig. 9 Boat geometries with tapered walls incorporated in front and rear (all dimensions in meters, all wall
thicknesses are 10 mm and ribs are 100 mm wide)

Fig. 9(b) has taper inclined to both the vertical and horizontal planes. The configuration shown
in Fig. 9(c) has a cabin added to the former configurations. These structures cannot be modeled
with typical beam theories and warrant the use of expensive 2D/3D solid elements. In this work,
the proposed boat structures were modelled using CUF beams finite elements and the results were
compared with those from ANSYS 3D solid elements. The modal analyses were performed for these
structures followed by a static analysis for the boat configuration of Fig. 9(a).

4.2.1 Modal analyses
Modal analyses were performed for the configurations in Fig. 9 and the natural frequencies ob-

tained through CW models are compared to ANS3D in Tables 1 and 2. Some selected mode shapes
are shown in Fig. 10 and Fig. 11. These thin walled configurations require extensively heavy mesh
when ANS3D solid elements are used, whereas the CW models required considerably less elements
thereby less DoFs. The results clearly demonstrate that both the natural frequencies as well as the
mode shapes from CUF beam model closely match those from ANSYS solid elements for most of
the modes under consideration. It is seen that DoFs required by CUF beam are far less than the solid
mesh of ANSYS for the same level of accuracy. It is also observed that employing a beam element of
very small length and fairly large cross-section does not affect the accuracy of the proposed method-
ology. Also, the increase in the structural stiffness is evident through introduction of stiffeners and
other features.

4.2.2 Static analysis
A static analysis was performed on the boat configuration of Fig. 9(a) as per loading and boundary

conditions shown in Fig. 12. A point load of 1 kN is applied exactly at the mid point A on the upper
surface of the bottom plate. Simply-supported boundary conditions are applied to the two edges on
either sides of the boat. Deflections at point locations A and B from Fig. 12 are given in Table 3 along
with the stresses at location A. The plot of the deformed configurations by the present beam model
and ANSYS are shown in Fig. 13. The results demonstrate that with much less number of DoFs,
CUF beam model captures the 3D kinematics of deflection and the stresses in close approximation to
results from ANS3D model.
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Table 1 Selected natural frequencies for the three boat configurations of Figs. 9(a)-(b)

(DOF) CW
(6777)

ANS3D
(193425)

CW
(12825)

ANS3D
(217539)

Configuration-1
Fig.9a

Configuration-2
Fig.9b

Mode 1 7.522 7.433 15.831 14.937
Mode 2 10.498 10.835 20.126 18.434
Mode 3 13.462 13.485 25.478 25.130
Mode 4 14.527 14.608 28.022 28.201
Mode 5 22.020 23.420 28.276 28.866
Mode 6 24.286 24.390 32.072 33.230
Mode 7 27.857 25.331 32.899 34.315
Mode 8 29.087 26.696 37.542 38.260
Mode 9 29.436 32.591 41.307 39.019
Mode 10 30.105 33.967 43.371 44.954

Table 2 Selected natural frequencies for the boat Configuration-3 of Fig. 9(c)

(DOF) CW
(19125)

ANS3D
(434130)

Mode 3 22.840 19.402
Mode 4 26.490 25.019
Mode 8 50.080 48.717
Mode 11 57.460 53.662

Table 3 Results under the loading shown in Fig. 12

Point Model (DoFs) Displacements (mm)
u w

A CW (6777) 0.000 -3.781
ANS3D (193425) 0.000 -3.673

B CW (6777) 1.754 -0.002
ANS3D (193425) 1.732 -0.002

Point Model (DoFs) Stresses (MPa)
σxx σyy σzz

A CW (6777) 7.72 9.57 0.619
ANS3D (193425) 7.65 6.93 0.737
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(a) Config-1, Mode-1: CW Model (b) Config-1, Mode-1: ANS3D
Model

(c) Config-1, Mode-2: CW Model (d) Config-1, Mode-2: ANS3D
Model

(e) Config-2, Mode-1: CW Model (f) Config-2, Mode-1: ANS3D
Model

(g) Config-2, Mode-2: CW Model (h) Config-2, Mode-2: ANS3D
Model

Fig. 10 First two deformed modes for each of the three configurations of Figs. 9(a)-(b)
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(a) Config-3, Mode-3: CW Model (b) Config-3, Mode-3: ANS3D
Model

(c) Config-3, Mode-4: CW Model (d) Config-3, Mode-4: ANS3D
Model

Fig. 11 Selected modes for the boat Configuration-3 of Fig. 9c

B

Fig. 12 Point load and boundary conditions for static analysis for boat geometry of Fig. 9(a) (all dimensions in
meters and all wall thicknesses are 10 mm)

(a) Static Deflection from CW beam model (b) Static Deflection from ANSYS 3D solid
model

Fig. 13 Deflected boat under the loading shown in Fig. 12
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5. Conclusions

In this paper, the Carrera Unified Formulation (CUF) was used for 1D finite element beammodels
and structural analyses of different marine vessels. The limitations of available refined beam theories
were highlighted with regard to the cross-section warpage and in-plane displacements. Such aspects
become important for marine vessels owing to their particular geometries. In various situations,
the realistic and accurate results required use of commercial software which involved large DoFs,
which renders the problem computationally heavy. It was demonstrated through results that both
the said objectives are successfully achieved using CUF beam models. CUF can employ any class
of expansion function to model cross-section kinematics. For present studies, Lagrange Expansion
functions were used which manifested in an FEM model closest to a 3D Solid FEM model of a
commercial software. These 1D models required far less (less than 1/10th) DoFs to obtain the results
of ANSYS 3D solids for the same level of accuracy.
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