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Abstract.  This paper presents the dynamic instability analysis of un-damped elastically supported 
piezoelectric functionally graded (FG) beams subjected to in-plane static and dynamic periodic thermo-
mechanical loadings with uncertain system properties. The elastic foundation model is assumed as one 
parameter Pasternak foundation with Winkler cubic nonlinearity. The piezoelectric FG beam is subjected to 
non-uniform temperature distribution with temperature dependent material properties. The Young's modulus 
and Poison's ratio of ceramic, metal and piezoelectric, density of respective ceramic and metal, volume 
fraction exponent and foundation parameters are taken as uncertain system properties. The basic nonlinear 
formulation of the beam is based on higher order shear deformation theory (HSDT) with von-Karman strain 
kinematics. The governing deterministic static and dynamic random instability equation and regions is 
solved by Bolotin's approach with Newmark's time integration method combined with first order 
perturbation technique (FOPT). Typical numerical results in terms of the mean and standard deviation of 
dynamic instability analysis are presented to examine the effect of slenderness ratios, volume fraction 
exponents, foundation parameters, amplitude ratios, temperature increments and position of piezoelectric 
layers by changing the random system properties. The correctness of the present stochastic model is 
examined by comparing the results with direct Monte Caro simulation (MCS). 
 

Keywords:  dynamic instability; functionally graded beams; Bolotin’s approach; standard deviation; first 

order perturbation method; random system properties; elastic foundation; Monte Carlo simulation 

 
 
1. Introduction 

 

FG Materials are the advanced inhomogeneous composite materials, composed of two or more 

constitutes phases of metal and ceramic spatially varied in controlled directions by the variation of 

the volume fraction exponent of constituent materials. The metal constituent portion provides the 

mechanical strength, and toughness while, ceramics constituent provides high temperature 

withstanding ability and corrosion resistance. The appropriate mixing of metal and ceramic 

constituents open new possibilities for researchers to examine the performance and stabilities of 

thermal barrier of turbine blades, heat exchanger tubes, thermoelectric generators, furnace linings, 

cutting tools, metal ceramic joints etc.    

A variety of light-weight heavy load bearing structural components such as aircraft wings, 
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helicopter rotors, turbine blades, spacecraft antennae, flexible satellites, robot arms, and long-span 

bridges can be modeled as FGM beam members. These structural components are sometimes may 

be subjected to different periodic in-plane and/or out-of-plane loadings and become dynamically 

unstable and produce parametric resonance conditions. For optimum high performance and safe 

design of such components, there is need of proper understanding of their instability behaviors and 

regions in stochastuic sense. 

For health monitoring purpose, attachment of surface bonded piezoelectric layers at the top and 

bottom of FG structures are needed, to make the structures, smart by self monitoring and self 

controlling performance capabilities under the action of external stimuli. Hence, effect of 

piezoelectric layers on the structural performance are extremely needed. 

The FG beams supported by elastic foundations have been passed some important messages to 

the engineering community for stability and flexibility purposes. Such structures are being used as 

shocks observers and may be modeled as aflexible beam in ships and bridges, automobiles, 

spacecraft arms, footings, foundation of spillway dams, deep wells and civil buildings in cold 

regions. From practical point of views, Pasternak elastic foundation with Winkler cubic 

nonlinearity is proved as a more appropriate model for design prospective due to controlling of 

displacements along both of the longitudinal and transverse directions. 

The volume fraction exponents, material properties of FG structures and surface bonded 

piezoelectric layers, density of constituent materials, and foundation parameters can be modeled as 

statistical random system variables. It is because of complete control of these random system 

variables at each design level is very difficult and challenging. The presence of these random 

system properties, may have significantly affected the structural performance particularly, 

dynamic instability. Hence, the effect of dispersion of these random system properties from their 

mean values in terms of standard deviation (SD) using stochastic approaches is needed for safe and 

reliable design. 

Comprehensive study of deterministic dynamic stability problems for elastic structures of  

different shapes of beams, plates and shells is reported by many researchers. Notably among them 

are Abbas and Thomas (1978), Ahuja and Duffield (1975), Bolotin (1964), Evan-Iwanowski 

(1965), Bert and Birman (1987), Chen and Yang (1990), Ganpati et al. (1994), Ganpati et al. 

(1999), Datta et al. (1982), Patel et al. (2006), Wang and Dawe (2002), Moorthy et al. (1990), 

Srinivasan and Chellapandi (1986), Chattopadhyay and Radu (2000), Baldinger et al. (2000), Hu 

and Tzeng (2000), Singha et al. (2001), Young and Chen (1994), Liao and Cheng (1994), Sahu 

and Datta (2007), Wu et al. (2007), Yang et al. (2004), Pradyumna and Bandyopadhya (2010), Ng 

et al. (2001), Zhu et al. (2005), Darabi et al. (2007),  Ke and Wang (2011), Mohantya and Dash 

(2011), Fu et al. (2012). 

The fieldsrelated to stochastic analyses for the dynamic stability analysis of FG structures are 

very limited.Few efforts have been made in the past by the researchers, to quantify the different 

level of random system properties and their effects of structural performance using various 

probabilistic approaches. 

In this direction, there are different probabilistic approaches are used for quantifying the several 

aspects of uncertainties at different variability levels in the materials, geometrical and/or external 

excitations as random processes (Kleiber and Hien 1992, Nigam and Narayana 1994, Iwankiewicz 

and Nielsen 1999, Nayfeh 1993, Namachchivaya et al. 2003). Shinozuka and Astill (1972) 

evaluated the expected mean value and variance of the vibration and buckling eigenvalues of a 

beam-column with random geometric and material properties using computerized Monte Carlo 

simulation and investigated the accuracy of perturbation method. Vanmarcke and Grigoriu (1983) 
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evaluated the second order statistics of deflection response of beam with random material 

properties through correlation method using direct MCS. Chang and Chang (1994) investigated the 

statistical dynamic responses of a non-uniform beam by using the stochastic finite element method 

in conjunction with perturbation technique and MCS with random change in Young’s modulus of 

elasticity. Liu et al. (1986) presented the direct Monte Carlo simulation, stochastic finite element 

method and Hermite-Gauss quadrature probabilistic approaches to evaluate the statistics of 

dynamic response of truss and beam problem. Dey (1979) presented the applications of the 

stochastic finite element method, to analyze the response of multi-degree linear elastic structures 

subjected to stationary random stochastic loadings using matrix inversion and normal mode 

method. Ibrahim (1987) presented a review paper pertaining to structural dynamics with parameter 

uncertainties for two bar truss problems and highlighted the importance of perturbation, 

variational, asymptotic, and integral equation methods. Kareem and Sun (1990) investigated the 

influence of various level of damping uncertainties in the system dynamic response using second 

order perturbation technique (SOPT). Kapania and Perk (1996) evaluated the second-order 

sensitivity of the transient response and sensitivity with respect to various system parameters to 

single- and two-degree-of-freedom structural linear and nonlinear dynamic systems using central 

difference numerical approach. Zhao and Chen (1998) developed the new dynamic stochastic 

finite element method (FEM) by assuming uncertain dynamic shape function matrix based on 

dynamic constraint mode to study the dynamic response of spatial frame structures. Giuseppe 

(2011) presented a fully constraint theoretical framework of finite element (FE) based analysis 

with precise, intervalued and fuzzy probabilistic methods of linear mechanical systems. Rollot and 

Elishakoff (2003) used the conventional FEM combined with perturbation techniques in stochastic 

sense for getting astructural bending response of the beam with stochastic stiffness subjected to 

either deterministic or random loading. Ren et al. (1997) proposed a new version of FEM in 

conjunction with perturbation technique and MCS for mean and covariance function of 

displacements for bending beam using newly established variational approach. Stefanou et al. 

(2009) provided a state-of-art reviewed the applications and developments of stochastic finite 

element methods (SFEM) from past, recent and future aspects of the engineering applications. 

Yang et al. (2005) studied the thermo-mechanically induced bending responses of functionally 

graded plate with random system properties using Reddy’s higher order shear deformation theory 

(HSDT) combined with FOPT. Raj et al. (1998) obtained the static response of graphite epoxy 

composite laminates with random material properties using HSDT combined with MCS. Onkar 

and Yadav (2005) evaluated the transverse central deflection response of laminated composite 

plate with random material properties and random external loading using Kirchoff-Love plate 

theory with von-Karman nonlinearity through FOPT. Lal et al. (2012a, 2012b, 2013) evaluated the 

second order statistics of initial and post buckling analysis of laminated composite and 

functionally graded plates subjected to thermo-mechanical loadings. They used HSDT based C0 

nonlinear FEM combined with direct iterative based stochastic finite element methods using 

FOPT. Jagtap et al. (2011, 2013) evaluated the second order statistics of bending analysis of FGM 

plate using HSDT combined with direct iterative based nonlinear FEM in conjunction with FOPT. 

Shegokar and Lal (2013a, 2013b, 2014) evaluated the second order statistics of thermo-electro-

mechanically induced bending, buckling and vibration response of theFGM beam with random 

system properties using HSDT combined with nonlinear FEM combined with FOPT and MCS. Lal 

et al. (2015) evaluated the finite element based thermo-mechanically induced post buckling 

response of elastically supported laminated composite plate with random system properties using 

HSDT with von-Karman nonlinear strain kinematics combined with second order perturbation 
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method (SOPT). 

To the best of this author’s knowledge, based on the HSDT, a stochastic thermo-mechanically 

induced nonlinear dynamic stability analysis of elastically supported FGM beams containing 

piezoelectric layers is not yet widely available in the literature. An intuitive prediction about 

instability behaviors and regions in terms of mean and SD of FGM beams subjected to in-plane 

non-conservative forces by accounting the random system properties at various variability levels 

are examined. In this study, a stochastic finite element formulation based on FOPT through HSDT 

with von-Karman nonlinearity is developed. In order to evaluate the dynamic instability regions, 

the Mathieu-Hill types equation using Bolotin’s method is presented. The effect of slenderness 

ratios, volume fraction exponents, foundation parameters, amplitude ratios, temperature 

increments and position of piezoelectric layers by changing the uncorrelated random system 

properties on the mean and SD of dynamic instability analysis and regions of un-damped 

elastically supported FGM beam with surface bonded piezoelectric layers are examined. 

 
 
2. Formulations 
 

2.1 Geometric configurations and FGM properties 
 

Let us consider a FGM rectangular beam with surface bonded piezoelectric layers supported by 

a Pasternak elastic foundation with Winkler cubic nonlinearity. The respective length and 

thickness of FGM beam are represented by L and h with the coordinate system (x, z) as shown in 

Fig. 1. At the top and bottom of the FGM beam, surface bonded piezoelectric layers of equal 

thickness (hp) are attached. The total thickness of FGM beam with piezoelectric layers is 

represented by H. It is assumed that a perfect bonding are existed among the FGM beam, surface 

bonded piezoelectric layers and supporting elastic foundations. 

The foundation reaction per unit area (p) exerted by supporting Pasternak elastic foundation 

with Winkler cubic nonlinearity can be represented as (Shegokar and Lal 2013a, 2013b) 

3 2 2

1 3 2p K w K w K w x                                                          (1) 

 

 

 

Fig. 1 Geometry of a piezoelectric FGM beam supported by elastic foundation 
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where w, K1, K3 and K2 and are the transverse displacement of piezoelectric FGM beam, Winkler 

(spring) linear, nonlinear and Pasternak (shear) foundations, respectively. 

It is assumed that FGM beam is composed from mixing of ceramic and metal constituents and 

the material compositions are varied continuously in the thickness direction, such a way that the 

top surface i.e., z=h/2 of the beam is ceramic rich, whereas the bottom surface i.e., z=-h/2 is metal 

rich.  

The effective material properties P, can be expressed as   
 

1

n

k k

k

P P V


  with
1

1
n

k

k

V



                                                      

(2) 

where Pk and Vk are the material properties and volume fraction of the constituent material k, that 

satisfying the volume fraction of all constituent materials. 

For temperature dependent material properties, The effective material properties (P) can be 

written as   

 2 3

0 1 1 2 31P P P T PT PT PT                                                    (3) 

where Pi (i = -1, 0, 1, 2, 3) are the coefficients of temperature T(K) and defined in Table 1. 

For a FGM beam, the volume fraction of constituent material (k) in the thickness direction (z) 

can be written as  

 
n

k

z 1
V z

h 2

 
  
 

                                                                (4)  

where n is the volume fraction exponent and varies  0 n  through the beam thickness.                            (3) 

The material properties of a FGM beam vary through thickness direction according to a power 

law distribution which is expressed as (Fu et al. 2012) 

 ( ) ( - )c m k mP z P P V z P                                                      (5) 

where Pm and Pc represent the properties of metal and ceramic constituents, respectively. 

 
2.2 Displacement field model 
 
The modified displacement field components based on Co continuity derived from Reddy’s 

HSDT with seven degrees of freedom along coordinate directions can be written as (Shegokar and 

Lal (2013a, 2013b, 2014), Heyliger and Reddy (1988)  

 3

0 x x2

4
u( x,z ) u ( x ) z z ( w x )

3h
        and 

0w( x,z ) w ( x )                         
(6) 

where u and w are the displacements along x and z directions, respectively. The parameters u0, w0 

are the displacements of  mid-plane, respectively. The symbols ψx and θx are rotation and slope 

along x-direction, respectively. 

The displacement vector consisting of four degree of freedoms (DOFs) can be written as    

   x xq u w  
                                     

(7)
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2.3 Stress- Strain relationship 
 

The nonlinear thermo-piezoelectric material constitutive relationship between stress and strain 

for plane stress case,  assuming large deformation theory with von-Karman nonlinearity can be 

written as  

      zQ e E                                                                (8) 

where [Q], {ε}, [e] and {Ez} are the stiffness coefficient matrix, the stain vector, piezoelectric 

constant matrix and electric field vector for the one dimensional FGM beam, respectively and 

defined as   

             11 11

55 55

0 0
, , ,

0 0

p

l nl t z

Q e
Q E e E

Q e x


   

   
          

   
                    (9) 

here 

 
 

 
 

 
11 552

;
2 11

E z E z
Q Q G z


  


                                               (9a) 

The linear stain vector {εl} 
using HSDT can be written as 

    l lT                                                                (9b) 

where [T] is the unit step vector with function of z and defined in Appendix A-1 and  l is the 

reference plane linear strain tensor written as   

    0 0 2 0 2

1 1 1 5 5l k k k                                                  (9c) 

From Eq. (7), Eq. (9c) can be written as  

     l L q                                                                (9d) 

where [L] is the differential operator defined in Appendix A-1.  

The nonlinear strain vector {εnl} by assuming von-Karman strain kinematics is written as 

    
1

2
nl nl nlA 

 
                         (10)

 

 
01

2
0 0

nl

w

A x

 
  
 
  

 
0

nl

w

x

 
 

  
 
                                                    

(11) 

The thermal strain vector {εT} and can be written as 

    0T x T                                                              (12) 

where αx and ΔT are the thermal expansion coefficient along x direction and nonuniform 

temperature change, respectively. 

The non-uniform change in temperature (ΔT)
 
along the thickness direction can be written as 

Kiani and Eslami (2010) 
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   0T T z T                                          (13) 

where, T0 is the reference temperature, i.e., room temperature and assumed to be 27°C.  

The parameter T(z) is the steady state nonuniform temperature distribution and can be written 

as  Shegokar and Lal (2013a) 

 

 

 

 '

2 2

2 2

2 2

p p

f

p p p

T z h z h h

T z T z h z h

T z h h z h h

   


  
     

                                       (14) 

where Tp, T′p 
and Tf (z) are the temperature of the lower piezoelectric layer, upper piezoelectric 

layer and FGM layer,respectively. 

The piezoelectric strain field vector Ez can be expressed as  

   (0)

zE T E
                                (15) 

where Tϕ  and E
0 

 is the electric field potential operator and electric field vector respectively and 

defined as 

21 0 0

0 0 0 1

z z
T

z


 
     

 

 

 

 

0

10

2

0 0

{E } 0 0

0 0

x

x

x







 
   
 

           
    

  

                       (15a) 

From Eq. (8), The parameters e11 and e13 are defined as Shegokar and Lal (2013b) 

 11 11 11pe d Q and 15 15 55 pe d Q                                                     (16) 

where d11 and d15 are the dielectric constants. The parameters Q11p and Q55p are defined as  

 11 21




p

p

p

E
Q


and

 
55

2 1




p

p

p

E
Q


                                               (16a) 

From Eq. (8), the electric field vector Ez can be written as   

 


 


p

zE
x


                                                             (16b) 

where p is the electric field potential and can expressing as 

 p zN 

                                                                (16c) 

here, N and z

  are the shape function matrix and electric potential DOFs vector and can be 

expressed as   

  
T

z L U

                                                             (16d)  

The parameters L and U are electric potentials corresponding to lower and upper piezoelectric 
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layers, respectively. 

 
2.4 Governing equation 
 
The equation of motion can be derived using Hamilton’s principle and expressed as  

 
2

1

0       
t

t
T U W dt                           (17) 

where T, U and W are the kinetic energy, the strain energy and the work done by the con 

conservative  buckling load of FGM beam with surface bonded piezoelectric layers supported by 

elastic foundation, respectively.   

 
2.5 strain energy of the piezoelectric FGMs beam 
 

The elastic strain energy of the piezoelectric FGM beam is written as Lal et al. (2015) 

        
1 1

U=
2 2

 
T T

z p

A A

dA E D dA  ,              (18) 

where {Dp} is the electric field displacement vector and can be written as  

        
T

p zD e E                      (19)  

here [k] is the dielectric displacement coefficient matrix and defined as   

  11

33

0

0






 
  
 

                      (19a) 

Substituting Eq. (8), Eq. (19) in Eq. (17), once as obtains  

 1

2

T T T

z z z

A

U Q eE E e E dA           
                                        

(20) 

Substituting Eqs. (9b), (9d) and Eq. (11) in Eq. (18), the linear potential energy (Ul) of the 

piezoelectric FGMs beam can be further written as  

 1 1 2

1

2

T T T T T T T T T T T

l p p p p t

A

U q L DLq q L D L L D Lq L D L q L F dA          
                    

(21) 

Where D, D1 and D2, are the elastic stiffness matrix of FGM and piezoelectric material, 

respectively, and defined in Appendix A-2 (a)-(c) substituting Eq. (9d) and Eq. (10c) in Eq. (17), 

the nonlinear potential energy (Unl) of piezoelectric beam can be further written as   

 3 4 5 6 7

1

2

T T T T T T T T T T

NL nl nl nl nl nl nl nl nl nl nl nl nl

A

U q L D A A D qL A D A A D L L D A dA             
       

(22) 

where D3, D4, D5, D6 and D7 are the elastic stiffness matrix of FGM and piezoelectric material, 

respectively and defined in Appendix A-3. 

 
2.6 Strain energy due to elastic foundation 
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Using Eq. (1), the strain energy (Uf) due to elastic foundation assuming Pasternak elastic 

foundation with Winklar cubic nonlinearity can be written as (Shegokar and Lal 2013a, 2013b) 

   
2

2 4

1 2 3

2
1 3

2 3

1

2

0 01 1

02 2 0

  
    

   

       
         

             
          

          



 

f
A

T T

A A

w
U K w K K w dA

x

w w w w
K K w

dA dAw w w w
K K

x x x x

                 (23)  

Eq. (23) can be rewritten as  

 1 1 1 1

2 2 2 2
     

T T

f f fl f f fnl f
A A

U D dA D dA
                                     

(23a) 

where f fL w  with 

0 1 0 0

0 0 0
fL

x

 
  
 
  

1

2

0

0
fl

K
D

K

 
  
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2

3 0

0 0
fnl

K w
D

 
  
 

 

 
2.7 Work done due to external in-plane mechanical loading 
 

The potential due to external work done by the action of thermo-mechanical in-plane loading is 

written as 

 
2

1

2


  
     

   
 x

A

w
W V N dA

x
                    (24) 

where, Nx is the in-plane thermo-mechanicalloading known as axial compressive force and 

expressed in the following form 

 
0 0  T

xN N N with

/ 2

3

0 11

/ 2

(1, , )( )


 
h

T

x

h

N z z Q Tdz                                     (25) 

where Nx and Nt are the in-plane mechanical and thermal loads, respectively.
 

 
2.8 Kinetic energy of the FGM beam 
 
The kinetic energy (T) of the vibrating FGM beam can be expressed as  



v

T dvuuT }ˆ{   }ˆ{
2

1
                                                   (26)

 

whereρ and  are the density and velocity vector of the FGM beam, respectively. 

           
2 22 2

0 2 0 2

1 1

2 2
 

 

   
    

l h l h T

h h
T z u w dzdx z N N dzdx                  (26a)    

 û
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3. Finite element formulation 
 

The governing equation of the piezoelectric FGMs beam supported by elastic foundation, is 

derived using Hamilton principle given in Eq. (17). The FE analysis is performed usinga 1-D 

Hermitian beam element with 4 DOFs per node. 

Displacement vector {q}
 
in Eq. (7) and Eq. (15d) can be written in terms of shape functions as 

         
1 1

NN NN

i i i i

i i

q N q N 
 

            (27) 

where i represent node number and Ni is shape function at ith node. 

For an element, the displacement field vector, and the electric potential vector can be written as  

      
( )( ) ( )ee e

iq N q and     
( )( )( )


eee

N q                                   (27a) 

Substituting Eq. (28) in Eq. (21), and summed over all elements using finite element model Eq. 

(27), Eq. (21) linear strain energy of the piezoelectric FGMs beam can be rewritten as   

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1 2   


   
NE

e e T e e e T e e e T e T e e T e e

l

i

U q K q q K q q K q q K q                      (28) 

where 

( )

( ) ( ) ( )1
,

2
 

e

e e T e

A

K B DB dA
( )

( ) ( ) ( )

1

1
1 ,

2
 

e

e e T e

A

K B D B dA and
( )

( ) ( ) ( )

2

1
2 ,

2
  

e

e e T e

A

K B D B dA          (29) 

Here K(e), KI(e) and K2(e) are the element bending stiffness matrix, coupling matrix and dielectric 

matrix, respectively. The strain displacement matrix [B] for plate and piezoelectric [Bg] can be 

written as  

    
( ) ( )

,
e e

iB L N   and   
( ) ( )

.
   

e e
B L N                       (30) 

with 

   
( )

1 2 3   
e

NNB B B B B
 and [Bi] = [L]Ni. with i=1, 2, 3,……NN               (30a) 

the parameters L and Ni (i=1,...,6)  are defined in Shegokar and Lal (2013a) 

Similarly, using Eq. (28) in Eq. (22), and summed over all elements using finite element model 

Eq. (27), the nonlinear strain energy of thepiezoelectric FGMs beam can be rewritten as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5

1

{ } { } { } { } } { } { } { }
NE

e e T e e e T e e e T e e e T e e e T e e

nl

i

U q k q q k q q k q q k q q k q 

 



         (31) 

where the element bending stiffness matrix are 

( ) ( ) ( ) ( ) ( ) ( )

1 3 2 4

1 1
{ }{ } { } { }

2 2e e

e e T e e e e T e T

A A

k B D A G dxdy k G A D dxdy    
 

( ) ( ) ( ) ( )

3 5

1
{ } { }

2 e

e e T e T e e

A

k G A D G dxdy    
                                     

(31a) 
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and the coupling matrix are 

( ) ( ) ( ) ( ) ( ) ( )

4 6 5 7

1 1
{ } { } { }

2 2e e

e e T e T e e T e e

A A

k G A D dxdy k B D G dxdy 

                (31b) 

Similarly, strain energy due to foundation after summing over all the elements using Eq. (27), 

Eq. (23) can be rewritten as  

 
                 

1 1

T TNE NE
e e e e e e e

f fl fnl

i i

U q K q q K q
 

                                          (32) 

where 
 

( )

( ) ( )1
,

2
 

e

e e T e

fl f fl f

A

K B D B dA and 
 

( )

( ) ( )1

2
 

e

e e T e

fnl f fnl f

A

K B D B dA are the linear and nonlinear 

foundation stiffness matrix and [Bf] is the strain displacement matrix due to foundation and 

defined as  

  
( ) ( )

      
e e

f f iB L N                                                           (33) 

Using afinite element model as Eq. (27), potential of work done due to thermo-mechanical 

loading as given Eq. (24) can also be written as  

 
         

1





TNE

e e e e

x g

i

W q N K q                                                  (34) 

Where Nx, [Kg]
(e)  is the defined as a thermal buckling load and elemental geometric stiffness 

matrix, respectively.The value of [Kg] is defined in 
   

( )

( ) ( )1

2
 

e

e e T e

g g o g

A

K B N B dA  

Using finite element analysis Eq. (27), after summing over all the elements, the kinetic energy 

of FGMs beam as given in Eq. (26a) can be written as (Shegokar and Lal 2013). 

 

 

 
 

 
. .

1

e T eNE
e

e

T q M q dA


   
    

   
                   (35)

 

where, [M] is the global consistent mass matrix.  

Adopting numerical integration, the element bending stiffness matrix consist of linear and 

nonlinear, coupling matrix, dielectric stiffness matrix, foundation stiffness matrix, geometric 

stiffness matrix and mass matrix can be obtained by transforming expression in (x) coordinate 

system to natural coordinate system (ξ) using Gauss quadrature method. 

Substituting Eq. (28), Eq. (31), Eq. (32), Eq. (34) and Eq. (35) in Eq. (17), once obtains as (Lal  

et al. 2015) 

1

1 2

00 0

00 0 0 0

flg

tT
fnl

K K KM q K q q q
F

K K K



   

              
                

                                      

(36) 

The Eq. (36) can be rewritten as  

      x g tM q K N K q F                                                       
(37) 
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where 1

_ _

T

q f fnl q phi phi q phiK K K K K K K      with 
( ) ( ) ( )

1 2

1

( )
NE

e e e

q

e

K K K K


     

( ) ( )

_ 4

1

( 1 )
NE

e e

q phi

e

K K K


  ;      ( )

1

2
NE

e

phi

e

K K


 ;      ( )

1

NE
e

t t

e

F F


 ; 

 

1

NE
e

fl fl

e

K K


 ;  

1

NE
e

fnl fnl

e

K K


 ;       

1

NE
e

e

M m


  

The parameters 
qK ,

_q phiK , 
1

TK , 
phiK , Ft,  Kfl, Kfnl and M are the global elastic stiffness 

matrix, coupling matrix between elastic mechanical and electrical effect, dielectric stiffness 

matrix, force vector and linear and nonlinear foundation stiffness matrix and mass matrix, 

respectively.   

 

 

4. Instability analysis 
 

The stability analysis of piezoelectric FG beam is performed by expressing the uniform 

pulsating axial compressive force Nx, in terms of a static and dynamic components, both are them 

written in terms of the critical buckling load, Ncr, and expressed as (Datta and Chakraborti 1982, 

Pryadumna and Bandyopadhyay 2010) 

 cos cos     x s t cr crN N N t N N t                                           (38) 

where Ns and Nt are the static and dynamic portion of the in-plane load, respectively.The 

parameters α, β and Ω are the static load factor, dynamic load factors and frequency of excitation, 

respectively. 

Substituting Eq. (38), in Eq. (37), the governing equation of beam in the form of instability 

equation can be further written as 

[ ]{ } cos { } 0      cr g cr g
M q K N K N K t q 

                               
(39) 

Eq. (39) is known as Mathieu-hill equation, describes the nonlinear instability behavior of the 

piezoelectric FGM beam of second order partial differential equation with periodic coefficients. 

The boundaries between stable and unstable regions are formed by periodic solution of period T 

and 2T, where T=2Π/ω. The boundaries of stable and unstable regions within period 2T are of 

great practical importance and the solutions are performed in the form of trigonometric series as  

    
1,3,5

{t} sin sin
2 2

k k

k

k t k t
q a b

 



 
  

 
                                           (40)  

Substituting, Eq. (40) into Eq. (39) and considering only the first term of the series for the 

instability regions and then equating the coefficients of sin(ωt/2)cos(ωt/2), Eq. (39) reduced to the 

form as 

   
22

[ ] { } 0
2 4

cr g
K N K M q

 



   

   
    

    
                               (41) 

Eq. (41) represents an eigenvalue problem forthe known value of α, β and Ncr. The two 

conditions under the plus and minus signs corresponded to two boundaries (left and right) of the 
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instability regions are represented by β. The eigenvalues (Ω/ω), give the boundary frequencies 

(known as disturbing frequency or resonance frequency) of the instability regions for the given 

values of α and β. The problem is now reduced to that of finding the critical excitation frequency 

from the above equation. For a given value of α, the variation of the eigenvalue (Ω/ω) with respect 

to β can be found using standard eigenvalue algorithms. In Eq. (41), the value of Ncr is evaluated 

by assuming the static buckling critical load. The plot of such variations in the β- (Ω/ω) plane 

shows the instability regions of the FGM beam subjected to the periodic axial load. 

In the indirect approach, for the evaluation of transverse dynamic central deflection response 

internal in-plane force vector atthe equilibrium condition for the given time t+Δt are needed. The 

in-plane internal force using Newton's second law of motion can be written as (Ganpathi et al. 

1994, 1999) 

 
 [ ]{ } ( ) 0


     t t

t t
M q N q q

                                  
(42)

 

where { }t tq 
 and  

t t
q


 are the vectors of the nodal accelerations and displacement at time t+Δt, 

respectively.Substituting [ ]{ } t tM q  from Eq. (42) in Eq. (39), once obtains as 

         ( ) coscr g t tt t
N q q K N t K q 


                                           

(43) 

The, internal in-plane force vector   ( )


  t t
N q q  from Eq. (43) can be further written as   

          ( ) ( ) ( )T tt t t
N q q N q q K q q


                                               

(44) 

where,   ( )  t
N q q is the internal in-plane force at time t and      

t t t
q q q


   . The 

parameter  ( )TK q
 
is the tangent stiffness matrix and defined as 

        ( ) cos 


        T cr g t tt
K q K N t K q                                   (45) 

Substituting Eq. (45) into Eq. (42), one obtains the governing equation at t+Δt as 

       [ ]{ } ( ) ( )t t T t t
M q K q q N q q

                                             
(46) 

Eq. (46) is the nonlinear forced vibration equation and for thesolution of this equation, the 

direct iterative procedure combined withthe Newton-Raphson method with required convergence 

less than 1% tolerance is used. 

For solution of Eq. (46) nonlinear  Equilibrium is achieved for each time step through a 

modified Newton Raphson iteration scheme until the required convergence criteria is satisfied 

within the specific tolerance limit of less than 1%. 

At time t+Δt, Eq. (46) can be further written as 

  *[ ]{ }t t t t
K q F 

                                                           (47) 

where [K*] and {F}t are the effective stiffness matrix and effective force vector, respectively 

defined as  

   2

1
[ ] K ( )TK M q

t

  


                                           (48) 
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          2 2

1 1 1 2

2t t t t
F M q q q

t t



 

 
   

                                       

(49)      

here { }t tq   
and { }t tq 

 are the velocity and acceleration vectors at time t+Δt, respectively and are 

written as 

  { } { } 1 { } { }t t t t t tq q t q q     
                                         

(50) 

   
2

2

1 1
{ } { } { } { } { }

2
t t t t t t tq q q t q t q

t



 

  
        

                              

(51)  

The parameters β and γ are constants whose values depend on the finite difference used in the 

calculations. Here, the constant-average acceleration method is used which is implicit and 

unconditionally stable. Although the velocity vector is not required in standard dynamic Eq. (49), 

however, it is presented here because it will be needed subsequently.  For this method the value of 

β and γ are taken as 1/4 and 1/2, respectively. 

Eq. (51) is the dynamic stability deflection problem which is random in nature, being 

dependent on the system properties. Therefore, the eigenvalue and eigenvectors also become 

random. In deterministic environment, the solution of Eq. (51) is evaluated using standard time 

integration solution procedure such as central deflection, Wilson’s, Newmark etc. However, in 

random environment, it is not possible to obtain the solution using the above mentioned numerical 

methods. 

For this purpose, the direct iterative method is first time successfully combined with mean 

cantered FOPT i.e., direct iterative based stochastic finite element method (DISFEM), developed 

by authors for dynamic instability analysis to obtain the second order statistic (mean and SD) of 

nonlinear dynamic transverse central deflection.  

 
 
5. Solution approach 
 

The nonlinear random forced vibration problem as given in Eq. (52) is solved by employing a 

direct iterative method in conjunction with the mean centered perturbation perturbation technique 

assuming that the random changes in transverse displacement during iterations and time does not 

affect the nonlinear stiffness matrix as the procedure given by Shegokar and Lal (2012), Jagtap et 

al. (2011). The systematic solution procedure for stochastic dynamic stability analysis using direct 

iterative based stochastic finite element method (DISFEM) is shown in Fig. 2. 

 
5.1 Perturbation method 
 
In the given Eq. (39), the operating random system variables can be expanded using Taylor 

series expansion about the mean values of random variables up to second order without loss of any 

generality as (Vanmarcke and Grigoriu 1983, Chang and Chang 1994) 

     

         

* * * *

0 0

1 1

*

0 0
1 1

; ;

;

N N
I I

i i i i i i

i i
N N

II

i i ii i i
i i

K K K q q q

M M M and

 

    

 

 

             

        

 

 
                            (52)      
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Fig. 2 Flow chart of solution procedure of stochastic dynamic stability analysis 

 
 
where [K0], [M0], (Ω/ω)0 

and {q0} are the mean deterministic values of respective tensors. The 

parameters αi (i=1,...,bn) ( 1, ..., ) i ni b  is statistically independent random variables (bn). The 

symbol  
*I

i  represents the first order derivatives evaluated at α=0, i.e., *

0








I

i

i

K
K  

Substituting Eq. (55) in Eq. (39) and after simplification following equations are obtained  
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 
 

  
2 2

* 0

0 0 0 0
4

 
   

i

i iK q M q                                                (53) 

   
 

  
 

  
2 2*I2 2

* * * *0

0 0 0 0 0
4 4

    
        

I I Ii i

i i i i iK q K q M q M q
                  

(54) 

The zeroth order Eq. (53) is a deterministic eigenvalue equation relating to mean quantities. 

The mean eigenvalues and corresponding eigenvectors can be evaluated using conventional 

eigensolution procedures. On the other side, first order Eq. (54) represents the random counterpart 

and the solution of random eigenvalues and corresponding eigenvectors can be evaluated using 

solution stochastic/probabilistic approach.  In this approach, the eigenvector is normalized using 

orthogonality conditions to make it complete ortho-normal set. The orthogonality conditions for 

eigenvector can be written as (Shaker et al. 2008) 

      

   

0 0 0

*

0 0 0

, 0 , 1  

 

    

   

T

i i ij ij ij

T

i i ij oi

q M q i j and i j

q K q

                              (55) 

The variance values for first order natural frequency are written as 

          * *

1 1

, ,     
 

         
N N T

I I

i ji j
i j

Var COV

                         

(56) 

where N is the total number of random variables and The COV[αi, αj] is the covariance  between 

αi, and αj can be evaluated in terms of correlation coefficients ρij
 
 and expressed as (Shegokar and 

Lal 2013a, 2013b) 

  '

1 1

, 
 

      
N N

i j

i j

COV C C                                                    (57) 

where [C] and [C’] can be written as 
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where σαi
 
is the standard deviation of random system variables and defined as  

    
i i iVar                                                               (58) 

where μαi is the mean values of input random variables and Var(αi) is the variance of random 

variables from their mean values. Here, Cov[αi, αj] is a covariance matrix between two random 

variables and zero for independent random variables. The standard deviation (SD) can be 

evaluated by the square root of variance.  

Using the procedure as mentioned above, from Eq. (47), the first order variance of deflection at 

time t+Δt can be written as (Shegokar and Lal 2013a, 2013b)  

        * *

1 1

, ,
N N T

I I I

t t t t i ji t t j t t
i j

Var q q q q COV     
 

                  (59) 
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6. Results and discussion  
 

A stochastic nonlinear finite element method (SFEM) based on FOPT using HSDT with von-

Karman strain nonlinearity is used to evaluate the mean and SD of instability analysis of a 

piezoelectric FGM beam supported by elastic foundation subjected to static and dynamic in-plane 

mechanical loadings. The validation and efficacy of the present stochastic approach are compared 

with the results given in the literature and by employing direct MCS.  

The following uncorrelated random variables (bi) are sequenced and defined as b1=Ec, b2=νc, 

b3=Em, b4=νm, b5=n, b6=Ep, b7=ρc, b8=ρm, b9=k1 and b10=k2. 

The parameters k1, k2 and k3 are the dimensionless foundation parameters and defined as  

1 1 2 2 3 34 2 4
, ,  c c c dE I E I E r

K k K k K k
a a a

 with d

I
r

A
 

where, a, Ec, k1, k2 and k3 indicate the length of the beam, Young’s modulus of the ceramic, linear 

Winkler, Pasternak  and nonlinear Winkler foundation parameters, respectively. The parameters I 

and A represent as moment of inertia and cross section area, respectively.   

In the present analysis, the simply supported displacement boundary condition is used and 

written asboth edges are simply supported (SS): u=w=0; at x=0, a. 

The material properties of surface bonded piezoelectric layers of SUS304-Si3N4 type FGM 

material used in the present analysis are shown in Table 1.  

 
6.1 Convergence and Validation study deterministic dynamic stability analysis 
 
To make certain, efficacy of present finite element (FE) based stochastic based model, 

convergence and validation studies of piezoelectric FGM beam supported by elastic foundation are 

performed as discussed below.The convergence study of the present FE formulation is performed 

with various numbers of terms of displacement functions for rectangular simply supported FGM 

beam with a slenderness ratio (L/h)=5 and volume fraction exponent n=1 as shown in Fig. 3. It is  

 

 
Table 1 FGMs properties subjected to TID and TD properties are used for computation. Fu et al. (2012) 

Material Properties P0 P-1 P1 P2 P3 P (T=300K) 

SUS304 

E (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0 207.787e+9 

α (1/K) 12.330e-6 0 8.086e-4 0 0 18.591e-6 

v 0.3262 0 0 0 0 0.3262 

Si3N4 

E (Pa) 348.43e+9 0 -3.070e-4 2.016e-7 -8.946e-7 322.27e+9 

α (1/K) 5.8723e-6 0 9.095e-4 0 0 7.4745e-6 

v 0.2400 0 0 0 0 0.2400 

PZT-5 

E (GPa) ---- ----
 

----
 

----
 

----
 

63.0 

α (1/K) ---- ----
 

----
 

----
 

----
 

0.9e-6 

ρ (Kg/m3) ---- ----
 

----
 

----
 

----
 

7600 

v ---- ----
 

----
 

----
 

----
 

0.3 

kp (W/mK) ---- ----
 

----
 

----
 

----
 

2.1 

d31 (m/V) ---- ----
 

----
 

----
 

----
 

2.54e-10 
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Fig. 3 Convergene study for the dyamic instability regions versus dynamic in-plane load parameters, β 

 

  

(a) kl (b) k2 

 
(c) k3 

Fig. 4 Validation studyfor variation of amplitude ratios with foundation parameters  kl, k2 and k3 on the 

frequency ratio of simply supported functionally graded beam 
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Fig. 5Validation study for variation of volume fraction exponents with temperature change on the 

mechanical buckling of FGM beam 

 

 

Fig. 6 Comparison of the primary instability regions versus dynamic in-plane load parameters, β 

for FGM beam 

 

 

clear that as the number of elements increases, the dynamic instability regions are converged. 

Hence, for the furthercomputation of results, total 30 elements are used.  

The comparative study of the effects of different foundation parameters with amplitude ratios 

(Wmax/h) on the nonlinear fundamental frequency ratios (ωnl/ωl) of simply supported functionally 

graded beam are shown in Fig. 4(a)-(c) and compared with the published results of Fallah and 

Aghdam (2011). Present results using HSDT based finite element analysis (FEA) are in good 

agreements with published results of using an analytical approach. For the given amplitude ratio 

with the increase of foundation parameters, the frequency ratio decreases. Although with the 

increase of amplitude ratios, the frequency ratio increases. It is because of both the foundation 

parameters and amplitude ratio increase the stiffness of the beam. Among the different foundation 

parameters, the effect of the shear foundation parameter is highest as compared to other foundation 

foundations. 

The effect of volume fraction exponents and temperature increments on mechanical buckling of 

FGM beam with a clamped-clamped support condition of temperature dependent material 
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properties and uniform temperature distribution is shown in Fig. 5 and compared withpublished 

results of Kiyani and Eslami (2013). For the different volume fraction exponents and temperature 

increments, the present results using HSDT with FEA are in good agreements with published 

results using first order shear deformation theory (FSDT) with ananalytical approach. 

 

6.2 Validation study for deterministic and probabilistic approach 
 

Fig. 6 shows the comparison study of the dynamic instability by variations of volume fraction 

exponents for simply supported FGMs beam for a/h=25 with Mohanty et al. (2011). With the 

increase in the volume fraction exponent, the dynamic instability occurs at a higher disturbing 

frequency and width of instability regions also increases. The present numerical results using 

HSDT with CO FEM analysis for different volume fraction exponents are good agreement with the 

results of Mohanty et al. (2011) using FSDT with ananalytical approach. 

The comparison study in terms of the mean and standard deviation of dynamic stability of 

present FE based perturbation stochastic model is performed with the direct Monte Carlo 

simulation by variations of slenderness ratios (a/h) for piezoelectric FGMs beam as shown in Fig. 

7. With the increase of slenderness ratios, the mean and corresponding SD of dynamic instability 

occurs at a lower disturbing frequency.  The width of instability regions for mean and correspond 

SD also increases with increase the slenderness ratios. However, by assuming random system 

parameters, the width of instability regions for SD by changing slenderness ratios are more severe.  

For the various values of slenderness ratios, the present FOPT based stochastic model is in good 

agreements with direct MCS. The detailed procedure for application of MCS on buckling and 

vibration problem is given in Ref. Shegokar and Lal (2013a, 2013b and 2014). It is noted that for 

Figs. 3 to 10 and 12 to 17, TD material properties with mechanical  loading is considered while, 

for Fig. 13 thermomechanical load is considered. It is also noted that for the standard deviation of 

dynamic instability analysis, all random system properties are taken as uncorrelated and 

simultaneously varied as {bi =(1,...,10) =0.10} with α=0.5 and n=1 (unless specified otherwise). 

 
 

  

(a) mean (b) SD 

Fig. 7 Effect of theslenderness ratios on the dynamic instability region with random material properties 

{bi (i=1,...,10)=0.1} of piezoelectric FGM beams 
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(a) Mean (b) b1 

  

(c) b2 (d) b3 

  
(e) b4 (f) b5 

Fig. 8 Effect of individual random  system properties with volume fraction exponents (n=0, 1.0, and  ) on 

the dynamic instability for (a) mean and corressponding SD with random change in  b1, b2, b3, b4 and b5 
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Fig. 9 Effect of coefficient of variation (COC) of random system properties  up to 15% from their 

mean values with volume fraction exponentents on the SD of dynamic instability of FGM beam 

 
 
6.3 Parametric study for second order statistics of dynamic stability 
 
The effect of volume fraction exponents (n=0, 1.0, and  ) with random change in individual 

random system parameters {bi =(1,...,5) =0.15} on the mean and SD of dynamic instability of 

simply supported FG plate for a/h=30 is shown in Fig. 8 (a)-(f). The effect of individual change in 

respective densities of metal and ceramic, foundation parameters on the SD of dynamic instability 

and instability regions are highly effective. Hence, proper controls of these random system 

parameters are required for high reliability of the elastically supported piezoelectric FGM beam. 

With the increase of volume fraction exponents, the origin of stability region shifts to lower 

excitation frequency and instability regions becomes narrow. 

The effect of a change in coefficient of variation (COC) of random system parameters {bi 

=(1,...,10) =0.05, ...,0.2} on the SD of dynamic instability of simply supported FG plate for a/h=30 

is shown in Fig. 9. As the SD of random system properties and volume fraction exponents 

increase, the origin of SD of dynamic instability sifts to lower excitation frequency and width of 

dynamic instability increases and increment is more severe for higher SD of random change in 

system properties with whole FGM consists of ceramic portion. 

Fig. 10 shows the effect of  nonlinearity (Wmax/h =0,  0.5, 1, 1.5) on the mean and SD {bi 

(i=1,...,10)=0.1} of the instability region of piezoelectric FGM beams for volume fraction 

exponents n=1.0 and a/h=20. It is observed that the instability regionshifts to higher disturbing 

frequency and the instability region becomes narrow as the linear model changes to the nonlinear 

model. 

As the amplitude increases, the width of the instability region of FGM beam decreases and the 

origin of instability region shifts to higher excitation frequency. It is also observed that the origin 

of SD of dynamic instability shifts to higher excitation frequency and instability regions becomes 

narrow as the amplitude ratio increases. 

The effect of  different combinations of foundation parameters on the mean and SD{bi 

(i=1,...,10)=0.1} of the dynamic instability region for n=1.0 and a/h=20 is shown in Fig. 11(a)-(d). 

With the increase of foundation parameters, the mean instability regionshifts to higher excitation  
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(a) mean (b) SD 

Fig. 10  Effect of theamplitude ratios (Wmax/h =0,  0.5, 1, 1.5) on the dynamic instability region of 

piezoelectric  FGM beams with random material properties. 

 

  
(a) mean (b) SD 

  
(c) mean (d) SD 

Fig. 11 Effect of thefoundation parameters on the dynamic instability  of piezoelectric FGM beam 
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(a) mean (b) SD 

Fig. 12 Effect of thevolume fraction exponents on the dynamic instability region of  piezoelectric FGM 

beam 

 

  
(a) mean (b) SD 

Fig. 13 Effect of thetemperature variation on top surface on the dynamic instability region of  FGM beam 

 

 

frequency and width of the instability regions becomes narrow. Further, among the given different 

combination of foundation parameters, the effect of shear foundation on the dynamic instability 

ishighest as compared to other foundation parameters. This is due to the fact that the foundation 

parameters increase the effective stiffness matrix that makes the beam more stable. The effect of 

the shear foundation parameteris most dominant to increase the stability and possibilities of 

resonance conditions. 

Fig. 12 (a)-(b) examines the effect of volume fraction exponents (n=0, 1.0, and 2) on the mean 

and SD {bi (i=1,...,10)=0.1} of dynamic instability of FGM beams with a/h=20 (foundation 

parameters??). With the increase of volume fraction exponents, the origin of mean dynamic 

instability shifts to higher frequency excitation and the instability region becomes wider and 

maximum when beam is composed of metal only. Although,  SD of dynamic instability sifted to 

higher excitation frequency and thecorresponding region becomes narrow. 

Fig. 13 (a)-(b) shows the effect of temperature variation on top surface of beam (Tc=500 K, 700  
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(a) mean (b) SD 

Fig. 14 Effect of theposition of piezoelectric layer  on the dynamic instability of  piezoelectric FGM beams 

 

 

K, and 900 K)  with random change in system properties {bi (i=1,...,10)=0.1} on the mean and SD 

instability of piezoelectric FGMs beam  resting with elastic foundation for n=1 and a/h=20. With 

the increase of top surface temperature, the mean instability shifts to higher excitation and 

boundary region becomes wider. Although, origin of SD dynamic stability also shifted to higher 

excitation frequency and the instability region becomes narrow. 

The effect of position of piezoelectric layers with random system properties{bi 

(i=1,...,10)=0.1}on the mean and SD of dynamic instability for simply supported FGM beams for 

volume fraction index n=0.5 and a/h=20 is shown in Fig. 14 (a)-(b). With the attachment of 

piezoelectric layers, the origin of mean dynamic stability shifted to lower excitation frequency and 

instability region becomes wider. Although, The origin of SD of dynamic instability also shifts to 

lower excitation frequency and instability region becomes narrow.  

The appearance of beats the phenomenon displacement response of simply supported FGM 

beam supported by elastic foundationis shown in Fig . 15 (a)-(d). The beat phenomena  

 

 

  
(a) without foundation, n=0.5 (b) n=0.5 

Fig. 15 Beat phenomena displacement response subjected to a periodic loading in unstable region for a/h=30 
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(c) n=1 (d) n=2 

Fig. 15 Continued 

 

  

(a) mean dynamic displacement (b) SD of dynamic displacement 

  

(c) mean dynamic displacement (d) SD of dynamic displacement 

Fig. 16 Effect of foundation parameteron mean and SD of dynamic displacement for a/h=30 
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(a) mean dynamic displacement for n=0.5 (b) SD of dynamic displacement for n=0.5 

  
(c) mean dynamic displacement for n=2 (d) SD for n=2 

Fig. 17 Effect of volume fraction exponents on mean and SD of dynamic displacement 

 

 

displacement response of a simply supported FGM beam supported with and without elastic 

foundation subjected to a periodic in-plane loading in the unstable region is examined. It is 

observed that the dynamic displacement  of beam resting on elastic foundation is not much 

significant as compared to without foundation. The displacement response shows an increasing 

order due to the compressive periodic in-plane load under higher dynamic loading factor. The 

dynamic load parameters carrying the structure in unstable state is unreliable and hazardous and 

causes the structural failure. For this reason structure designer try to eliminate the instability of the 

structure with load control, nonlinearity and damping behavior of the structure. 

Fig. 16 (a)-(d) shows the dynamic nonlinear displacement response of a simply supported 

piezoelectric FGM beam subjected to a periodic loading in unstable region for the beam supported 

with and without foundation for β=0.5, α=0.0, n=1, a/h=20. ω=200 rad/s. The beam supported by 

elastic foundation shows higher dynamic displacement as compared to beam without supported by 

elastic foundation. This is due to the fact that the foundation parameters increase the effective 

stiffness matrix of the beam which lower the bending resistance and beam becomes more stable.   

Fig. 17 (a)-(d) shows the effect of volume fraction exponents on the nonlinear mean and SD of 

dynamic deflection with random change in {bi (i=1,...,10)=0.1} for β=0.5, α=0.5 and Wmax/h=0.5. 
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The effect of volume fraction exponent on mean dynamic displacement of beam is much 

significant as compared to higher volume fraction exponent. However, change of SD of dynamic 

deflection for a higher volume fraction exponent is higher than the lower volume fraction 

exponent. It is due to fact that at lower volume fraction exponent, the FGM beam contains a higher 

volume of ceramic portion.   

 
 
7. Conclusions 
 

In the FGM materials, as the amount of metal portion increases, the origin of instability regions 

becomes narrow and shifts to lower excitation frequency. Therefore, more amount of metal 

portions should be taken into consideration for stability of the structures. 

With the presence of randomness at various levels, the origin of instability regions shifts to 

lower excitation frequency and the width of instability region increases. Hence, analysis of 

randomness of various randomness levels gives a more realistic picture of the parameters those are 

involved in safety in final design. Hence, the quantification of randomness is extremely important. 

Volume fraction exponents decrease the stability of the beam and increases the possibilities of 

resonance conditions. 

As the amplitude ratio increase, the mean of dynamic instability shifts to higher excitation 

frequency and origin of dynamic instability regions becomes wider. Hence, the geometrical 

nonlinearity effect provides lower mean stability to the structures, however, vice versa for SD of 

dynamic stability. 

Beam supported by elastic foundations provides higher mean dynamic stability and possibilities 

of higher resonance conditions. However, the SD of dynamic instability increases the possibilities 

of resonance conditions and lowers the dynamic stability. The effect of the shear foundation 

parameter is highly dominant as compared to linear and nonlinear Winkler foundation parameters. 

Hence, proper control of shear foundation is highly desirable for high safety of the elastically 

supported FGM beam. 

The increments in temperature change decrease the mean stability of the beam and increases 

the possibilities ofresonanceconditions. However, SD of dynamic stability decreases the stability 

of beam and increases the possibilities of resonance conditions. Hence, it is concluded that 

temperature increments play an important role to decrease the stability and increasesthe 

possibilities of resonancethe structures.The presence of piezoelectric layers decreases the mean 

and SD of stability of the beam and increases the possibility of resonance condition. The beat 

phenomenon of elastically supported FGM beam by changing the foundation parameter and 

volume fraction exponents is not so sensitive. However, the mean and SD of dynamic central 

deflection of FGM beam supported by elastic foundation are highly sensitive by increasing the 

foundation parameter and volume fraction exponents. 
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