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Abstract.  In this paper, we study a problem of passive suppression of helicopter Ground Resonance (GR) 
using a single degree freedom Nonlinear Energy Sink (NES), GR is a dynamic instability involving the 
coupling of the blades motion in the rotational plane (i.e. the lag motion) and the helicopter fuselage motion. 
A reduced linear system reproducing GR instability is used. It is obtained using successively Coleman 
transformation and binormal transformation. The analysis of the steadystate responses of this model is 
performed when a NES is attached on the helicopter fuselage. The NES involves an essential cubic restoring 
force and a linear damping force. The analysis is achieved applying complexification-averaging method. The 
resulting slow-flow model is finally analyzed using multiple scale approach. Four steady-state responses 
corresponding to complete suppression, partial suppression through strongly modulated response, partial 
suppression through periodic response and no suppression of the GR are highlighted. An algorithm based on 
simple criterions is developed to predict these steady-state response regimes. Numerical simulations of the 
complete system confirm this analysis of the slow-flow dynamics. A parametric analysis of the influence of 
the NES damping coefficient and the rotor speed on the response regime is finally proposed. 
 

Keywords:  helicopter ground resonance; passive control; nonlinear energy sink; relaxation oscillations; 

strongly modulated response 

 
 
1. Introduction 

 

Ground Resonance (GR) is a potential destructive mechanical instability that occurs in 

helicopters, generally when the aircraft is on the ground. The phenomenon of GR involves a 

coupling between the airframe motion on its landing gear and the blades motion in the rotational 

plane (i.e., the lag motion), It can be investigated without taking into account the aerodynamical 

effects. The standard reference of the GR analysis is the paper by Coleman and Feingold (Coleman 

and Feingold 1958) where it is established, considering an isotropic rotor, that GR is a flutter 

instability due to a frequency coalescence between a lag mode and the fuselage mode. The range 

of rotors speeds Ω for which this frequency coalescence occurs is predicted analytically. More 

references can be found in (Bramwell et al. 2001, Krysinski and Malburet 2009), a recent analysis 

of helicopter GR with asymmetric blades is proposed in (Sanches et al. 2012), Traditionally, GR 
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instability is prevented by two passive methods: increasing the damping (Done 1974) or modify 

the stiffness of the rotor blade lag mode or the fuselage mode. Active control of GR has been also 

studied (Krysinski and Malburet 2009), 

Targeted Energy Transfer (TET) is a concept based on an additional essentially nonlinear 

attachment also named Nonlinear Energy Sink (NES) to an existing primary linear system. TET 

has been extensively studied numerically, theoretically and experimentally, the results prove that 

the NES is very efficient for vibration mitigation (Vakatis et al. 2008) and noise reduction (Bellet 

et al. 2010), Impulsive loading was theoretically analyzed for example in (Vakakis and Gendelman 

2001) where TET is investigated in terms of resonance capture. Among a large number of 

applications, NESs can be used to control dynamic instabilities. In the context of air-craft 

applications, two companion papers (Lee et al. 2007a, Lee et al. 2007b) demonstrated that a NES 

coupled to a rigid wing in subsonic flow can partially or even completely suppress aeroelastic 

flutter instability. Furthermore, an asymptotic analysis using complexification-averaging method 

(Manevitch 1999) together with multiple scale method is performed in (Gendelman et al. 2010), 

The paper demonstrates the existence of the three possible passive control mechanisms which are 

characterized in terms of periodic and strongly modulated responses (Starosvetsky and Gendelman 

2008), Finally, suppression of aeroelastic instability of a general nonlinear multi degree of freedom 

system has also be considered in (Luongo and Zulli 2014), Consequently, in this context, the use 

of a NES appears to be an interesting alternative passive control of GR instability. Indeed, the only 

possible effect of using linear dampers is to suppress completely (or not at all) the instability and 

the adding damping needed for the suppression may be very large. For its part, a NES attachment 

with a relatively small linear damping and a pure nonlinear stiffness, is able to prevent destructive 

amplitude of oscillations even if GR instability persists. These situations are hereafter referred as 

partial suppression mechanisms though periodic or strongly modulated responses. The goal of the 

paper, is therefore to study the effect of attaching a NES on the fuselage on the helicopter GR 

instability. We focus on the characterization of the steady-state response regimes of a helicopter 

ground resonance model including a ungrounded NES attachment. 

The paper is organized as follows. In Sect. 2, firstly, a reduced helicopter model reproducing 

GR phenomenon is presented. Then, a NES is attached to the fuselage in an ungrounded 

configuration leading to the model under study named Helicopter Model including a NES 

(hereafter referred as HM+NES), The Sect. 3 first describes some the steady-state response 

regimes of the HM+NES. For regimes are highlighted, they are classified into two categories 

depending on the fact that the trivial solution of the HM+NES is stable or not. Then, an analytical 

developments based on complexification-averaging method (Manevitch 1999) together with 

multiple scale approach (Nayfeh 2011) is developed to analyze situations for which trivial solution 

of the HM+NES is unstable. Moreover, a systematic procedure for the prediction of the 

steady-state response regimes is presented. In Sect. 4, the procedure is used to analyze the 

influence of the damping of the NES and the rotor speed on the response regimes. Finally 

numerical validation of the method is performed. 

 

 

2. System under study 
  

2.1 Helicopter Model (HM) 
  

2.1.1 Initial model 
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(a) (b) 

Fig. 1 Descriptive diagram of the used helicopter system. (a) Overview of the system. (b) View from the top 

 

 

The system under study is shown Fig. 1. It describes an idealized helicopter which consists of a 

fuselage on which a 4-blades rotor rotates at a constant speed Ω. It is very similar to that described 

for example in (Johnson 1994, Bramwell et al. 2001, Krysinski and Malburet 2009), The origin O 

of the earth-fixed system of coordinates (O,x0,y0,z0) coincides with the center of inertia Gf of the 

fuselage at rest (see Fig. 1), At rest, the center of inertia of the rotor Gr is also located on the axis 

(O,z0), The fuselage is a simple damped mass-spring system with only one translational DOF y(t), 

Blades, which are assumed to be a mass points Gi (with i∈[1,4]) placed at a distance L from the 

axis (O,z0), are described by the lagging angles δi(t), A lagging angle is the angle between the 

current position of the blade and its equilibrium position 1)(
2

=)(  itti


  (see Fig. 1(b)), 

The equations of motion which govern the time evolution of the five DOFs of the model (the 

fuselage displacement y(t) and the four lagging angles δi(t)) are derived using Lagrange method. 

This leads to the reference model 

   ykycymm yyy


4  

       0=sincos
2

4

1=

jjjjjj

j

M   

                 

(1) 

  1,4=0,=cos iyMkcI iiiii    
                 

(2) 

where “  ” denotes the derivative with respect to time t, my is the fuselage mass, mδ is the mass of a 

blade, Mδ=mδL 
and Iδ=mδL

2
 are the static moment and the moment of inertia of one blade 

respectively, cy, cδ are damping coefficients of the the fuselage and of a blade respectively and ky 

and kδ are linear stiffness coefficients. 

After linearization of the reference model (1-2) around the trivial equilibrium point, a change of 

variables which transforms individual motions of the blades (described by the lagging angles) into 

collective motions described by the so-called Coleman coordinates (Coleman and Feingold 1958) 

is applied. For a 4-blades rotor there are four Coleman coordinates δ0, δ1c, δ1s and δcp
 
defined by 

273



 

 

 

 

 

 

Baptiste Bergeot, Sergio Bellizzi and Bruno Cochelin 

)),((cos)(
2

1
=)(),(

4

1
=)(

4

1=

1

4

1=

0 ttttt jj

j

cj

j

 
                   

(3) 

).(1)(
4

1
=)()),((sin)(

2

1
=)(

4

1=

4

1=

1 ttttt j

j

j

cpjj

j

s  
                  

(4) 

One can be shown that the variables δ0 and δcp are uncoupled and can be discarded. The reason 

of the decoupling is the fact that the collective motions δ0 and δcp leave the rotor center of inertia 

motionless. As a result, a system of equations with three DOF, namely y, δ1c and δ1s, is obtained. 

Introducing the following notations 

 
 
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
                    (5) 

where ωy and ωδ are the natural frequency of the fuselage and of one blade respectively and cS
~

  

and dS
~

 are the coupling coefficients, equations of motion are finally written in matrix form 

    .=with0,= 11

t
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(6) 

M, K, C and G, are mass matrix, stiffness matrix, damping matrix and gyroscopic matrix of the 

system respectively, they are defined by 
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Note that dS
~

 and cS
~

 characterize the fuselage/rotor coupling. 

 

2.1.2 Reduced model 
The reduced model is obtained retaining only the DOF that occurs in helicopter GR. The GR 

phenomenon is explained making a stability analysis of the previous linear system (6), The set of 

eigenvalues αi (with i∈[1,6]) are easily computed from M, K, C and G. Note that if the 

fuselage/rotor coupling is suppressed (i.e., stating 0=
~

=
~

dc SS ), the eigenvalues of the system 

correspond to the natural eigenvalues of the fuselage, denoted αf, i (with i∈[1,2]), and of the rotor, 

denoted αr, i (with i∈[1,4]), In Fig. 2(a), the typical behavior of the imaginary part of these 

eigenvalues is reported with respect to the rotor speed Ω for ωy<ωδ. We can notice that there are 

two values of Ω for which an interaction between the fuselage mode and the regressive rotor mode 
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is possible: Ω≈|ωy−ωδ|
 
and Ω≈ωy+ωδ

1
. 

In Figs. 2(b) and 2(c), the comparison between eigenvalues of the uncoupled systems αf, i and 

αr, i and the eigenvalues αi of the coupled system shows that: 

 

 

 
(a) 

  
(b) (c) 

Fig. 2 Eigenvalues of the uncoupled system and coupled system (6) for ωy<ωδ. (a) Imaginary parts of the 

natural eigenvalues αf of the fuselage (dashed blue line) and αr of the rotor (solid red line), Comparison 

between the eigenvalues of the uncoupled systems (i.e. αf and αr) and the eigenvalues α of the coupled  

system (black circles),  (b) imaginary parts and (c) real parts. Parameters used: ωy=1, ωδ=2, 0.105=
~

y , 

0.035=
~
 , 0.7=

~
cS  and 0.35=

~
dS . The parameters 

y
~

, 


~
, 

cS
~

 and 
dS

~
 are chosen to obtain  

readable figures, no for their realism 

                                                      
1If undamped system would be considered (i.e., if λy=λδ=0), we would get exact equalities: Ω≈|ωy−ωδ| and Ω≈ωy+ωδ, see 

(Johnson 1994) for more details 
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• For Ω≈|ωy−ωδ|, a phenomenon of “curve veering” (Leissa 1974) appears, the real part of the 

eigenvalues   stay negative and there is no instability.  

• For Ω≈ωy+ωδ, a phenomenon of frequency coalescence is observed, the real part of one of the 

eigenvalues α becomes positive and a dynamic instability occurs; this is the helicopter ground 

resonance.  

Fig. 2 shows also that the progressive rotor mode does not interact with the fuselage mode. For 

ωy>ωδ, similar observations can be made and consequently, in both situations (ωy<ωδ and ωy>ωδ), 

the progressive rotor mode does not contribute to the creation of the GR instability. Therefore, the 

last step to obtain the simplest model for helicopter ground resonance is to eliminate the 

progressive rotor mode from the equations of motion. This is achieved in the remaining of the 

section applying bi-normal transformation (Caughey and O’Kelly 1963, Done 1974) to the 

equations of motion of the rotor alone. In the state-space form we obtain 

  .=with,= 1111

t

scscrrrr UUAU                       (9) 

The following eigenvalue problems 

llAandrrA r

t

rrr  ==                          
(10) 

where 
t

rA  denotes the transpose of
rA , are solved giving: 

• two pairs of complex conjugates eigenvalues: ,1r , 
*

,1r , ,2r  and 
*

,2r  (the “
*

“ is the 

usual notation for the complex conjugate),  

• two pairs of complex conjugates eigenvectors of Ar, ri, called right eigenvectors of Ar: r1, 
*

1r , 

r2 and 
*

2r . 

• two pairs of complex conjugates eigenvectors of 
t

rA , il , called left eigenvectors of 
rA : 

1l , 
*

1l , 
2l  and 

*

2l .  

The right and left eigenvectors satisfy the biorthogonality properties: L
t
R and L

t
ArR are 

diagonal matrices where ][= *

22

*

11 rrrrR  and ][= *
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*

11 llllL . It is convenient to normalize the 

two set of eigenvectors ri and li in order to obtain 
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The binormal transformation consists in introducing the binormal coordinates which are  

constituted of two pairs of complex conjugates, ),( *

11 qq  and ),( *

22 qq , and defined by the  

following relation 

  .=with,== *

22

*

11

t

r

t

r qqqqQULQRQU                 
(13) 

Introducing Eq. (13) in Eq. (9), the equations of motion of the rotor take the form of the 
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following diagonal system 

.= QDQ r


                               
(14) 

One of the couples ),( *

11 qq  and ),( *

22 qq  is relative to the progressive rotor mode and the 

other the regressive one. The couple ),( *

22 qq  is arbitrary chosen to be relative to the progressive 

rotor mode and since this mode does not destabilize the system, the variables q2 and *

2q  can be  

removed from the analysis. 

Consequently, using the vector Ur, equations of motion of the whole coupled system, i.e., Eq. 

(6), become 

0=
~~

3,

2

rdyy USyyy   
                         

(15) 
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Then using Eq. (14) (ignoring variables 
2q  and 

*

2q ) and the following relations  

,=,=,= *

3132

*

3132

*

,1,2 LLRRrr 
                       

(17) 

Eqs. (15)-(16) become finally 

    0=
~~ *

1

*

31131

2 qRqRSyyy dyy
                       (18) 

0.=
~

311,11 yLSqq cr
 

                         
(19) 

Eqs. (18)-(19) define the simplest Helicopter Model (the HM with 4 DOF in state-space) that 

can reproduce GR phenomenon. 

 

2.2 Helicopter Model including a Non Linear Energy Sink (HM+NES) 
      

A NES with a mass mh, a damping coefficient ch and a cubic stiffness k3h, is attached on the 

fuselage in an ungrounded configuration (see Fig. 3), Taking into account the NES displacement 

h(t), the equations of motion read 

      0=~~~~ 3

3

*

1

*

31131

2 hyhyqRqRSyyy dyy   
            

(20) 

    0=~~ 3

3 yhyhh   
                          

(21) 

0,=
~

311,11 yLSqq cr
 

                             
(22) 

where ε=mh/(my+4mδ) is the mass ratio,   mmc yh 4/=~   and   mmk yh 4/=~
33  . 

System of Eqs. (20)-(22) is the reduced Helicopter Model including a Non Linear Energy Sink 

(HM+NES), 

277



 

 

 

 

 

 

Baptiste Bergeot, Sergio Bellizzi and Bruno Cochelin 

 

Fig. 3 Descriptive diagram of the used helicopter system coupled to an ungrounded NES. View from the top 

 

 

It is easy to show that the only fixed point of the HM+NES (Eqs. (20)-(22)) is the trivial 

solution y=h=q1=0. To find its stability, the 6 eigenvalues of the Jacobian matrix of the state-space 

representation of the system Eqs. (20)-(22) have to be computed. The trivial solution is unstable is 

one of the eigenvalues have positive real part. 

 

 

3. Steady-state response regimes of the HM+NES 
 

3.1 Some steady-state response regimes 
  

Using numerical integration of the HM+NES, Eqs. (20)-(22), four different types of response 

regimes which may be highlighted (as illustrated in Sect. 4) when a NES is attached on the 

fuselage. They are classified into two categories depending on the fact that the trivial solution of 

the HM+NES is stable or not: 

• The trivial solution of the HM+NES is stable:   

- Complete suppression. In this case, the additional damping due to the NES attachment 

stabilizes the system and the GR instability is completely suppressed.  

• The trivial solution of the HM+NES is unstable:  

- Partial suppression through Periodic Response (PR), In this case, the steady-state response 

regime is periodic with frequency close to ωy
2
. 

- Partial suppression through Strongly Modulated Response (SMR), In this case, the 

steady-state response regime is a quasiperiodic regime which exhibits a “fast” component with 

frequency close to ωy and a “slow” component corresponding to the envelope of the signal. The 

term “Strongly modulated response” has been introduced by Starosvetsky and Gendelman ( 

2008) for the study of a forced linear system coupled to a NES. 

- No suppression of GR. The NES is not able to maintain stable steady-state regimes. We 

observe exponential growth of the fuselage displacement.  

These four responses are also observed by Lee et al. (2007a) and study theoretically by 

Gendelman et al. (2010) in the context of the control aeroelastic instabilities of a rigid wing in 

                                                      
2This can be shown for example by computing the power spectrum of the steady part of the signal. 
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subsonic flow by means of a NES. 

In the following sections an analytical procedure based on complexification-averaging method 

together with multiple scale method is developed to analyze situations for which trivial solution of 

the HM+NES is unstable. 

 

3.2 The complexified-averaged model 
 

The analytical study proposed is based on complexification-averaging method first introduced 

by Manevitch [Manevitch, 1999] and discussed in detail by Vakakis et al. (2008), 

First, to simplify the following calculations, it is convenient to introduce barycentric 

coordinates v(t) and w(t)  

.= and= hywhyv  
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Using Eqs. (23), Eqs. (20)-(22) are written as follow 
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Secondly, the complexification
3
 consists in introducing the following change of variable 

,=and= 21 wjwvjv yy   
                      

(27) 

with j
2
=−1. 

Previous numerical and theoretical results (see Sect. 3.1) motive us to introduce the assumption 

that the variable v, w and q1 may be broken down into fast and slow components. For that, the 

following representation is introduced 

 
,=,=,= 312211

t
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jt
y
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y

j

eqee



                    

(28) 

where ϕi (with i∈[1,3]) is the complex slow modulated amplitude of the fast component 
t

y
j

e


. 

Substituting Eqs. (27) into Eqs. (24-26) an equivalent complex system of differential equations 

is obtained. Substituting next Eq. (28) in this complex system and performing an averaging over 

one period of the frequency ωy yield to a system of equations describing the behavior of the slow 

complex amplitudes ϕi 

 

                                                      
3This step is not necessary for the variable q1(t) because it is already a complex variable. 
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Eqs. (29)-(31) define the complexified-averaged system. 

 

3.3 Approximation of the periodic solutions of the HM+NES and their stability 
  

Fixed points of the complexified-averaged system (29)-(31) (defined as 0=i
  for i∈[1,3]) 

characterize periodic solutions of Eqs. (24)-(26) if the frequency of the periodic solutions is 

exactly equal to the frequency used to define the complex variables (27), (i.e., the natural 

frequency of the fuselage ωy), However, introducing polar form for the variables ϕi (t) 

[1,3]with,)(=)(
)(

ietnt
t

i
j

ii




                      
(32) 

and considering not the arguments differences δi1=θi(t)−θ1(t), the periodic solutions of the system 

of Eqs. (24)-(26) (and consequently of the HM+NES (20)-(22)) may be defined from the 

complexified-averaged system (29)-(31) as the fixed points of the system of the equations of 

motion describing the dynamic of the variables n1, n2, n3, δ21 and δ31. This system is obtain by first 

rewriting Eqs. (29)-(31) using matrix form 

,||= 2

22 HC                             (33) 

where the constant complex matrix C and vector H are easy obtained from Eqs. (29)-(31), 

Next introducing the polar coordinates (32) and separating real and imaginary parts of each 

equation, Eq. (33) take the form 
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Note that the right hand sides of Eqs. (34)-(39) do not depend on θi but on δ21 and δ31. 

Finally, combining Eqs. (35) and (37) as 
2121 (37)(35))/(37)( nnnn   and Eqs. (35) and (39) 

as 3131 (39)(35))/(39)( nnnn   and grouping with Eqs. (34), (36) and (38), we obtained the close  

form differential equations  

    .=with,= 3121321

t
nnnF                    (40) 

Fixed points  teeeeee nnn 3121321=   of Eqs. (40) are computed by solving   0=eF   and  

associated stability property are found by looking the sign of the real parts of the eigenvalues λi 

(with i∈[1,5]) of the Jacobian matrix of F evaluated at Λ
e
. 

This analysis permits to predict the existence of stable periodic response regimes which 

correspond to the case where the real parts of all the eigenvalues are negative. In the following 

section, an asymptotic analysis of the complexified-averaged model is developed to characterize 

response regimes when stable property is not satisfied. 

 

3.4 Asymptotic analysis of the complexified-averaged model 
  

In this section we assume that ε=1 (i.e., the mass of the NES is small with respect to the total  

mass of the fuselage and the blades) and that the parameters  
~,

~
,

~
,

~
,

~
cdy SS  and 3

~  are of order 

ε (i.e., )(~,~,
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,
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3   OSS cdy : ), These parameters are rescaled as 
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

c
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S
S

                         
(42) 

with (1),,,,, 3 OSS cdy :  . 

Moreover, we focus the analysis for   around  y  introducing the detuning term a , 

defined as  

,=   ay 
                            

(43) 

 with a:O(1), 

Using the rescaled parameters, the terms R31, L31 and αr,1 can be expanded in a first-order 

Taylor series around ε=0 giving  

 2

31 = OjR 
                             

(44) 
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(45) 

   .
2

= 2

,1 


  Oaj yr 
                    

(46) 

Introducing Eqs. (44), (45) and (46) (neglecting the O(ε
2
) terms) and the rescaling parameters 

(41)-(42), Eqs. (29)-(31) becomes 
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(49) 

Eqs. (47)-(49) define a simplified version of the complexified-averaged system which is called 

full slow-flow system which is now be analyzed using the multiple scale approach (Nayfeh 2011) 

with respect to the small parameter ε by considering slow time t0=t and super-slow time
4
 t1=εt. To 

achieve this, multiple scale expansion is introduced as 

1,2,3,=),(=),(=
)

1
,

0
(

1010 iforettntt
tt

i
i

iii




                  
(50) 

reported in Eqs. (47)-(49) with the derivative rule 

.=
10 ttdt

d











                              

(51) 

and finally isolating expressions of order ε
0
 and ε

1
 are deduced. 

 

3.4.1 Slow time scale: ε0-order of the system and Slow Invariant Manifold 
The expressions of order ε

0
 correspond to the following differential equations 

0=
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1

t
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(52) 
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(53) 

0.=
0

3

t



                                

(54) 

At the slow time scale, ϕ3 is uncoupled with ϕ1 and ϕ2, and Eqs. (52) and (54) can be solved 

giving 

)(=),(0= 11101

0

1 ttt
t









                          

(55) 

                                                      
4We use the terminology introduced by Gendelman and Bar (2010) whereby the term fast is reserved for the fast 

component 
t

y
j

e


. 
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).(=),(0= 13103

0

3 ttt
t









                         

(56) 

Introducing the polar coordinates  
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10 andjforettn
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jj
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                    (57) 

Eqs. (52)-(53) reduce to 
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(62) 

where (as in Section. (3.3)) the argument difference δ21=θ2−θ1 
and δ31=θ3−θ1 have been introduced 

and the real scalar functions FR and FI are defined as  

.
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3
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




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(63) 

The fixed points of Eqs. (58)-(62) (which characterize the periodic solutions of Eqs. (24)-(26) 

at the slow time scale) can be computed directly by solving 

0.=lim0=lim
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0 t
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


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(64) 

Using Eq. (55), Eqs. (61) and (60) reduce to the following form 

  ,,|)(|)(=)( 3121211  tFtt
                      

(65) 

where 

).(=),(lim 12102
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
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
                           

(66) 

It is interesting to note that Eq. (65) corresponds to the fixed point of Eq. (53) i.e. 

0.=lim
0

2

0 tt 






 

As discussed for example in (Starosvetsky and Gendelman 2008) for forced linear system with 
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NES  and in (Gendelman et al. 2010, Gendelman and Bar 2010) for nonlinear self-excitated 

system with NES, Eq. (65) defines the so-called Slow Invariant Manifold (SIM) but with respect to 

the variable (Φ1, Φ2, Φ3), 

Considering the polar coordinates  

3,1,2=)(=
)

1
(

1 andjforetN
t

j
i

jj



                      (67) 

it is convenient to characterize the SIM on the ),,( 321 NNN -space as  

)(= 2

2

1 NHN                                
(68) 

where the real scalar function H  is defined by  
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The SIM does not depend on the variable 3N  and this structure can be analysed in the 

),( 12 NN -plan. The local extrema of the function )(xH  are given by the positive roots of its 

derivative H  . An easy calculus shows that the local extrema occur at  
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(70) 

if the following relation holds  

y
3

1
<

                              

(71) 

because in this case 
mM NN 2,2, < . 

Stability of the Slow Invariant Manifold. Stability range of the SIM is determined by 

examining the sign of the eigenvalues real parts of the Jacobian matrix of differential system 

(59-61) on the SIM. It can be shown that the condition of stability of the SIM is equivalent to 

  0>2NH
                               

(72) 

and the stability range of the CM is characterized by the points ),( 1,2, mm NN  and ),( 1,2, MM NN  

where  MM NHN 2,1, = ,  mm NHN 2,1, = , which are therefore called fold points (Seydel 

2010), A typical Slow Invariant Manifold and it stability range are depicted (see Fig. 4(a)) in (N2, 

N1)-plan where N2,d and N2,u are solutions of 
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and 
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(74) 

respectively. In the (N1, N2, N3)-space, each fold point defines a folded line (LM and Lm) co-linear 

to the N3-axis (see Fig. 4(b)), 

The shape and the stability property of the SIM (i.e., the existence of folded lines on which the 

stability of the SIM changes) shown in Fig. 4 allow to define three steady-state regimes of the full 

slow-flow system (47-49) that can explain the three steady-state regimes of the HM+NES 

described in Sect. 3.1. 

These situations corresponds to a periodic solution of the HM+NES (see Sects. 3.1 and 3.3),  

The S-shape of the SIM suggests also the possible existence of relaxation oscillations 

(Grasman 1987),  starting at S0∈LM, the system jumps to S1, which is followed by a slow 

evolution of the trajectory of the system (in the stable domain of the SIM) until it reaches Lm. After 

another jump and a slow evolution (in the stable domain of the SIM), the trajectory returns to 

S0∈LM. Such scenario of relaxation oscillations for the slow-flow system can explain the existence 

of Strongly Modulated Responses (Gendelman et al. 2010, Gendelman and Bar 2010, Starosvetsky  

and Gendelman 2008) for the HM+NES. Note that if 3/> y , the S-shape nature of the SIM is  

lost and therefore relaxation oscillations are note possible.  

Until a first jump the slow-flow evolves the same way as for relaxation oscillations mechanism. 

However, instead of moving toward a stable fixed point or the folded line Lm, the trajectory of the 

system follows the SIM to the infinity. This scenario explains no suppression regime for the 

HM+NES.  

The existence of one of the three steady-state regimes described above or an other depends of 

the position and the stability of the fixed points of the full slow-flow system (47)-(49), Indeed, a 

 

 

  

(a) (b) 

Fig. 4 Slow Invariant Manifold (SIM), Following parameters are used: ωy=1, α3=2 and μ=0.2. (a) In the 

(N1, N2)-plan and (b) In the (N1, N2, N3)-space 
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stable fixed point of the full slow flow placed on the stable part of the SIM is a necessary condition 

to obtain PRs of the HM+NES (20-22), On the other hand, the relaxation oscillations of the slow 

flow (or SRMs for the HM+NES) can exist if both folded lines LM and Lm have attractive parts. 

Position and stability of the fixed points of the full slow-flow system and attractivity (or 

repulsively) of the folded lines are determined in the next section through the study of the 

super-slow time scale. 

 

3.4.2 Super-slow time scale: ε1-order of the system 
The expressions of order ε

1
 correspond to the following differential equations 
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We investigate the behavior of Φ2(t1) and Φ3(t1) with the super-slow time t1. The behavior of 

Φ1(t1) is related to that of Φ2(t1) through the SIM (65)), 

For this sake, we consider only Eqs. (75) and (77) in the limit t0→∞. Using Eqs (55) and (66) 

and the SIM Eq. (65), Eqs. (75) and (77) are written as follow 
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Introducing the polar coordinates  
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and separating real and imaginary parts, Eqs. (78-79) takes the following form 
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involving the variable Δ32= Θ3−Θ2. Combining Eqs. (81)-(84), the system can be finally reduced 

(after some calculation steps) to the following form 
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where 
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The coefficients a11, a12, a21, a22, a31, a32, c1, c2 and c3 are not specified here. Eqs. (85)-(87) 

admit 0 , 1  or 2  fixed points denoted  eee NN 3232 ,,   and defined by 
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(94) 

If ε=1, fixed points computed from Eqs. (91)-(94) corresponds to fixed points of the system 

(40) obtained in Sect. 3.3. As usual, stability of the fixed points are found by looking the sign of  

the eigenvalues real parts of the Jacobian matrix of the vector function ),,(
33221 NN fffF   

evaluated at  eee NN 3232 ,,  . 

A more detailed analysis of Eqs. (85)-(87) is proposed in (Bergeot et al. 2016). In particular, 

folded singularities, which are signs of SMR in the system are highlighted and computed. 

 

3.5 Prediction of the steady-state response regimes of the HM+NES 
  

The prediction of the steady-state response regimes of the HM+NES (20-22) resulting from 

initial conditions not too far from the trivial equilibrium position is obtained checking first the 

local stability property of the trivial equilibrium point of Eqs. (20)-(22) (see Sect. 2.2) and using 

the asymptotic analysis of the full slow-flow system (47)-(49) to characterize the response regimes 

when the trivial equilibrium point of Eqs. (20)-(22) is unstable. From the asymptotic analysis of 

slow-flow system (47)-(49) performed in Sect. 3.4, we characterize   

• the SIM (65) and its the fold points N2,M and N2,m (see Eqs. (70)) and the points N2,d and N2,u 

defined in Eqs. (73) and (74) respectively,  
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(a) 

 
(b) 

Fig. 5 Algorithm for the determination of the domain of existence of the steady-state regimes of the  

HM+NES (24-26), (a) 3/< y  and (b) 3/> y  

 

 

• the stable periodic regimes (PRs) of Eqs. (20)-(22) as the stable fixed points of Eqs. (85)-(87), 

• the non periodic response regimes (SMRs or no suppression) of Eqs. (20)-(22) from the 

unstable fixed points of Eqs. (85)-(87),  
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The steady-state response regimes are classified in five domains: 

• Complete suppression (Domain 0) 

• Partial suppression through PR (Domain 1) 

• Partial suppression through PR or SMR (Domain 2) 

• Partial suppression through SMR (Domain 3) 

• No suppresion (Domain 4) 

The diagram of the Fig. 5 summarizes the algorithm used to, for a given set of parameters, the  

corresponding domain for the associated response regime: Fig. 5(a) for 3/< y  and Fig. 5(b) 

3/> y . The algorithm is detailed in the following section. 

 

 

4. Parametric study and numerical validation of the prediction algorithm 
  

The procedure presented in Sect. 3.5 is used to analyze the influence of the damping μ of the 

NES and the rotor speed Ω, through the detuning parameter a, on the response regimes of the 

HM+NES model. The following set of numerical values of the parameters is used 

0.01,=2,=2,=1,=0.15,=0.3,=2,=1,= 3   cdyy SS
         

(95) 

with μ∈[0,1] and a∈[−1.2,1.2]. Results are plotted in Fig. 7 in which each domain is represented 

by an area of the plane (μ,a), Finally, for each domain (expect for Domain 0 which characterizes 

the Complete suppression) two examples are selected and studied deeply (see Figs. 8 to 13), The  

values of a and μ used for these examples and the corresponded coordinates 
eN1 , 

eN 2  and 
eN 3   

of the fixed points of (85-87) are indicated in Table 1. Table 2 shows the corresponded values of 

N2,M, N2,m, N2,u and N2,d. 

 

4.1 Domain 0: Complete suppression 
 

Analytical prediction of the complete suppression is performed in Sect. 2.2. To obtain the 

Domain 0, the values of a that annul one of the eigenvalues Eqs. (20)-(22) are computed with 

 

 

Table  1 Values of a and μ used in Examples 1a, 1b, 2a, 2b, 3a, 3b, 4a and 4b. Coordinates 
eN1 , 

eN 2  and 
eN 3  of the corresponding fixed points of (85)-(87) are also indicated. S≡stable and U≡unstable 

Example a μ 
Number of Fixed 

Pt. 
Fixed Pt. 1:  eee NNN 321 ,,  Fixed Pt. 2:  eee NNN 321 ,,  

1a -0.65 0.15 2 06,0.211}{0.312,0.4  S 78,0.412}{0.448,0.9  U 

1b 0.3 0.7 1 59,0.723}{0.608,0.8  S   

2a 0.2 0.45 2 26,0.539}{0.372,0.8  S 5.4}{151,4.7,7  U 

2b 0.2 0.37 1 99,0.468}{0.298,0.7  S 5.6}{151,4.7,7  U 

3a 0.4 0.2 1 44,0.319}{0.195,0.7  U   

3b -0.2 0.2 2 92,0.307}{0.239,0.6  U ,0.77}{1.22,1.16  U 

4a 0.65 0.3 2 70,0.458}{0.287,0.8  U 93,0.340}{0.331,0.5  U 

4b 0.65 0.5 0     
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Table 2 Values of N2,M, N2,m, N2,u and N2,d corresponding to Examples 1a, 1b, 2a, 2b, 3a, 3b, 4a and 4b 

Example a μ N2,M N2,m N2,u N2,d 

1a -0.65 0.15 0.479 0.812 0.935 0.124 

1b 0.3 0.7 0.5773/> y  

2a 0.2 0.45 0.552 0.764 0.850 0.407 

2b 0.2 0.37 0.523 0.784 0.886 0.321 

3a 0.4 0.2 0.486 0.808 0.928 0.166 

3b -0.2 0.2 0.486 0.808 0.928 0.166 

4a 0.65 0.3 0.505 0.796 0.908 0.254 

4b 0.65 0.5 0.577 0.745 0.816 0.471 

 

 

Fig. 6 Functions a
+
(μ) and a

−
(μ) and Domain 0 which corresponds to the region of stability of the 

trivial solution of Eqs. (20)-(22), Parameters used: see Eq. (95) 

 

 

respect to the parameter μ. For each value of μ, two values of a annul the eigenvalue, defining the 

functions a
+
(μ) and a

−
(μ) in the plan (μ,a) (see Fig. 6), The area outside the curves a

+
(μ) and a

−
(μ) 

corresponds to stable trivial solution and in the area inside the curves, the trivial solution in 

unstable. The values a
+
(0) and a

−
(0) reflect the case without NES. 

Remark. Following definitions correspond to situations for which 3/< y . Otherwise, if 

3/> y , relaxation oscillations cannot exist. Therefore, only Domains 1 and Domains 4 are  

defined: Domains 1 if one of the fixed point of slow-flow system is stable, Domains 4 if not (see 

Fig. 5(b)), 

 
4.2 Local stability of one of the fixed point of the slow-flow system: Domain 1 and 2 

  

Fixed points of the slow-flow system correspond to periodic solutions of the HM+NES.  
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Fig. 7 Prediction, in the plane (a,μ), of the domains of existence of the four steady-regimes. Domain 0: 

Complete suppression (the gray area), Domain 1: Partial suppression through PR (gray•), Domain 2: 

Partial suppression through PR or SMR (×), Domain 3: Partial suppression through SMR (empty 

square), Domain 4: no suppression (empty circle with point), Parameters used: see Eq. (95) 

 

 

Therefore, the domain of existence the Partial suppression through Periodic Response may 

correspond to the domain of local stability of one of the fixed point. However, the two following  

situations must be considered: M

e NN 2,2 <  and m

e NN 2,2 >  where 
eN 2  is the N2-coordinate of a  

stable fixed point. The two situations correspond to domain 1 and 2 respectively. 

 

4.2.1 Domain 1: partial suppression through PR 

This domain is represented by gray dots in Fig. 7. For M

e NN 2,2 < , the stable fixed point is  

reached before the folded line LM. In this situation, relaxation oscillations or explosion of the 

slow-flow system and therefore SMR or no suppression regimes for the HM+NES are avoided. 

Therefore, domain 1 corresponds to Partial suppression through Periodic Response. Figs. 8 and 9  

show two examples of this situation with 3/< y  and 3/> y  respectively. 

 

4.2.2 Domain 2: partial suppression through PR or SMR 
This domain is represented by black crosses in Fig. 7. The case of one stable fixed point which 

satisfies the condition m

e NN 2,2 >  highlights the limit of the local stability study. Indeed, in this  
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(a) (b) 

Fig. 8 Example 1a. Parameters used: see Eq. (95), a=−0.65 and μ=0.15. (a) Comparison between 

numerical simulation of the HM+NES (24-26) (gray solid line)) and the full slow-flow system (47)-(49) 

(black dashed line), (b) Comparison between the trajectory of the simulated slow-flow system (47)-(49) 

in the plane (N2,N1) and the Slow Invariant Manifold (65), “•”: position (N2,M, N1,M), (N2,m, N1,m), (N2,u, 

N1,M) and (N2,d, N1,m), : stable fixed points, “◦”: unstable fixed points and  : initial conditions 

 

 

 

(a) (b) 

Fig. 9 Example 1b. Parameters used: see Eq. (95), a=0.3 and μ=0.7. Same caption as for Fig. 8 
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(a) (b) 

Fig. 10 Example 2a. Parameters used: see Eq. (95), a=0.2 and μ=0.45. Same caption as for Fig. 8 

 

 

 

(a) (b) 

Fig. 11 Example 2b. Parameters used: see Eq. (95), a=0.2 and μ=0.37. Same caption as for Fig. 8 

 

 

case, at least one jump from N2,M to N2,u is needed to reach the fixed point. After that, the fixed 

point can be really reached or sustained relaxation oscillations of the the slow-flow system are 

observed. Examples of the two possible situations are shown in Figs. 10 (PR, Example 2a) and 11  
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(a) (b) 

Fig. 12 Example 3a. Parameters used: see Eq. (95), a=0.4 and μ=0.2. Same caption as for Fig. 8 

   

 
(SMR, Example 2b), 

 

4.3 Domain 3: partial suppression through SMR 
  

This domain is represented by empty squares in Fig. 7 and corresponds to two situations. In the 

first situation, it exists one fixed point and it is unstable. In the second situation, there are two  

unstable fixed points and the larger of them should satisfied the following condition: u

e NN 2,2 > .  

Example 3a and Example 3b illustrate these two situations respectively (see Figs. 12 and 13), One 

can see in Figs. 12(b) and 13(b) that, in these situations, the fold points are reached by the system 

giving rise to relaxation oscillations of the slow-flow system which correspond to SMR for the 

HM+NES. 

 

4.4 Domain 4: no suppression 
  

This domain is represented by dotted circles in Fig. 7 and corresponds to two situations. The 

first situation corresponds to the case of two unstable fixed points and for both fixed points we  

have: u

e

M NNN 2,22, <<  (see Example 4a in Fig. 14), In the second situation, the slow-flow  

system has no fixed points. Therefore, there exists only the trivial solution of the HM+NES, and it 

is unstable (see Example 4b in Fig. 15), In the case of no suppression, the GR instability is to 

strong to be suppressed by the NES attachment through PRs or SMRs and after a transient regime 

an explosion of the slow-flow in finally observed. 
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(a) (b) 

Fig. 13 Example 3b. Parameters used: see Eq. (95), a=0.2 and μ=−0.2. Same caption as for Fig. 8 

 

 

 

(a) (b) 

Fig. 14 Example 4a. Parameters used: see Eq. (95), a=−0.65 and μ=0.3. Same caption as for Fig. 8 
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(a) (b) 

Fig. 15 Example 4b. Parameters used: see Eq. (95), a=−0.65 and μ=0.5. Same caption as for Fig. 8 

 
 
5. Conclusions 

 

We studied the steady-state response regimes of a helicopter model reproducing GR instability 

coupled to ungrounded NES attached to the fuselage. An Helicopter Model (HM) was defined as a 

linear system involving blade and fuselage dynamics resulting from Coleman and binormal 

transformations. This model reproduces the GR instability corresponding to frequency coalescence 

of the fuselage mode and the regressive rotor mode. The HM is coupled to an ungrounded cubic 

NES defining the HM+NES (Helicopter Model+Non Linear Energy Sink) model. To analyze the 

steady-state response regimes, the system is partitioned in slow-fast dynamics using 

complexification-averaging approach. The presence a small dimensionless parameter related to the 

mass of the NES in the slow-flow system implies that it involves one â€• slowâ€• complex 

variable and two â€• super-slowâ€• complex variables. The â€• super-slow/slowâ€• nature of the 

system allowed us to use multiple scale approach to analyze it. In particular, the Slow Invariant 

Manifold of the slow flow was determined. Its shape involving two folded lines and the associated 

stability properties provide an analytical tool to explain and predict the existence of three regimes: 

periodic response regimes, strongly modulated response regimes and no suppression regimes that 

appear when the trivial solution is unstable. A procedure that allows determining the domains of 

existence of these regimes was proposed. This procedure was used to analyze the influence of the 

damping of the NES and the rotor speed on the response regimes of the HM+NES model for a set 

of nominal numerical values of the other parameters of the model. In the unstable trivial solution 

area, four regimes were predicted: partial suppression through periodic response, partial 

suppression through strongly modulated response, partial suppression through periodic response or 

strongly modulated response and no suppression. All these regimes were validated from direct 

numerical integration of the HM+NES model. 
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