Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

sss
 
CONTENTS
Volume 9, Number 2, February 2012
 


Abstract
A modified Pagano method is developed for the three-dimensional (3D) free vibration analysis of simply-supported, multilayered functionally graded material (FGM) circular hollow cylinders with a constant rotational speed with respect to the meridional direction of the cylinders. The material properties of each FGM layer constituting the cylinders are regarded as heterogeneous through the thickness coordinate, and then specified to obey a power-law distribution of the volume fractions of the constituents, and the effects of centrifugal and Coriolis accelerations, as well as the initial hoop stress due to rotation, are considered. The Pagano method, which was developed for the static and dynamic analyses of multilayered composite plates, is modified in that a displacement-based formulation is replaced by a mixed formulation, the complex-valued solutions of the system equations are transferred to the real-valued solutions, a successive approximation method is adopted to extend its application to FGM cylinders, and a propagator matrix method is developed to reduce the time needed for its implementation. These modifications make the Pagano method feasible for multilayered FGM cylinders, and the computation in the implementation is independent of the total number of the layers, thus becoming less time-consuming than usual.

Key Words
Pagano method; vibration; rotating cylinders; Coriolis acceleration; functionally graded material.

Address
Chih-Ping Wu and Hao-Yuan Li : Department of Civil Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC

Abstract
The present paper deals with the nonlinear analysis of the functionally graded piezoelectric (FGP) annular plate with two smart layers as sensor and actuator. The normal pressure is applied on the plate. The geometric nonlinearity is considered in the strain-displacement equations based on Von-Karman assumption. The problem is symmetric due to symmetric loading, boundary conditions and material properties. The radial and transverse displacements are supposed as two dominant components of displacement. The constitutive equations are derived for two sections of the plate, individually. Total energy of the system is evaluated for elastic solid and piezoelectric sections in terms of two components of displacement and electric potential. The response of the system can be obtained using minimization of the energy of system with respect to amplitude of displacements and electric potential. The distribution of all material properties is considered as power function along the thickness direction. Displacement-load and electric potential-load curves verify the nonlinearity nature of the problem. The response of the linear analysis is investigated and compared with those results obtained using the nonlinear analysis. This comparison justifies the necessity of a nonlinear analysis. The distribution of the displacements and electric potential in terms of non homogenous index indicates that these curves converge for small value of piezoelectric thickness with respect to elastic solid thickness.

Key Words
piezoelectric; nonlinear; annular plate; energy; functionally graded piezoelectric; sensor; actuator.

Address
M. Arefi and G.H. Rahimi : Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran, 14115-143

Abstract
In this paper, solar-powered, multi-scale, vibration-impedance sensor node on Imote2 platform is presented for hybrid structural health monitoring (SHM) in cable-stayed bridge. In order to achieve the objective, the following approaches are proposed. Firstly, vibration- and impedance-based hybrid SHM methods are briefly described. Secondly, the multi-scale vibration and impedance sensor node on Imote2-platform is presented on the design of hardware components and embedded software for vibration- and impedance-based SHM. In this approach, a solar-powered energy harvesting is implemented for autonomous operation of the smart sensor nodes. Finally, the feasibility and practicality of the smart sensor-based SHM system is evaluated on a full-scale cable-stayed bridge, Hwamyung Bridge in Korea. Successful level of wireless communication and solar-power supply for smart sensor nodes are verified. Also, vibration and impedance responses measured from the target bridge which experiences various weather conditions are examined for the robust long-term monitoring capability of the smart sensor system.

Key Words
solar power; vibration; impedance; Imote2; hybrid; SHM; cable-stayed bridge.

Address
Duc-Duy Ho, Po-Young Lee, Khac-Duy Nguyen, Dong-Soo Hong, So-Young Lee and Jeong-Tae Kim : Department of Ocean Eng., Pukyong National University, Busan, Korea
Sung-Woo Shin: Department of Safety Eng., Pukyong National University, Busan, Korea
Chung-Bang Yun : Department of Civil and Environmental Eng., KAIST, Daejeon, Korea
Masanobu Shinozuka : Department of Civil and Environmental Eng., Univ. of California, Irvine, USA

Abstract
In the first part of the paper, the optimal design parameters for tuned liquid column dampers (TLCD) in harmonic pitching motion were investigated. The configurations in design tables include uniform and non-uniform TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 for the design in different situations. A closed-form solution of the structural response was used for performing numerical optimization. The results from optimization indicate that the optimal structural response always occurs when the two resonant peaks along the frequency axis are equal. The optimal frequency tuning ratio, optimal head loss coefficient, the corresponding response and other useful quantities are constructed in design tables as a guideline for practitioners. As the value of the head loss coefficient is only available through experiments, in the second part of the paper, the prediction of head loss coefficients in the form of a design chart are proposed based on a series of large scale tests in pitching base motions, aiming to ease the predicament of lacking the information of head loss for those who wishes to make designs without going through experimentation. A large extent of TLCDs with cross-sectional ratios of 0.3, 0.6, 1, 2 and 3 and orifice blocking ratios ranging from 0%, 20%, 40%, 60% to 80% were inspected by means of a closed-form solution under harmonic base motion for identification. For the convenience of practical use, the corresponding empirical formulas for predicting head loss coefficients of TLCDs in relation to the cross-sectional ratio and the orifice blocking ratio were also proposed. For supplemental information to horizontal base motion, the relation of head loss values versus blocking ratios and the corresponding empirical formulas were also presented in the end.

Key Words
tuned liquid column damper; frequency tuning ratio; head loss coefficient; cross-sectional ratio; pitching motion.

Address
Jong-Cheng Wu : Department of Civil Engineering, Tamkang University, Taipei, Taiwan
Yen-Po Wang and Yi-Hsuan Chen :Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan

Abstract
This paper focuses on the actuation system combined with a piezoelectric transducer and an electric circuit, which leads to a new insight; the electric actuation system is equivalent to mechanical variablestiffness actuation systems. By controlling the switch in the circuit, the electric status of the piezoelectric transducer is changed, and consequently a variable-stiffness mechanism is achieved on the electric actuator. This proposed actuator features a shift in the equilibrium point of force, while conventional electricallyinduced variable-stiffness actuators feature the variation of the stiffness value. We intensively focus on the equilibrium shift in the actuation system, which has been neglected. The stiffness of the variable-stiffness actuator is periodically modulated by controlling the switch, to suppress the vibration of the system in an open-loop way. It is proved that this electric actuator is equivalent to its mechanical counterpart, and that the electrical version has some practical advantages over the mechanical one. Furthermore, another kind of electrically-induced variable-stiffness actuator, using an energy-recycling mechanism is also discussed from the viewpoint of open-loop vibration control. Extensive numerical simulations provide comprehensive assessment on both electrically-induced variable-stiffness actuators employed for open-loop vibration control.

Key Words
stiffness-variable actuator; piezoelectric; open-loop control; switching control; semi-active.

Address
Kanjuro Makihara : Department of Aerospace Engineering, Tohoku University, 6-6-01 Aoba Aramaki Aoba-ku,
Sendai 980-8579, Japan
Horst Ecker: Institute of Mechanics and Mechatronics, Vienna University of Technology, Wiedner Hauptstrasse 8,
Vienna A-1040, Austria


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: info@techno-press.com