Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

scs
 
CONTENTS
Volume 12, Number 5, May 2012
 


Abstract
Many steel bridge infrastructures in the world are getting older, and a large number of these structures are in need of maintenance, rehabilitation or replacement. Most of them are subjected to corrosion due to exposure to aggressive environmental conditions and inadequate maintenance, causing reduction of their carrying capacities. In order to have an adequate bridge management, it is of paramount importance to develop an efficient, accurate and rapid condition assessment method which can be used to make reliable decisions affecting the cost and safety. Therefore, a simple and accurate method of calculating remaining yield and tensile strength by using a concept of representative effective thickness with correlation of initial thickness and maximum corroded depth is proposed in this study, based on the results of many tensile coupon tests of corroded plates obtained from a steel plate girder with severe corrosion, used for about 100 years. Furthermore, a strength reduction diagram which will be very useful for bridge inspection engineers to make rational decisions about the maintenance management of aged steel bridge infrastructures is presented.

Key Words
bridge maintenance; corrosion; effective thickness; remaining strength; tensile test

Address
J.M. Ruwan S. Appuhamy, Mitao Ohga : Department of Civil & Environmental Engineering, Ehime University, Japan
Tatsumasa Kaita : Department of Civil Engineering & Architecture, Tokuyama College of Technology, Japan
Katashi Fujii : Department of Social & Environmental Engineering, Hiroshima University, Japan

Abstract
The present work addresses the rotational capacity of steel-concrete composite beams, which is a key issue for the seismic design of composite frames. Several experimental tests from the literature are summarised, and the effects of various parameters on the available plastic rotation are discussed. Furthermore, a number of remarks are made regarding the need for supplementary experimental results. The authors carried out experimental tests on four composite beams in which the type, width and connection degree of the slab were varied. During the tests, the deflection and strains in the steel profiles and bars were measured and recorded, wherein the observed trends in the measured parameters indicated that the failure mode of the beam was influenced by global and local buckling. A comparison of the experimental results to the theoretical ultimate strengths and moment-curvature relationships confirms that buckling phenomena occurred after section yielding, even if a consistent plastic rotation developed. This rotational capacity is well evaluated by a formulation that is available in the literature.

Key Words
rotational capacity; steel-concrete composite beams; composite frames; inelastic response; ductility

Address
Department of Engineering, University of Sannio, Italy

Abstract
In this paper, nonlinear static analysis of three-dimensional cable stayed bridges is performed for the time dependent materials properties such as creep, shrinkage and aging of concrete and relaxation of cable. Manavgat Cable-Stayed Bridge is selected as an application. The bridge located in Antalya, Turkey, was constructed with balanced cantilever construction method. Total length of the bridge is 202 m. The bridge consists of one e shape steel tower. The tower is at the middle of the bridge span. The construction stages and 3D finite element model of bridge are modeled with SAP2000. Large displacement occurs in these types of bridges so geometric nonlinearity is taken into consideration in the analysis by using P-Delta plus large displacement criterion. The time dependent material strength and geometric variations are included in the analysis. Two different finite element analyses carried out which are evaluated with and without construction stages and results are compared with each other. As a result of these analyses, variation of internal forces such as bending moment, axial forces and shear forces for bridge tower and displacement and bending moment for bridge deck are given with detailed. It is seen that construction stage analysis has a remarkable effect on the structural behavior of the bridge.

Key Words
manavgat cable-stayed bridge; construction stage analysis; time dependent material properties; 3d finite element model; balanced cantilever method

Address
Karadeniz Technical University, Department of Civil Engineering, 61080, Trabzon, Turkey

Abstract
This paper presented a new aerial platform-AERORail for rail transport and its structure evolution based on the elastic stiffness of cable; through the analysis on the cable properties when the cable supported a small service load with high-tensile force, summarized the theoretical basis of the AERORail structure and the corresponding simplified analysis model. There were 60 groups of experiments for a single naked cable model under different tensile forces and different services loads, and 48 groups of experiments for the cable with rail combined structure model. The experimental results of deflection characteristics were compared with the theoretical values for these two types of structures under the same conditions. It proved that the results almost met the classical cable theory. The reason is that a small deflection was required when this structure was applied. After the tension increments tests with moving load, it is verified that the relationships between the structure stiffness and tension force and service load are simple. Before further research and applications are made, these results are necessary for the determination of the reasonable and economic tensile force, allowable service load for the special span length for this new platform.

Key Words
finite elements; nonlinear analysis; off-centre bracing; ductile element; cyclic load; steel structure

Address
Fangyuan Li, Peifeng Wu : Department of Bridge Engineering, Tongji University, Shanghai 200092, China
Dongjie Liu : Guangdong Highway Design Institute Co., Ltd. Guangzhou 510507, China

Abstract
In order to evaluate the dynamic behavior of passive energy dissipation system, two steps need to be considered for prediction of structural response in the presence of ductile element in an off-centre bracing system. The first is a detailed analysis of the proposed ductile element and the second is the effect of this ductile element on an off-centre bracing system. The use of ductile bracing system is expanding in steel structures in order to increase the force reduction factor. Therefore, regarding the nonlinear behavior of steel material used in an off-centre bracing systems and using ductile element in OBS bracing systems, the seismic evaluation of the mentioned systems seems to be necessary. This paper aims to study linear and nonlinear behavior of steel frames with off-centre bracing system and ductile element, in order to get the best position of these bracing elements. To achieve this purpose, the modeling has been done with ANSYS software. The optimum eccentricity has been obtained by modeling three steel frames with different eccentricities and evaluating the results of them. The analytical results showed that the model OBS-C with 0.3 eccentricities has higher performance among the models.

Key Words
finite elements; nonlinear analysis; off-centre bracing; ductile element; cyclic load; steel structure

Address
Faculty of Civil Engineering, Semnan University, Semnan, Iran


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: admin@techno-press.com