Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

eas
 
CONTENTS
Volume 13, Number 3, September 2017
 


Abstract
One of the important phases of probabilistic performance-based methodology is establishing appropriate probabilistic seismic demand models (PSDMs). These demand models relate ground motion intensity measures (IMs) to demand measures (DMs). The objective of this paper is selection of the optimal IMs in probabilistic seismic demand analysis (PSDA) of the RC high-rise buildings. In selection process features such as: efficiency, practically, proficiency and sufficiency are considered. RC high-rise buildings with core wall structural system are selected as a case study building class with the three characteristic heights: 20-storey, 30-storey and 40-storey. In order to determine the most optimal IMs, 720 nonlinear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes and distances to source, and for various soil types, thus taking into account uncertainties during ground motion selection. The non-linear 3D models of the case study buildings are constructed. A detailed regression analysis and statistical processing of results are performed and appropriate PSDMs for the RC high-rise building are derived. Analyzing a large number of results it are adopted conclusions on the optimality of individual ground motion IMs for the RC high-rise building.

Key Words
RC high-rise building; probabilistic seismic demand model; intensity measure; optimality; nonlinear time-history analysis, regression analysis

Address
Jelena R. Pejovic, Nina N. Serdar and Radenko R. Pejovic: Faculty of Civil Engineering, University of Montenegro, Podgorica, Montenegro

Abstract
Fundamental period is one of the most critical parameters affecting the seismic design of buildings. In this paper, a very simple approach is presented for estimating the fundamental period of multiple-degree-of-freedom (MDOF) structures. The basic idea behind this approach is to replace the complicated MDOF system with an equivalent single-degree-of-freedom (SDOF) system. To realize this equivalence, a procedure for replacing a two-degree-of-freedom (2-DOF) system with an SDOF system, known as a two-to-single (TTS) procedure, is developed first; then, using the TTS procedure successively, an MDOF system is replaced with an equivalent SDOF system. The proposed approach is expressed in terms of mass, stiffness, and number of stories, without mode shape or any other parameters; thus, it is a very simple method. The accuracy of the proposed method is investigated by estimating the fundamental periods of many MDOF models; it is found that the results obtained by the proposed method agree very well with those obtained by eigenvalue analysis.

Key Words
fundamental-period estimation; seismic design; MDOF structures; TTS procedure; equivalent SDOF system

Address
Yan-Gang Zhao, Haizhong Zhang and Takasuke Saito: Department of Architecture, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan

Abstract
In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton\'s principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

Key Words
dynamic response; NFRP layer; seismic ground excitation; HDQM; Newmark method

Address
Sajad Shariati Rad and Mahmood Rabani Bidgoli: Department of Civil Engineering, Jasb Branch, Islamic Azad University, Jasb, Iran

Abstract
In this paper, an efficient shear deformation theory is developed for wave propagation analysis in a functionally graded beam. More particularly, porosities that may occur in Functionally Graded Materials (FGMs) during their manufacture are considered. The proposed shear deformation theory is efficient method because it permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Material properties are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents; but the rule of mixture is modified to describe and approximate material properties of the functionally graded beams with porosity phases. The governing equations of the wave propagation in the functionally graded beam are derived by employing the Hamilton\'s principle. The analytical dispersion relation of the functionally graded beam is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions, the depth of beam, the number of wave and the porosity on wave propagation in functionally graded beam are discussed in details. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded beam.

Key Words
wave propagation; functionally graded beam; porosity; higher-order shear deformation beam theories

Address
Mourad Benadouda and Abdelouahed Tounsi: Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria
Hassen Ait Atmane:
1) Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria
2) Département de genie civil, Faculté de genie civil et d\' architecture, Univesite Hassiba Benbouali de Chlef, Algerie
Fabrice Bernard: INSA Rennes, Rennes, France
S.R Mahmoud: Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia

Abstract
Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

Key Words
seismic retrofitting; r.c. framed buildings; base-isolation system; fire scenarios; spectral matching; nonlinear dynamic analysis

Address
Fabio Mazza and Mirko Mazza: Dipartimento di Ingegneria Civile, Università della Calabria 87036 Rende (Cosenza), Italy

Abstract
Having the ability to keep on yielding stable solutions in problems involving high potential of instability, composite time integration methods have become very popular among scientists. These methods try to split a time step into multiple sub-steps so that each sub-step can be solved using different time integration methods with different behaviors. This paper proposes a new composite time integration in which a time step is divided into two sub-steps; the first sub-step is solved using the well-known Newmark method and the second sub-step is solved using Simpson\'s Rule of integration. An unconditional stability region is determined for the constant parameters to be chosen from. Also accuracy analysis is perform on the proposed method and proved that minor period elongation as well as a reasonable amount of numerical dissipation is produced in the responses obtained by the proposed method. Finally, in order to provide a practical assessment of the method, several benchmark problems are solved using the proposed method.

Key Words
simpson rule; newmark method; composite time integration; unconditional stability; numerical damping; period elongation

Address
K. Yasamani: Malek-ashtar University of Technology, Tehran, Iran
S. Mohammadzadeh:
1) College of Engineering, School of Civil Engineering, University of Tehran, Tehran, Iran
2) Payam-Nour University of Urmia, West Azerbaijan, Iran


Abstract
This paper presents seismic performance and reliability evaluation on steel-timber hybrid shear wall systems composed of steel moment resisting frames and infill light frame wood shear walls. Based on experimental observations, damage assessment was conducted to determine the appropriate damage-related performance objectives for the hybrid shear wall systems. Incremental time-history dynamic analyses were conducted to establish a database of seismic responses for the hybrid systems with various structural configurations. The associated reliability indices and failure probabilities were calculated by two reliability methods (i.e., fragility analysis and response surface method). Both methods yielded similar estimations of failure probabilities. This study indicated the greatly improved seismic performance of the steel-timber hybrid shear wall systems with stronger infill wood shear walls. From a probabilistic perspective, the presented results give some insights on quantifying the seismic performance of the hybrid system under different seismic hazard levels. The reliability-based approaches also serve as efficient tools to assess the performance-based seismic design methodology and calibration of relative code provisions for the proposed steel-timber hybrid shear wall systems.

Key Words
steel-timber hybrid structures; seismic reliability; shear walls; fragility analysis; response surface method

Address
Zheng Li, Minjuan He and Ruirui Zhou: Department of Structural Engineering, Tongji University, Shanghai, 200092, China
Frank Lam: Department of Wood Science, University of British Columbia, Vancouver, Canada
Minghao Li: Department of Civil & Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand

Abstract
High Damping Rubber bearings (HDR bearings) have been used in the seismic design of bridge structures widely in China. In earthquakes, structural natural periods will be extended, seismic energy will be dissipated by this kind of bearing. Previously, cyclic loading method was used mainly for test studies on mechanical properties of HDR bearings, which cannot simulate real seismic responses. In this paper, Real-Time Substructure (RTS) test study on mechanical properties of HDR bearings was conducted and it was found that the loading rate effect was not negligible. Then the influence of peak acceleration of ground motion was studied. At last test results were compared with a numerical simulation in the OpenSees software framework with the Kikuchi model. It is found that the Kikuchi model can simulate real mechanical properties of HDR bearings in earthquakes accurately.

Key Words
high damping rubber bearing; real-time substructure test; loading rate; numerical simulation

Address
Tianbo Peng and Yicheng Wu:
1) State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China
2) College of Civil Engineering, Tongji University, Shanghai, China

Abstract
In this paper, a simplified evaluation method of the skeleton curve for reinforced concrete (RC) frame with unreinforced masonry (URM) infill is proposed in a practical form, based on the previous studies. The backbone curve for RC boundary frame was modeled by a tri-linear envelope with cracking and yielding points. On the other hand, that of URM infill was modeled by representative characteristic points of cracking, maximum, and residual strength; also, the interaction effect between RC boundary frame and the infill was taken into account. The overall force-displacement envelopes by the sum of RC boundary frame and URM infill, where the backbone curves of the infill from other studies were also considered, were then compared with the previous experimental results. The simplified estimation results from this study were found to almost approximate the overall experimental results with conservative evaluations, and they showed much better agreement than the cases employing the infill envelopes from other studies.

Key Words
RC frame; URM infill; diagonal strut mechanism; backbone curve; ASCE41-06

Address
Kiwoong Jin: Department of Architectural and Building Science, Tohoku University, Sendai, Japan
Ho Choi: Institution of Industrial Science, The University of Tokyo, Tokyo, Japan

Abstract
A simplified framework for the probabilistic estimation of economic losses induced by the structural vulnerability in single-story and single-bay precast industrial buildings is presented. The simplifications introduced in the framework are oriented to the definition of an expeditious procedure adoptable by government agencies and insurance companies for preliminary risk assessment. The economic losses are evaluated considering seismic hazard, structural response, damage resulting from the structural vulnerability and only structural-vulnerability-induced e]conomic losses, i.e., structural repair or reconstruction costs (stock and flow costs) and content losses induced by structural collapse. The uncertainties associated with each step are accounted for via Monte Carlo simulations. The estimation results in a probabilistic description of the seismic risk of portal-like industrial buildings, expressed in terms of economic losses for each occurrence (i.e., seismic event) that owners (i.e., insured) and stakeholders can use to make risk management decisions. The outcome may also be useful for the definition of the insurance premiums and the evaluation of the risks and costs for the owner corresponding to the insurance industrial costs. A prototype of a precast concrete industrial building located in Mirandola, Italy, hit by the 2012 Emilia earthquake, is used as an example of the application of the procedure.

Key Words
structural vulnerability; insurance policy; uncertainties; monte carlo

Address
Cristoforo Demartino and Giorgio Monti:
1) College of Civil Engineering, Nanjing Tech University, Nanjing 211816, PR China
2) DISG, Sapienza University of Rome, via A. Gramsci 53, 00197 Rome, Italy
Ivo Vanzi: Department of Engineering and Geology, University \"G. d\' Annunzio\" of Chieti-Pescara, viale Pindaro, Pescara, Italy


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: info@techno-press.com