Techno Press
Tp_Editing System.E (TES.E)
Login Search


You have a Free online access.
aas
 
CONTENTS
Volume 5, Number 3, May 2018
 

Abstract
This research studies thermo-elastic behavior of rotating micro discs that are employed in various micro devices such as micro gas turbines. It is assumed that material is functionally graded with a variable profile thickness, density, shear modulus and thermal expansion in terms of radius of micro disc and as a power law function. Boundary condition is considered fixed-free with uniform thermal loading and elastic field is symmetric. Using incompressible material\'s constitutive equation, we extract governing differential equation of four orders; to solution this equation, we utilize general differential quadrature (GDQ) method and the results are schematically pictured. The obtained result in a particular case is compared with another work and coincidence of results is shown. We will find out that surface effect tends to split micro disc\'s area to compressive and tensile while nonlocal parameter tries to converge different behaviors with each other; this convergence feature make FGIMs capable to resist in high temperature and so in terms of thermo-elastic behavior we can suggest, using FGIMs in micro devices such as micro turbines (under glass transition temperature).

Key Words
rotating micro discs; functionally graded incompressible materials; thermo-elastic analysis

Address
Farzad Ebrahimi and Ebrahim Heidari: Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

Abstract
In this study, the failure mode and energy absorption capabilities of a composite shock absorber device, during an emergency landing are evaluated. The prototype has been installed and tested in laboratory simulating an emergency landing test condition. The crash absorber presents an innovative configuration able to reduce the loads transmitted to a helicopter fuselage during an emergency landing. It consists of a composite tailored tube installed on the landing gear strut. During an emergency landing this crash absorber system should be able to absorb energy through a pre-designed deformation. This solution, compared to an oleo-pneumatic shock absorber, avoids sealing checks, very high values of the shock absorber pressure, and results to be lighter, easy in maintenance, inspect and use. The activities reported in this paper have become an attractive research field both from the scientific viewpoint and the prospect of industrial applications, because they offer benefits in terms of energy absorbing, weight savings, increasing the safety levels, and finally reducing the costs in a global sense.

Key Words
aircraft design; carbon fibre composite; composites; delamination; finite element analysis; numerical simulation

Address
Michele Guida, Francesco Marulo: Department of Industrial Engineering, Aeronautical Section, University of Naples \"Federico II\", Italy
Bruno Montesarchio,Salvatore Orlando: Magnaghi Aeronautica, Aeronautical Industry, Italy

Abstract
The structural dynamics (SD) behavior of Elastic Flapping Wings (EFWs) is investigated analytically as a novel approach in EFWs analysis. In this regard an analytical SD solution of EFW undergoing a prescribed rigid body motion is initially derived, where the governing equations are expressed in modal space. The inertial forces are also analytically computed utilizing the actuator induced acceleration effects on the wing structure, while due to importance of analytical solution the linearity assumption is also considered. The formulated initial-value problem is solved analytically to study the EFW structural responses, where the effect of structure-actuator frequency ratio, structure-flapping frequency ratio as well as the structure damping ratio on the EFW pick amplitude is analyzed. A case study is also simulated in which the wing is modeled as an elastic beam with shell elements undergoing a prescribed sinusoidal motion. The corresponding EFW transient and steady response in on-off servo behavior is investigated. This study provides a conceptual understanding for the overall EFW SD behavior in the presence of inertial forces plus the servo dynamics effects. In addition to the substantial analytical results, the study paves a new mathematical way to better understanding the complex role of SD in dynamic EFWs behavior. Specifically, similar mathematical formulations can be carried out to investigate the effect of aerodynamics and/or gravity.

Key Words
flapping wing; modeling; structural dynamics; aeroelasticity; inertial forcing

Address
Hadi Zare, Seid H. Pourtakdoust and Ariyan Bighashdel: Center of Excellence in Aerospace Systems, Department of Aerospace Engineering, Sharif University of Technology, Azadi Street, Tehran, Iran


Abstract
A non-linear numerical simulation technique for predicting the unsteady performances of an air-breathing engine is developed. The study focuses on the simulation of integrated propulsion systems, where a closer coupling is needed between the airframe and the engine dynamics. In fact, the solution of the fully unsteady flow governing equations, rather than a lumped volume gas dynamics discretization, is essential for modeling the coupling between aero-servoelastic modes and engine dynamics in highly integrated propulsion systems. This consideration holds for any propulsion system when a full separation between the fluid dynamic time-scale and engine transient cannot be appreciated, as in the case of flow instabilities (e.g., rotating stall, surge, inlet unstart), or in case of sudden external perturbations (e.g., gas ingestion). Simulations of the coupling between external and internal flow are performed. The flow around the nacelle and inside the engine ducts (i.e., air intakes, nozzles) is solved by CFD computations, whereas the flow evolution through compressor and turbine bladings is simulated by actuator disks. Shaft work balance and rotor dynamics are deduced from the estimated torque on each turbine/compressor blade row.

Key Words
propulsion system simulation; gas-turbines; compressible flows; CFD

Address
Michele Ferlauto and Roberto Marsilio: Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Cors Duca degli Abruzzi, 24, 10129, Torino, Italy


Abstract
One-dimensional (1D) models of incompressible flows, can be of interest for many applications in which fast resolution times are demanded, such as fluid-structure interaction of flows in compliant pipes and hemodynamics. This work proposes a higher-order 1D theory for the flow-field analysis of incompressible, laminar, and viscous fluids in rigid pipes. This methodology is developed in the domain of the Carrera Unified Formulation (CUF), which was first employed in structural mechanics. In the framework of 1D modelling, CUF allows to express the primary variables (i.e., velocity and pressure fields in the case of incompressible flows) as arbitrary expansions of the generalized unknowns, which are functions of the 1D computational domain coordinate. As a consequence, the governing equations can be expressed in terms of fundamental nuclei, which are invariant of the theory approximation order. Several numerical examples are considered for validating this novel methodology, including simple Poiseuille flows in circular pipes and more complex velocity/pressure profiles of Stokes fluids into nonconventional computational domains. The attention is mainly focused on the use of hierarchical McLaurin polynomials as well as piece-wise nonlocal Lagrange expansions of the generalized unknowns across the pipe section. The preliminary results show the great advantages in terms of computational costs of the proposed method. Furthermore, they provide enough confidence for future extensions to more complex fluid-dynamics problems and fluid-structure interaction analysis.

Key Words
one-dimensional Stokes flows; Carrera unified formulation; higher-order models

Address
Alberto Varello, Alfonso Pagani, Daniele Guarnera and Erasmo Carrera: Mul2, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy

Abstract
In this paper dynamic behavior (modal analysis and dynamic transient response) of a novel sandwich T-joint is numerically and experimentally investigated. An epoxy adhesive is selected for bonding purpose and making the step wise graded behavior of adhesive region. The effect of the step graded behavior of the adhesive zone on dynamic behavior of a sandwich T-joint is numerically studied. Finite element analysis (FEA) of the T-joints with carbon fiber reinforced polymer (CFRP) face-sheets is performed by ABAQUS 6.12-1 FEM code software. Modal analysis and dynamic half-sine transient response of the sandwich T-joint are presented in this paper. Two verification processes employed to verify the dynamic modeling of the manufactured sandwich panels and T-joint modeling. It has been shown that the step wise graded adhesive zone cases have changed the second natural frequency by about 5%. Also, it has been shown that the different arranges in the step wise graded adhesive zone significantly affect the maximum stresses due to transient dynamic loading by 1112% decrease in maximum peel stress and 691.9% decrease in maximum shear stress on the adhesive region.

Key Words
sandwich T-joints; step wise graded adhesive zone; transient dynamic loading; modal analysis

Address
Madjid Mokhtari, Morteza Shahravi and Mahmood Zabihpoor: Department of Aerospace Engineering, Maleke-e-Ashtar University of Technology, Lavizan, Tehran, Iran

Abstract
The aim of this work is to optimize the geometrical parameters as the adhesive thickness and the beveled angle to reduce the edge effect of the scarf and V bounded joint. A finite element analysis is done to define the generated stresses in the bounded joint. The geometrical optimum is obtained using the Experimental Design Method. Results show that the double scarf (V) joint is better than the simple scarf bounded joint.

Key Words
scarf bounding; V bounding; finite element analysis; stresses distribution; experimental design method; optimization

Address
Sidi Mohamed Fekih, Kuider Madani, Smail Benbarek and Mohamed Belhouari: LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes, BP 89, Cité Ben M\'hidi 22000 Sidi Bel Abbes, Algeria


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2018 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com