Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

scs
 
CONTENTS
Volume 11, Number 6, December 2011
 


Abstract
Bonding composite materials to structural members for strengthening purpose has received a considerable attention in recent years. The major problem when using bonded FRP or steel plates to strengthen existing structures is the high interfacial stresses that may be built up near the plate ends which lead to premature failure of the structure. As a result, many researchers have developed several analytical methods to predict the interface performance of bonded repairs. In this paper, a numerical solution using finite - differencemethod is used to calculate the interfacial stress distribution in beams strengthened with FRP plate having a tapered ends with different thinning profiles. These latter, can significantly reduce the stress concentration. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both beam and bonded plate. Numerical results from the present analysis are presented to demonstrate the advantages of use the tapers in design of strengthened beams.

Key Words
plate bonding; FRP composite; interfacial stresses; repaired beam; design; taper

Address
Khalil Belakhdar and Yeghnem Redha : Departement of Civil Engineering and Hydraulics, University of Saida, BP138 cite Nacer,20000 Saida, Algeria
Abdelouahed Tounsi and El Abbes Adda Bedia : Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes, BP 89 Cite Ben M

Abstract
Although retrofitting and strengthening reinforced concrete (RC) columns by wrapping fiber reinforced polymer (FRP) composites have become a popular technique in civil engineering, the study on reinforced high-strength concrete (HSC) columns is still not sufficient. The objective of these companion papers is to investigate the mechanical properties of reinforced HSC square columns confined by aramid FRP (AFRP) jackets under concentric compressive loading. In the part I of these companion papers, an experiment was conducted on 54 confined RC specimens and nine unconfined plain specimens, the considered parameters were the concrete strength, the thickness of AFRP jackets, and the form of AFRP wrapping. The experimental process and results are presented in detail. Subsequently, some discussions on the confinement effect, failure modes, strength, and ductility of the columns are carried out.

Key Words
reinforcement; high-strength concrete (HSC); confined columns; fiber reinforced polymers (FRP);experimentation.

Address
Yuan-feng Wang : School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China

Yi-Shuo Ma and Han-liang Wu : Bridge Technology Research Center, Research Institute of Highway, Ministry of Transportation, Beijing, 100088, PR China

Abstract
This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column\'s bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ( fmax), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( fsy) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.

Key Words
lightweight aggregate concrete filled steel tube; load eccentricity; steel ratio; slenderness ratio; ultimate bearing capacity; composite construction

Address
College of Civil Engineering, Hohai University, Nanjing 210098, China

Abstract
This paper presents a theoretical investigation in free vibration of sigmoid functionally graded beams with variable cross-section by using Bernoulli-Euler beam theory. The mechanical properties are assumed to vary continuously through the thickness of the beam, and obey a two power law of the volume fraction of the constituents. Governing equation is reduced to an ordinary differential equation in spatial coordinate for a family of cross-section geometries with exponentially varying width. Analytical solutions of the vibration of the S-FGM beam are obtained for three different types of boundary conditions associated with simply supported, clamped and free ends. Results show that, all other parameters remaining the same, the natural frequencies of S-FGM beams are always proportional to those of homogeneous isotropic beams. Therefore, one can predict the behaviour of S-FGM beams knowing that of similar homogeneous beams.

Key Words
functionally graded materials; beams; variable cross-section; free vibration

Address
Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes, BP 89 Cite Ben M

Abstract
Steel girder web panels have been subjected in recent decades, to a number of experimental and numerical studies but the mechanisms that regulate the behaviour of the panels composed by two subpanels with different thickness were not deeply studied. Furthermore specific design rules regarding the estimation of the buckling coefficient for panels with variable thickness are not included in the codes even if this is a common situation particularly for steel bridge girders with beams having significant height. In this framework,this work aims to investigate buckling behaviour of steel beams with webs composed of panels with different thicknesses subjected to both in-plane axial compression and bending moment and gives some simplified equations for the estimation of the buckling coefficient.

Key Words
stability; steel panel; linear buckling; design.

Address
Department of Structural and Transportation Engineering, University of Padova,Via Marzolo, 9, 35131 Padova, Italy


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: admin@techno-press.com